Investigations of Feldspar-Quartz Raw Materials After Firing: Effect of Various Na2O/K2O Ratio and Synthetic Pigments Addition
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Chemical Composition
3.2. The XRD Analyses
3.3. Mössbauer Spectroscopy
3.4. UV-Vis-NIR Absorbance Spectra
3.5. Chromaticity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Majerowicz, A. On the petrology of the granite massif of Strzegom-Sobótka. Geol. Sudet. 1972, 6, 83–90. [Google Scholar]
- Lewicka, E. The studies of granitoids from the Sobótka region in light of theories of the origin of colour in minerals. Gosp. Sur. Min.—Miner. Res. Manag. 2016, 32, 55–69. [Google Scholar] [CrossRef] [Green Version]
- Lewicka, E. Rational use of selected mining by-products in the ceramic industry in Poland. Gosp. Sur. Min.—Miner. Res. Manag. 2020, 36, 59–76. [Google Scholar] [CrossRef]
- Lewicka, E. Barwa po wypaleniu a skład mineralny kopalin skaleniowych z rejonu Sobótki. Gosp. Sur. Min.—Miner. Res. Manag. 2013, 29, 35–51. [Google Scholar] [CrossRef]
- Lewicka, E. Origin of colour after firing of feldspar-quartz raw material from the Sobótka region (Lower Silesia, SW Poland). In Proceedings of the Mineral Engineering Conference MEC2016, Świeradów-Zdrój, Poland, 25–28 September 2016; Volume 8. Article number 01022. [Google Scholar] [CrossRef] [Green Version]
- Lewicka, E. Phase transitions of ferruginous minerals in the course of thermal processing of feldspar-quartz raw materials from the Sobótka region (Lower Silesia). Gosp. Sur. Min.—Miner. Res. Manag. 2017, 33, 93–110. [Google Scholar] [CrossRef] [Green Version]
- Górnicki, R.; Błachowski, A.; Ruebenbauer, K. Mössbauer Spectrometer MsAa-3. Nukleonika 2007, 52 (Suppl. 1), S7. [Google Scholar]
- Mysen, B.O.; Virgo, D. Redox equilibria, structure, and properties of Fe-bearing aluminosilicate melts: Relationships among temperature, composition, and oxygen fugacity in the system Na2O-Al2O3-SiO2-Fe-O. Am. Mineral. 1989, 74, 58–76. [Google Scholar]
- Uchino, T.; Nakaguchi, K.; Nagashima, Y.; Kondo, T. Prediction of optical properties of commercial soda-lime-silicate glasses containing iron. J. Non-Cryst. Solids 2000, 261, 72–78. [Google Scholar] [CrossRef]
- Britt, J. All about iron. Ceram. Mon. 2011, March 2011, 14–15. [Google Scholar]
- Wilke, M. Fe in magma—An overview. Ann. Geophys. 2005, 48, 609–617. [Google Scholar]
- Ehlers, E.G. The Interpretation of Geological Phase Diagrams; W.H. Freeman & Co.: San Francisco, CA, USA, 1972; 280p. [Google Scholar]
- Levin, E.M.; Robbins, C.R.; McMurdie, H.F. Phase Diagrams for Ceramists, 3rd ed.; The American Ceramic Society: Columbus, OH, USA, 1974; p. 526. [Google Scholar]
- Stabile, P.; Webb, S.; Knipping, J.K.; Behrens, H.; Paris, E.; Giuli, G. Viscosity of pantelleritic and alkali-silicate melts: Effect of Fe redox state and Na/(Na+K) ratio. Chem. Geol. 2016, 442, 73–82. [Google Scholar] [CrossRef]
- Stevens, J.G.; Khansanov, A.M.; Miller, J.W.; Pollak, H.; Li, Z. Mössbauer Mineral Handbook; Mössbauer Effect Data Center: Asheville, NC, USA, 2005; p. 636. [Google Scholar]
- Andji, J.Y.Y.; Abba Toure, A.; Kra, G.; Jumas, J.C.; Yvon, J.; Blanchart, P. Iron role on mechanical properties of ceramics with clays from Ivory Coast. Ceram. Int. 2009, 35, 571–577. [Google Scholar] [CrossRef]
- Menil, F. Systematic trends of the 57Fe Mössbauer isomer shifts in (FeOn) and (FeFn) polyhedra. Evidence of a new correlation between the isomer shift and the inductive effect of the competing bond T-X (→ Fe) (where X is O or F and T any element with a formal positive charge). J. Non-Cryst. Solids 1985, 46, 763. [Google Scholar]
- Hanzlicek, T.; Niznansky, D.; Dedecek, J.; Steinerova, M.; Straka, P.; Triskova, J. Discoloration of fired kaolinitic clays (study of Fe3+ coordination by Mössbauer and UV-ViS-NIR spectroscopy). J. Am. Ceram. Soc. 2007, 9, 2843–2848. [Google Scholar] [CrossRef]
- Soro, N.; Aldon, L.; Olivier-Fourcade, J.; Jumas, J.C.; Laval, J.P.; Blanchart, P. Role of iron in mullite formation from kaolins by Mössbauer spectroscopy and Rietveld refinement. J. Am. Ceram. Soc. 2003, 86, 129–134. [Google Scholar] [CrossRef]
- Djemai, A.; Calas, G.; Muller, J.P. Role of structural Fe(III) and iron oxide nanoparticles in mullite coloration. J. Am. Ceram. Soc. 2001, 84, 1627–1631. [Google Scholar] [CrossRef]
- Dyar, M.D. A review of Mössbauer data on inorganic glasses: The effects of composition on iron valence and coordination. Am. Mineral. 1985, 70, 304–316. [Google Scholar]
- Sorescu, M.; Xu, T.; Wise, A.; Diaz-Michelena, M.; McHenry, M.E. Studies on structural, magnetic and thermal properties of xFe2TiO4-(1-x)Fe3O4 (0 ≤ x ≤ 1) pseudo-binary system. J. Magn. Magn. Mater. 2012, 324, 1453–1462. [Google Scholar] [CrossRef]
- Bingham, P.A.; Hannant, O.M.; Reeves-McLaren, N.; Stennett, M.C.; Hand, R.J. Selective behaviour of dilute Fe3+ ions in silicate glasses: An Fe K-edge EXAFS and XANES studies. J. Non-Cryst. Solids 2014, 387, 47–56. [Google Scholar] [CrossRef]
- Bingham, P.A.; Parker, J.M.; Searle, T.; Williams, J.M.; Fyles, K. Redox and clustering of iron in silicate glasses. J. Non-Cryst. Solids 1999, 253, 203–209. [Google Scholar] [CrossRef]
- De Grave, E.; Van Alboom, A. Evaluation of ferrous and ferric Mössbauer fractions. Phys. Chem. Miner. 1991, 18, 337–342. [Google Scholar] [CrossRef]
- Eeckhout, S.G.; De Grave, E. Evaluation of ferrous and ferric Mössbauer fractions. Part II. Phys. Chem. Miner. 2003, 30, 142–146. [Google Scholar] [CrossRef]
- Halmurat, D.; Yusufu, T.; Wang, Q.-L.; He, J.; Sidike, A. Rare earth ion Tb3+ doped natural sodium feldspar (NaAlSi3O8). Luminescent properties and energy transfer. Sci. Rep. 2019, 9, 14637. [Google Scholar] [CrossRef] [Green Version]
- Jeong, Y.; Yu, J.; Koh, S.-M.; Heo, C.-H.; Lee, J. Spectral characteristics of minerals associated with skarn deposits: A case study of Weondong skarn deposit South Korea. Geosci. J. 2016, 20, 167–182. [Google Scholar] [CrossRef]
- Sherman, D.M.; Waite, T.D. Electronic spectra of Fe3+ oxides and oxide hydroxides in the near IR to near UV. Am. Mineral. 1985, 70, 1262–1269. [Google Scholar]
- Chassé, M.; Lelong, G.; Nijnatten, P.; Schoofs, I.; Wolf, J.; Galoisy, L.; Calas, G. Optical Absorption Microspectroscopy (μ-OAS) Based on Schwarzschild-Type Cassegrain Optics. Appl. Spectr. 2015, 69, 457–463. [Google Scholar] [CrossRef] [Green Version]
- Glebov, L.B.; Boulos, E.N. Absorption of iron and water in the Na2O-CaO-MgO-SiO2 glasses. II. Selection of intrinsic, ferric, and ferrous spectra in the visible and UV regions. J. Non-Cryst. Solids 1998, 242, 49–62. [Google Scholar] [CrossRef]
- Bates, T. Ligand field theory and absorption spectra of transition-metal ions in glasses. In Modern Aspects of the Vitreous State; Mackenzie, J.D., Ed.; Butterworths: London, UK, 1962; Volume 2, pp. 195–254. [Google Scholar]
- Duffy, J.A. Bonding, Energy Levels, & Bands; Longman Group: London, UK, 1990. [Google Scholar]
- Smith, J.V.; Brown, W.L. Feldspar Minerals. Crystal Structures, Physical, Chemical, and Microtextural Properties, 2nd ed.; Springer-Verlag: Berlin Heidelberg, Germany, 1988; Volume 1. [Google Scholar] [CrossRef]
- Johnson, E.A.; Rossmann, G.R. The concentration and speciation of hydrogen in feldspars using FTIR and 1H MAS NMR spectroscopy. Am. Mineral. 2003, 88, 901–911. [Google Scholar] [CrossRef]
- Ahemen, I.; Dejene, F.B. Luminescence and energy transfer mechanism in Eu3+/Tb3+-co-doped ZrO2 nanocrystal rods. J. Nanopart. Res. 2017, 19, 6. [Google Scholar] [CrossRef]
- Torrent, J.; Barron, V. Diffuse reflectance spectroscopy of iron oxides. Encycl. Surf. Colloid Sci. 2002, 1, 1438–1446. [Google Scholar]
- Nodari, L.; Marcuz, E.; Maritan, L.; Mazzoli, C.; Russo, U. Hematite nucleation and growth in the firing of carbonate-rich clay for pottery production. J. Eur. Ceram. Soc. 2007, 27, 4665–4673. [Google Scholar] [CrossRef]
- Opuchovic, O.; Kareiva, A. Historical hematite pigment: Synthesis by an aqueous sol-gel method, characterization and application of the colouration of ceramic glazes. Ceram. Int. 2015, 41, 4504–4513. [Google Scholar] [CrossRef]
- De Bonis, A.; Cultrone, G.; Grifa, C.; Langella, A.; Leone, A.P.; Mercurio, M.; Morra, V. Different shades of red: The complexity of mineralogical and physio-chemical factors influencing the colour of ceramics. Ceram. Int. 2017, 43, 8065–8074. [Google Scholar] [CrossRef]
- Chandrasekhar, S.; Ramaswamy, S. Influence of mineral impurities on the properties of kaolin and its thermally treated products. Appl. Clay Sci. 2002, 21, 133–142. [Google Scholar] [CrossRef]
- Chavoutier, M.; Caurant, D.; Majérus, O.; Boulesteix, R.; Loiseau, P.; Jousseaume, C.; Brunet, E.; Lecomte, E. Effect of TiO2 content on the crystallization and the color of (ZrO2,TiO2)-doped Li2O–Al2O3–SiO2 glasses. J. Non-Cryst. Solids 2014, 384, 15–24. [Google Scholar] [CrossRef]
- Burns, R.G. Intervalence transitions in mixed-valence minerals of iron and titanium. Ann. Rev. Earth Sci. 1981, 9, 345–383. [Google Scholar] [CrossRef]
- Bingham, P.A.; Parker, J.M.; Searle, T.; Smith, I. Local structure and medium range ordering of tetrahedrally coordinated Fe3+ ions in alkali-alkaline earth-silica glasses. J. Non-Cryst. Solids 2007, 353, 2479–2494. [Google Scholar] [CrossRef]
- Möncke, D.; Papageorgiou, M.; Winterstein-Beckmann, A.; Zacharias, N. Roman glasses coloured by dissolved transition metal ions: Redox-reactions, optical spectroscopy and ligand field theory. J. Arch. Sci. 2014, 46, 23–36. [Google Scholar] [CrossRef]
- Shi, P.; Wang, F.; Wang, Y.; Zhu, J.; Zhang, B.; Fang, Y. Coloring and translucency mechanism of Five dynasty celadon body from Yaozhou kiln. Ceram. Int. 2017, 43, 11616–11622. [Google Scholar] [CrossRef]
- Taylor, W. System FeO-Fe2O3-TiO2. J. Am. Ceram. Soc. 1963, 46, 276–279. [Google Scholar] [CrossRef]
- Dondi, M.; Matteuci, F.; Cruciani, G.; Gasparotto, G.; Tobaldi, D.M. Pseudobrookite ceramic pigments: Crystal structural, optical and technological properties. Solid State Sci. 2007, 9, 362–369. [Google Scholar] [CrossRef] [Green Version]
- Miyake, A.; Hokada, T. First find of ferropseudobrookite in quartz from Napier Complex, East Antarctica. Eur. J. Mineral. 2013, 25, 33–38. [Google Scholar] [CrossRef]
- Guo, W.Q.; Malus, S.; Ryan, D.H.; Altounian, Z. Crystal structure and cation distribution in the FeTi2O5-Fe2TiO5 solid solution series. J. Phys. Condens. Mater. 1999, 11, 6337–6346. [Google Scholar] [CrossRef]
- Lobacheva, O.; Yiu, Y.M.; Chen, N.; Sham, T.K.; Goncharova, I.V. Changes in local surface structure and Sr depletion in Fe-implemented SrTiO3 (001). Appl. Surf. Sci. 2016, 393, 74–81. [Google Scholar] [CrossRef]
- Bilovol, V.; Ferrari, S.; Derewnicka, D.; Saccone, F.D. XANES and XPS study of electronic structure of Ti-enriched Nd-Fe-B ribbons. Mater. Chem. Phys. 2014, 146, 269–276. [Google Scholar] [CrossRef]
- Kim, J.Y.; No, H.; Jeon, A.Y.; Kim, U.; Pee, J.H.; Cho, W.S.; Kim, K.J.; Kim, C.M.; Kim, C.S. Mössbauer spectroscopic and chromaticity analysis on colorative mechanism of celadon glaze. Ceram. Int. 2011, 37, 3389–3395. [Google Scholar] [CrossRef]
- Alberto, H.V.; Gil, J.M.; Ayres DeCampos, N.; Mysen, B.O. Redox equilibria of iron in Ti-bearing calcium silicate quenched glasses. J. Non-Cryst. Solids 1992, 151, 39–50. [Google Scholar] [CrossRef]
- Handke, M. Krystalochemia Krzemianów (Chemistry of Silicate Crystals); UWN-D: Kraków, Poland, 2008. [Google Scholar]
- Brown, G.E., Jr.; Farges, F.; Calas, G. X-ray scattering and X-ray spectroscopy studies of silicate melts. In Structure, Dynamics and Properties of Silicate Melts, Reviews in Mineralogy and Geochemistry; Stebbins, J.F., McMillan, P.F., Dingwell, D.B., Eds.; Mineralogical Society of America: Washington, D.C., USA, 1995; Volume 32, pp. 317–410. [Google Scholar]
- Farges, F.; Lefrère, Y.; Rossan, S.; Berthereau, A.; Calas, G.; Brown, G.E., Jr. The effect of redox state on the local structural environment of iron in silicate glasses: A molecular dynamics, combined XAFS spectroscopy, and bond valence study. J. Non-Cryst. Solids 2004, 344, 176–188. [Google Scholar] [CrossRef]
- Wilke, M.; Farges, F.; Partzsch, G.M.; Schmidt, C.; Behrens, H. Speciation of Fe in silicate glasses and melts by in-situ XANES spectroscopy. Am. Mineral. 2007, 92, 44–56. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, B.; Cheng, H.; Zheng, J. Revealing the coloration mechanism in the earliest Chinese celadon glaze. J. Eur. Ceram. Soc. 2019, 39, 1675–1682. [Google Scholar] [CrossRef]
Sample | Fe2O3 | TiO2 |
---|---|---|
I | 1.5 | - |
II | - | 0.5 |
III | 1.5 | 0.5 |
Sample | SiO2 | Al2O3 | Fe2O3 | TiO2 | Na2O | K2O | CaO | MgO | LoI |
---|---|---|---|---|---|---|---|---|---|
Max. deviation | ±2.0 | ±0.150 | ±0.010 | ±0.005 | ±1.0 | ±0.30 | ±0.30 | ±0.05 | n.d. |
Potassium-rich samples | |||||||||
0 K | 75.90 | 13.93 | 0.30 | 0.053 | 2.87 | 5.14 | 0.20 | 0.16 | 1.19 |
I K | 73.18 | 14.46 | 1.77 | 0.055 | 2.96 | 5.23 | 0.22 | 0.16 | 1.62 |
II K | 73.56 | 14.79 | 0.34 | 0.566 | 3.05 | 5.33 | 0.22 | 0.17 | 1.59 |
III K | 72.46 | 14.51 | 1.85 | 0.545 | 3.00 | 5.27 | 0.21 | 0.16 | 1.69 |
Sodium-rich samples | |||||||||
0 Na | 73.78 | 15.20 | 0.36 | 0.096 | 5.48 | 3.49 | 0.38 | 0.13 | 0.98 |
I Na | 71.90 | 15.23 | 1.77 | 0.042 | 5.38 | 3.56 | 0.38 | 0.14 | 1.24 |
II Na | 72.57 | 15.40 | 0.29 | 0.537 | 5.48 | 3.58 | 0.38 | 0.13 | 1.23 |
III Na | 71.80 | 14.97 | 1.75 | 0.536 | 5.31 | 3.50 | 0.38 | 0.13 | 1.27 |
Sample | Phase | A (%) | IS (mm/s) | QS (mm/s) | B (T) | Г (mm/s) |
---|---|---|---|---|---|---|
I Na | Fe2O3 | 65 ± 2 | 0.37 | −0.21 | 51.1 | 0.28 |
Fe3+/2+ | 14 ± 1 | 0.54 | 2.57 | – | 0.90 | |
Fe3+ | 21 ± 1 | 0.34 | 0.98 | – | 0.90 | |
III Na | Fe2O3 | 68 ± 2 | 0.37 | −0.23 | 50.7 | 0.33 |
Fe3+/2+ | 13 ± 1 | 0.58 | 2.53 | – | 0.90 | |
Fe3+ | 19 ± 1 | 0.34 | 0.91 | – | 0.90 | |
I K | Fe2O3 | 66 ± 2 | 0.37 | −0.21 | 51.1 | 0.26 |
Fe3+/2+ | 13 ± 2 | 0.63 | 2.43 | – | 0.93 | |
Fe3+ | 21 ± 2 | 0.34 | 0.82 | – | 0.82 | |
III K | Fe2O3 | 60 ± 2 | 0.37 | −0.23 | 50.7 | 0.33 |
Fe3+/2+ | 16 ± 2 | 0.58 | 2.39 | – | 0.74 | |
Fe3+ | 24 ± 2 | 0.33 | 0.81 | – | 0.90 |
Sample | Color Parameters of the Samples After Firing | |||||
---|---|---|---|---|---|---|
L*(%) | a* | b* | C* | h* | ∆E | |
Potassium-rich variety | ||||||
0 K | 87.71 | 1.67 | 9.25 | 9.40 | 79.43 | |
I K | 37.76 | 16.63 | 10.01 | 19.41 | 31.03 | 47.13 |
II K | 84.56 | 2.01 | 15.04 | 15.17 | 82.39 | 5.66 |
III K | 37.61 | 5.25 | 4.92 | 7.19 | 43.16 | 44.96 |
Sodium-rich variety | ||||||
0 Na | 75.86 | 6.05 | 9.68 | 11.42 | 57.99 | |
I Na | 36.59 | 15.91 | 9.34 | 18.45 | 30.41 | 46.14 |
II Na | 79.45 | 2.80 | 11.78 | 12.11 | 76.64 | 3.88 |
III Na | 35.74 | 3.71 | 2.56 | 4.51 | 34.63 | 44.97 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lewicka, E.; Trenczek-Zajac, A. Investigations of Feldspar-Quartz Raw Materials After Firing: Effect of Various Na2O/K2O Ratio and Synthetic Pigments Addition. Minerals 2020, 10, 646. https://doi.org/10.3390/min10070646
Lewicka E, Trenczek-Zajac A. Investigations of Feldspar-Quartz Raw Materials After Firing: Effect of Various Na2O/K2O Ratio and Synthetic Pigments Addition. Minerals. 2020; 10(7):646. https://doi.org/10.3390/min10070646
Chicago/Turabian StyleLewicka, Ewa, and Anita Trenczek-Zajac. 2020. "Investigations of Feldspar-Quartz Raw Materials After Firing: Effect of Various Na2O/K2O Ratio and Synthetic Pigments Addition" Minerals 10, no. 7: 646. https://doi.org/10.3390/min10070646
APA StyleLewicka, E., & Trenczek-Zajac, A. (2020). Investigations of Feldspar-Quartz Raw Materials After Firing: Effect of Various Na2O/K2O Ratio and Synthetic Pigments Addition. Minerals, 10(7), 646. https://doi.org/10.3390/min10070646