Simultaneous Quantification of Forsterite Content and Minor–Trace Elements in Olivine by LA–ICP–MS and Geological Applications in Emeishan Large Igneous Province
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reference Materials and Olivine Samples
2.2. LA–ICP–MS
2.3. Data Acquisition
2.4. Data Reduction Approach
3. Results and Discussion
3.1. Precision of the Fe/Mg Ratio and its Influence on Fo Content
3.2. Accuracy of Fo Contents and Long-Term Reproducibility
3.3. Accuracy of Minor–Trace Elements
3.4. Olivine Phenocrysts in the Lijiang Picrites from the Emeishan Large Igneous Province
3.5. Advantages and Limitations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Foley, S.F.; Prelevic, D.; Rehfeldt, T.; Jacob, D.E. Minor and trace elements in olivines as probes into early igneous and mantle melting processes. Earth Planet. Sci. Lett. 2013, 363, 181–191. [Google Scholar] [CrossRef]
- Sobolev, A.V.; Hofmann, A.W.; Sobolev, S.V.; Nikogosian, I.K. An olivine-free mantle source of Hawaiian shield basalts. Nature 2005, 434, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Sobolev, A.V.; Hofmann, A.W.; Kuzmin, D.V.; Yaxley, G.M.; Arndt, N.T.; Chung, S.-L.; Danyushevsky, L.V.; Elliott, T.; Frey, F.A.; Garcia, M.O. The amount of recycled crust in sources of mantle-derived melts. Science 2007, 316, 412–417. [Google Scholar] [CrossRef]
- Stead, C.V.; Tomlinson, E.L.; Kamber, B.S.; Babechuk, M.G.; McKenna, C.A. Rare Earth Element Determination in Olivine by Laser Ablation-Quadrupole-ICP-MS: An Analytical Strategy and Applications. Geostand. Geoanalytical Res. 2017, 41, 197–212. [Google Scholar] [CrossRef] [Green Version]
- Putirka, K.D.; Perfit, M.; Ryerson, F.; Jackson, M.G. Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling. Chem. Geol. 2007, 241, 177–206. [Google Scholar] [CrossRef] [Green Version]
- Herzberg, C. Basalts as temperature probes of Earth’s mantle. Geology. 2011, 39, 1179–1180. [Google Scholar] [CrossRef] [Green Version]
- De Hoog, J.C.; Gall, L.; Cornell, D.H. Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry. Chemical Geol. 2010, 270, 196–215. [Google Scholar] [CrossRef] [Green Version]
- Le Roux, V.; Lee, C.T.A.; Turner, S.J. Zn/Fe systematics in mafic and ultramafic systems: Implications for detecting major element heterogeneities in the Earth’s mantle. Geochim. Cosmochim. Acta 2010, 74, 2779–2796. [Google Scholar] [CrossRef]
- Li, C.; Ripley, E.M. The relative effects of composition and temperature on olivine-liquid Ni partitioning: Statistical deconvolution and implications for petrologic modeling. Chem. Geol. 2010, 275, 99–104. [Google Scholar] [CrossRef]
- Herzberg, C.; Vidito, C.; Starkey, N.A. Nickel–cobalt contents of olivine record origins of mantle peridotite and related rocks. Am. Miner. 2016, 101, 1952–1966. [Google Scholar] [CrossRef]
- Lynn, K.J.; Shea, T.; Garcia, M.O. Nickel variability in Hawaiian olivine: Evaluating the relative contributions from mantle and crustal processes. Am. Miner. 2017, 102, 507–518. [Google Scholar] [CrossRef]
- Wan, Z.; Coogan, L.A.; Canil, D. Experimental calibration of aluminum partitioning between olivine and spinel as a geothermometer. Am. Miner. 2008, 93, 1142–1147. [Google Scholar] [CrossRef]
- Mallmann, G.; O’Neill, H.S.C. Calibration of an Empirical Thermometer and Oxybarometer based on the Partitioning of Sc, Y and V between Olivine and Silicate Melt. J. Petrol. 2013, 54, 933–949. [Google Scholar] [CrossRef] [Green Version]
- Coogan, L.; Saunders, A.; Wilson, R. Aluminum-in-olivine thermometry of primitive basalts: Evidence of an anomalously hot mantle source for large igneous provinces. Chem. Geol. 2014, 368, 1–10. [Google Scholar] [CrossRef]
- Gavrilenko, M.; Herzberg, C.; Vidito, C.; Carr, M.J.; Tenner, T.; Ozerov, A. A Calcium-in-Olivine Geohygrometer and its Application to Subduction Zone Magmatism. J. Petrol. 2016, 57, 1811–1832. [Google Scholar] [CrossRef]
- Mallmann, G.; O’Neill, H.S.C. The Crystal/Melt Partitioning of V during Mantle Melting as a Function of Oxygen Fugacity Compared with some other Elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y., Zr and Nb). J. Petrol. 2009, 50, 1765–1794. [Google Scholar] [CrossRef]
- Foley, S.F.; Jacob, D.E.; O’Neill, H.S.C. Trace element variations in olivine phenocrysts from Ugandan potassic rocks as clues to the chemical characteristics of parental magmas. Contrib. Mineral. Petrol. 2011, 162, 1–20. [Google Scholar] [CrossRef]
- Eggins, S.M.; Rudnick, R.L.; McDonough, W.F. The composition of peridotites and their minerals: A laser-ablation ICP–MS study. Earth Planet. Sci. Lett. 1998, 154, 53–71. [Google Scholar] [CrossRef]
- Jeffries, T.; Perkins, W.; Pearce, N. Measurements of trace elements in basalts and their phenocrysts by laser probe microanalysis inductively coupled plasma mass spectrometry (LPMA-ICP-MS). Chem. Geol. 1995, 121, 131–144. [Google Scholar] [CrossRef]
- Bussweiler, Y.; Giuliani, A.; Greig, A.; Kjarsgaard, B.; Petts, D.; Jackson, S.; Barrett, N.; Luo, Y.; Pearson, D. Trace element analysis of high-Mg olivine by LA-ICP-MS–Characterization of natural olivine standards for matrix-matched calibration and application to mantle peridotites. Chem. Geol. 2019, 524, 136–157. [Google Scholar] [CrossRef]
- Batanova, V.G.; Sobolev, A.V.; Kuzmin, D.V. Trace element analysis of olivine: High precision analytical method for JEOL JXA-8230 electron probe microanalyser. Chem. Geol. 2015, 419, 149–157. [Google Scholar] [CrossRef]
- Su, B.; Chen, Y.; Mao, Q.; Zhang, D.; Jia, L.-H.; Guo, S. Minor elements in olivine inspect the petrogenesis of orogenic peridotites. Lithos. 2019, 344, 207–216. [Google Scholar] [CrossRef]
- Jercinovic, M.J.; Williams, M.L. Analytical perils (and progress) in electron microprobe trace element analysis applied to geochronology: Background acquisition, interferences, and beam irradiation effects. Am. Mineral. 2005, 90, 526–546. [Google Scholar] [CrossRef]
- Donovan, J.J.; Lowers, H.A.; Rusk, B.G. Improved electron probe microanalysis of trace elements in quartz. Am. Mineral. 2011, 96, 274–282. [Google Scholar] [CrossRef]
- Sylvester, P.J.; Jackson, S.E. A Brief History of Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA–ICP–MS). Elem. 2016, 12, 307–310. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Gao, S.; Gunther, D.; Xu, J.; Gao, C.G.; Chen, H.H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar]
- Humayun, M.; Davis, F.A.; Hirschmann, M.M. Major element analysis of natural silicates by laser ablation ICP-MS. J. Anal. At. Spectrom. 2010, 25, 998–1005. [Google Scholar] [CrossRef]
- Gagnon, J.E.; Fryer, B.J.; Samson, I.M.; Williams-Jones, A.E. Quantitative analysis of silicate certified reference materials by LA-ICPMS with and without an internal standard. J. Anal. At. Spectrom. 2008, 23, 1529–1537. [Google Scholar] [CrossRef]
- Guillong, M.; Hametner, K.; Reusser, E.; Wilson, S.A.; Günther, D. Preliminary Characterisation of New Glass Reference Materials (GSA-1G, GSC-1G, GSD-1G and GSE-1G) by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Using 193 nm, 213 nm and 266 nm Wavelengths. Geostand. Geoanalytical Res. 2005, 29, 315–331. [Google Scholar] [CrossRef]
- Batanova, V.G.; Thompson, J.M.; Danyushevsky, L.V.; Portnyagin, M.V.; Garbe-Schönberg, D.; Hauri, E.; Kimura, J.-I.; Chang, Q.; Senda, R.R.; Goemann, R.; et al. New Olivine Reference Material for In Situ Microanalysis. Geostand. Geoanalytical Res. 2019, 43, 453–473. [Google Scholar] [CrossRef] [Green Version]
- Jochum, K.P.; Dingwell, D.B.; Rocholl, A.; Stoll, B.; Hofmann, A.W.; Becker, S.; Besmehn, A.; Bessette, D.; Dietze, H.J.; Dulski, P. The Preparation and Preliminary Characterisation of Eight Geological MPI--DING Reference Glasses for In-Situ Microanalysis. Geostand. Newsl. 2000, 24, 87–133. [Google Scholar] [CrossRef]
- Jochum, K.P.; Stoll, B.; Herwig, K.; Willbold, M.; Hofmann, A.W.; Amini, M.; Aarburg, S.; Abouchami, W.; Hellebrand, E.; Mocek, B.; et al. MPI-DING reference glasses for in situ microanalysis: New reference values for element concentrations and isotope ratios. Geochem. Geophys. Geosyst. 2006, 7, 1–44. [Google Scholar] [CrossRef]
- Jochum, K.P.; Nohl, U. Reference materials in geochemistry and environmental research and the GeoReM database. Chem. Geol. 2008, 253, 50–53. [Google Scholar] [CrossRef]
- Wu, S.; Karius, V.; Schmidt, B.C.; Simon, K.; Wörner, G. Comparison of Ultrafine Powder Pellet and Flux--free Fusion Glass for Bulk Analysis of Granitoids by Laser Ablation--Inductively Coupled Plasma--Mass Spectrometry. Geostand. Geoanalytical Res. 2018, 42, 575–591. [Google Scholar] [CrossRef]
- Wu, S.; Wörner, G.; Jochum, K.P.; Stoll, B.; Simon, K.; Kronz, A. The Preparation and Preliminary Characterisation of Three Synthetic Andesite Reference Glass Materials (ARM-1, ARM-2, ARM-3) for In Situ Microanalysis. Geostand. Geoanalytical Res. 2019, 43, 567–584. [Google Scholar] [CrossRef] [Green Version]
- Eggins, S.M.; Kinsley, L.P.J.; Shelley, J.M.G. Deposition and element fractionation processes during atmospheric pressure laser sampling for analysis by ICP-MS. Appl. Surf. Sci. 1998, 127, 278–286. [Google Scholar] [CrossRef]
- Günther, D.; Heinrich, C.A. Comparison of the ablation behaviour of 266 nm Nd: YAG and 193 nm ArF excimer lasers for LA-ICP-MS analysis. J. Anal. At. Spectrom. 1999, 14, 1369–1374. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, Y.; Gao, S.; Xiao, S.; Zhao, L.; Guenther, D.; Li, M.; Zhang, W.; Zong, K. A “wire” signal smoothing device for laser ablation inductively coupled plasma mass spectrometry analysis. Spectrochim. Acta Part. B-At. Spectrosc. 2012, 78, 50–57. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, W.; Liu, Y.; Gao, S.; Li, M.; Zong, K.; Chen, H.; Hu, S. “Wave” Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis: Application to Lead Isotope Analysis. Anal. Chem. 2015, 87, 1152–1157. [Google Scholar] [CrossRef] [PubMed]
- Halicz, L.; Gunther, D. Quantitative analysis of silicates using LA-ICP-MS with liquid calibration. J. Anal. At. Spectrom. 2004, 19, 1539–1545. [Google Scholar] [CrossRef]
- Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 2011, 26, 2508–2518. [Google Scholar] [CrossRef]
- Longerich, H.P.; Jackson, S.E.; Günther, D. Inter-laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J. Anal. Spectrom. 1996, 11, 899–904. [Google Scholar] [CrossRef]
- Fryer, B.J.; Jackson, S.E.; Longerich, H.P. The design, operation and role of the laser-ablation microprobe coupled with an inductively coupled plasma-mass spectrometer (LAM-ICP-MS) in the earth sciences. Can. Mineral. 1995, 33, 303–312. [Google Scholar]
- Sylvester, P.J. Matrix effects in laser ablation ICP-MS. Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues (P. Sylvester, ed.). Mineral. Assoc. Can. Short Course Ser. 2008, 40, 67–78. [Google Scholar]
- Horn, I.; Rudnick, R.L.; McDonough, W.F. Precise elemental and isotope ratio determination by simultaneous solution nebulization and laser ablation-ICP-MS: Application to U–Pb geochronology. Chem. Geol. 2000, 164, 281–301. [Google Scholar] [CrossRef]
- Paton, C.; Woodhead, J.D.; Hellstrom, J.C.; Hergt, J.M.; Greig, A.; Maas, R. Improved laser ablation U--Pb zircon geochronology through robust downhole fractionation correction. Geochem. Geophys. Geosystems. 2010, 11, 1–36. [Google Scholar] [CrossRef]
- Jochum, K.P.; Scholz, D.; Stoll, B.; Weis, U.; Wilson, S.A.; Yang, Q.C.; Schwalb, A.; Borner, N.; Jacob, D.E.; Andreae, M.O. Accurate trace element analysis of speleothems and biogenic calcium carbonates by LA-ICP-MS. Chem. Geol. 2012, 318, 31–44. [Google Scholar] [CrossRef]
- Xu, Y.; Chung, S.-L.; Jahn, B.-M.; Wu, G. Petrologic and geochemical constraints on the petrogenesis of Permian–Triassic Emeishan flood basalts in southwestern China. Lithos. 2001, 58, 145–168. [Google Scholar] [CrossRef]
- Kamenetsky, V.S.; Chung, S.-L.; Kamenetsky, M.B.; Kuzmin, D.V. Picrites from the Emeishan Large Igneous Province, SW China: A compositional continuum in primitive magmas and their respective mantle sources. J. Petrol. 2012, 53, 2095–2113. [Google Scholar] [CrossRef] [Green Version]
- Kamenetsky, V.S.; Maas, R.; Kamenetsky, M.B.; Yaxley, G.M.; Ehrig, K.; Zellmer, G.F.; Bindeman, I.N.; Sobolev, A.V.; Kuzmin, D.V.; Ivanov, A.V. Multiple mantle sources of continental magmatism: Insights from “high-Ti” picrites of Karoo and other large igneous provinces. Chem. Geol. 2017, 455, 22–31. [Google Scholar] [CrossRef]
- Howarth, G.H.; Harris, C. Discriminating between pyroxenite and peridotite sources for continental flood basalts (CFB) in southern Africa using olivine chemistry. Earth Planet. Sci. Lett. 2017, 475, 143–151. [Google Scholar] [CrossRef]
Laser Ablation System | |
---|---|
Make, model and type | Coherent, Geolas HD |
Ablation cell and volume | Cell developed in-house; aerosol dispersion volume of < 3 cm3 |
Laser wavelength | 193 nm |
Pulse width | 20 ns |
Energy density/fluence | ca. 3 J/cm |
Repetition rate | 5 Hz |
Spot size | 44 μm |
Sampling mode/pattern | Single hole drilling; three cleaning pulses |
Ablation gas flow | ca. 0.75 L/min (He) |
Ablation duration | 40 s |
SF–ICP–MS | |
Make, model and type | Thermo Fisher Scientific Element XR |
RF power | 1320 W |
Guard electrode | off |
Sample cone | Nickel Standard |
Skimmer cone | Nickel H |
Coolant gas flow (Ar) | 15.0 L/min |
Auxiliary gas flow (Ar) | 0.80 L/min |
Carrier gas flow (Ar) | 0.95 L/min |
Enhancement gas flow (N2) | None |
Scan mode | E-scan |
Isotopes measured (m/z) + dwell times | 7Li, 23Na, 25Mg, 27Al, 29Si, 31P, 43Ca, 45Sc, 49Ti, 51V, 53Cr, 55Mn, 57Fe, 59Co, 60Ni, 63Cu, 67Zn, 69Ga and 89Y; 10 ms for each isotope |
Mass window | 20% |
Sample per peak | 20 |
Detection system | Single SEM detector in triple mode (pulse counting, analog and Faraday cup) |
Resolution (M/∆M) | Low (ca. 300) |
Total integration time per reading | 0.90 s |
MongOL Sh11-2 | XEN | |||||||
---|---|---|---|---|---|---|---|---|
Recommended Values | This Study (N = 120) | Recommended Values | This Study (N = 98) | |||||
Mass Fraction (μg/g) | 2 S.D. (μg/g) | Mean (μg/g) | 2 S.D. (μg/g) | Mass Fraction (μg/g) | 2 S.D. (μg/g) | Mean (μg/g) | 2 S.D. (μg/g) | |
Li | 2.18 | 0.40 | 1.56 | 0.30 | - | - | 1.21 | 0.34 |
Na | 130 | 24 | 101 | 26 | 15 b | 15 b | - | - |
Al | 245 | 34 | 266 | 14 | 46.0 a/43.0 b | 6.0 a/8.0 b | 43.4 | 4.0 |
P | 66.4 | 20 | - | - | 37.0 a/17.0 b | 2.0 a/5.0 b | 42.6* | 12.2 |
Ca | 688 | 59 | 706 | 32 | 246 a/239 b | 19 a/7 b | 252 | 10 |
Sc | 3.40 | 0.20 | 3.39 | 0.10 | - | - | 2.03 | 0.14 |
Ti | 40.2 | 6.0 | 41.7 | 1.3 | 11.0 a/10.0 b | 1.0 a/4.0 b | 10.8 | 1.1 |
V | 5.5 | 0.5 | 5.2 | 0.1 | - | - | 1.87 | 0.16 |
Cr | 125 | 9 | 123 | 5 | 40.0 b | 5.0 b | 40.0 | 1.7 |
Mn | 1119 | 47 | 1133 | 33 | 1043 a/1032 b | 15 a/6 b | 1050 | 34 |
Co | 148 | 12 | 139 | 3 | 145 a/149 b | 2 a/8 b | 135 | 6 |
Ni | 2822 | 87 | 2717 | 57 | 3166 a/3132 b | 55 a/31 b | 2995 | 63 |
Cu | 1.13 | 0.18 | 1.09 | 0.06 | - | - | 0.59 | 0.06 |
Zn | 56.3 | 4.6 | - | - | 44.0 a/43.0 b | 2.0 a/6.0 b | 41.0* | 3.2* |
Ga | 0.10 | 0.02 | 0.12 | 0.02 | - | - | 0.060 | 0.060 |
Y | 0.079 | 0.014 | 0.074 | 0.005 | - | - | 0.030 | 0.030 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; Wu, Y.; Yang, Y.; Wang, H.; Huang, C.; Xie, L.; Yang, J. Simultaneous Quantification of Forsterite Content and Minor–Trace Elements in Olivine by LA–ICP–MS and Geological Applications in Emeishan Large Igneous Province. Minerals 2020, 10, 634. https://doi.org/10.3390/min10070634
Wu S, Wu Y, Yang Y, Wang H, Huang C, Xie L, Yang J. Simultaneous Quantification of Forsterite Content and Minor–Trace Elements in Olivine by LA–ICP–MS and Geological Applications in Emeishan Large Igneous Province. Minerals. 2020; 10(7):634. https://doi.org/10.3390/min10070634
Chicago/Turabian StyleWu, Shitou, Yadong Wu, Yueheng Yang, Hao Wang, Chao Huang, Liewen Xie, and Jinhui Yang. 2020. "Simultaneous Quantification of Forsterite Content and Minor–Trace Elements in Olivine by LA–ICP–MS and Geological Applications in Emeishan Large Igneous Province" Minerals 10, no. 7: 634. https://doi.org/10.3390/min10070634
APA StyleWu, S., Wu, Y., Yang, Y., Wang, H., Huang, C., Xie, L., & Yang, J. (2020). Simultaneous Quantification of Forsterite Content and Minor–Trace Elements in Olivine by LA–ICP–MS and Geological Applications in Emeishan Large Igneous Province. Minerals, 10(7), 634. https://doi.org/10.3390/min10070634