Mineralogy and Metallogenesis of the Sanbao Mn–Ag (Zn-Pb) Deposit in the Laojunshan Ore District, SE Yunnan Province, China
Abstract
:1. Introduction
2. Geological Background
3. Samples and Analytical Methods
3.1. EPMA
3.2. Trace Elements Analysis
3.3. LA-MC-ICP-MS Cassiterite U–Pb Dating
4. Results
5. Discussion
5.1. Element Variations
5.2. Occurrence of Ag in Mn Minerals
5.2.1. Manganite
5.2.2. Romanèchite
5.3. Geochronology and Ore Genesis
5.4. Possible Genetic Model
6. Conclusions
- (1)
- Manganite and romanèchite are the major Ag-bearing minerals of the Sanbao Mn–Ag deposit. The Ag-bearing manganite primarily contains Mn, Fe, K, and Zn giving an empirical formula of (Mn0.90Fe0.06K0.02Zn0.01)Σ0.99O(OH) and the idealized formula MnO(OH). Acicular and columnar manganite contains Ag; the Ag-bearing romanèchite primarily contains Mn, Fe, and Ba. The observed wt.% values give a calculated empirical formula (Ba0.18 Ag0.05K0.07Fe0.18(H2O)1.50)Σ1.98(Mn0.41Zn0.10Mn3.91Fe0.46Al0.13)Σ4.74O10, which gives the idealized formula (Ba,H2O)2(Mn4+,Mn3+)5O10. Ba is replaced by Ag in romanèchite.
- (2)
- The corrected isotopic ratios of the cassiterite sample sby-03 collected from the Sanbao deposit yielded an age of 436 ± 17 Ma, which is consistent with the age of the Nanwenhe granitic gneiss and the mineralization age of the Xinzhai tin deposit in the Laojunshan ore district. The origin of the Xinzhai tin deposit is closely related to the Caledonian Nanwenhe granitic gneiss. This therefore implied that the ore genesis of the Sanbao deposit may be related to the Caledonian granitic pluton. Combined with other geochemical proxies (Zn-Pb (Sn)), the primary Sanbao Mn–Ag deposit may be of magmatic hydrothermal origin (skarn-related) rather than sedimentary.
- (3)
- Based on newly obtained data on mineralogy and metallogeny of the Sanbao deposits, a possible genetic model is established. Firstly, the so-called “primary ore source-bed” formed in the Cambrian. Secondly, the primary ore source-bed suffered weathering and oxidation after the Cambrian. Thirdly, large-scale magma activity occurred at 418–442 Ma (i.e., the Silurian) and produced Caledonian Nanwenhe granite. Ag (with Zn–Pb (Sn)) was further enriched by the overprinting of the Caledonian Nanwenhe granite. Lastly, secondary Ag enrichment occurred during later supergene weathering and oxidation, eventually evolving into the present Sanbao deposit.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Costagliola, P.; Di Benedetto, F.; Benvenuti, M.; Bernardini, G.P.; Cipriani, C.; Lattanzi, P.F.; Romanelli, M. Chemical speciation of Ag in galena by EPR spectroscopy. Am. Mineral. 2004, 88, 1345–1350. [Google Scholar] [CrossRef] [Green Version]
- Gammons, C.H.; Barnes, H. The solubility of Ag2S in near-neutral aqueous sulfide solutions at 25 to 300 °C. Geochim. Cosmochim. Acta 1989, 53, 279–290. [Google Scholar] [CrossRef]
- Renders, P.; Seward, T. The stability of hydrosulphido-and sulphido-complexes of Au (I) and Ag (I) at 25 °C. Geochim. Cosmochim. Acta 1989, 53, 245–253. [Google Scholar] [CrossRef]
- Stefánsson, A.; Seward, T. Experimental determination of the stability and stoichiometry of sulphide complexes of silver (I) in hydrothermal solutions to 400 °C. Geochim. Cosmochim. Acta 2003, 67, 1395–1413. [Google Scholar]
- Wang, J. A study of occurrences of Ag in Pb-Zn-Cu Ore deposits in China. Acta Geol. Sin. 2010, 4, 516–520. [Google Scholar]
- Zhang, X.-Y.; Tian, X.-D.; Zhang, D.-F. Separation of silver from manganese-silver ore with cellulose as reductant. Trans. Nonferr. Met. Soc. China 2006, 16, 705–708. [Google Scholar] [CrossRef]
- Sharp, T.G.; Buseck, P.R. The distribution of Ag and Sb in galena; inclusions versus solid solution. Am. Mineral. 1993, 78, 85–95. [Google Scholar]
- Jia, F.J. Researches on Metallogenic Series and Metallogenic Regularities in Laojunshan Metallogenic Belt, Yunnan Province. Ph.D. Thesis, Kunming University of Science and Technology, Kunming, China, 2010; pp. 1–105. (In Chinese). [Google Scholar]
- Yang, G.N.; Gong, H.B. The ore composition of Sanbao Malipo Ag multimetallic deposit and a discussion about the genesis. Yunnan Geol. 2009, 28, 60–66, (In Chinese with English abstract). [Google Scholar]
- Feng, J.R. The Ore-Forming Fluid and Metallogenesis of Nanyangtian Tungsten Deposit in Malipo, Yunnan Province, China. Ph.D. Thesis, Chinese Academy of Geological Sciences, Beijing, China, 2011; pp. 1–111. (In Chinese). [Google Scholar]
- Hu, R.Z.; Chen, W.T.; Xu, D.R.; Zhou, M.F. Reviews and new metallogenic models of mineral deposits in south China: An introduction. J. Asian Earth Sci. 2017, 137, 1–8. [Google Scholar] [CrossRef]
- Yao, J.L.; Shu, L.S.; Cawood, P.A.; Li, J.Y. Delineating and characterizing the boundary of the Cathaysia Block and the Jiangnan orogenic belt in South China. Precambrian Res. 2016, 275, 265–277. [Google Scholar] [CrossRef] [Green Version]
- Faure, M.; Ishida, K. The Mid-Upper Jurassic olistostrome of the west Philippines: A distinctive key-marker for the North Palawan block. J. Southeast Asian Earth Sci. 1990, 4, 61–67. [Google Scholar] [CrossRef]
- Wang, Y.J.; Fan, W.M.; Sun, M.; Liang, X.; Zhang, Y. Geochronological, geochemical and geothermal constraints on petrogenesis of the Indosinian peraluminous granites in the South China Block: A case study in the Hunan Province. Lithos 2007, 96, 475–502. [Google Scholar] [CrossRef]
- Zhou, M.F.; Zhao, J.H.; Qi, L. Zircon U-Pb geochronology and elemental and Sr-Nd isotopic geochemistry of Permian mafic rocks in the Funing area, SW China. Contrib. Mineral. Petrol. 2006, 151, 1–19. [Google Scholar] [CrossRef]
- Zhou, M.F.; Yan, D.P.; Kennedy, A.K.; Li, Y.; Ding, J. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. Earth Planet Sci. Lett. 2002, 196, 51–67. [Google Scholar] [CrossRef]
- Zhou, M.F.; Zhao, X.F.; Chen, W.T.; Li, X.C.; Wang, W.; Yan, D.P.; Qiu, H.N. Proterozoic Fe–Cu metallogeny and supercontinental cycles of the southwestern Yangtze Block, Southern China and Northern Vietnam. Earth Sci. Rev. 2014, 139, 59–82. [Google Scholar] [CrossRef]
- Yan, D.P.; Zhou, M.F.; Song, H.L.; Wang, X.W.; Malpas, J. Origin and tectonic significance of a Mesozoic multi-layer over-thrust within the Yangtze Block (South China). Tectonophysics 2003, 361, 239–254. [Google Scholar] [CrossRef]
- Yu, J.H.; Zhou, X.; O’Reilly, S.Y.; Zhao, L.; Griffin, W.L.; Wang, R.; Wang, L.; Chen, X. Formation history and protolith characteristics of granulite facies metamorphic rock in Central Cathaysia deduced from U-Pb and Lu–Hf isotopic studies of single zircon grains. Chin. Sci. Bull. 2005, 50, 2080–2089. [Google Scholar] [CrossRef]
- Guo, L.; Liu, Y.; Li, C.; Xu, W.; Ye, L. SHRIMP zircon U-Pb geochronology and lithogeochemistry of Caledonian Granites from the Laojunshan area, Southeastern Yunnan province, China: Implications for the collision between the Yangtze and Cathaysia blocks. Geochem. J. 2009, 43, 101–122. [Google Scholar] [CrossRef] [Green Version]
- Mei, Y.X.; Pei, R.F.; Yang, D.F.; Dai, Z.X.; Li, J.W.; Xu, C.R.; Qu, H.Y. Global metallogenic domains and districts. Miner. Depos. 2009, 4, 383–389, (In Chinese with English abstract). [Google Scholar]
- Tu, G.C.; Gao, Z.M.; Hu, R.Z.; Zhang, Q.; Li, C.Y.; Zhao, Z.H.; Zhang, B.G. Geochemistry and Mineralization Mechanism of Dispersed Elements; Geology Publishing House: Beijing, China, 2003; pp. 1–424. (In Chinese) [Google Scholar]
- Du, S.J.; Wen, H.J.; Qin, C.J.; Yan, Y.F.; Yang, G.S.; Fan, H.F.; Zhang, W.J.; Zhang, L.; Wang, D.; Li, H.M. Caledonian ore-forming event in the Laojunshan mining district, SE Yunnan Province, China: In-Situ LA-MC-ICP-MS U-Pb dating on cassiterite. Geochem. J. 2015, 49, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.K. Geological-Geochemical characteristics of Xinzhai tin deposit in Malipo. Geol. Yunnan 1994, 13, 1–16, (In Chinese with English abstract). [Google Scholar]
- Qi, L.; Hu, J.; Gregoire, D.C. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta 2000, 51, 507–513. [Google Scholar]
- Tan, Q.P.; Xia, Y.; Xie, Z.J.; Yan, J. Migration paths and precipitation mechanisms of ore-forming fluids at the Shuiyindong Carlin-type gold deposit, Guizhou, China. Ore Geol. Rev. 2015, 69, 140–156. [Google Scholar] [CrossRef]
- Chen, X.C.; Hu, R.Z.; Bi, X.W.; Li, H.M.; Lan, J.B.; Zhao, C.H.; Zhu, J.J. Cassiterite LA-MC-ICP-MS U/Pb and muscovite 40Ar/39Ar dating of tin deposits in the Tengchong-Lianghe tin district, NW Yunnan, China. Miner. Depos. 2014, 49, 843–860. [Google Scholar] [CrossRef]
- Gulson, B.L.; Jones, M.T. Cassiterite: Potential for direct dating of mineral deposits and a precise age for the Bushveld Complex granites. Geology 1992, 20, 355–358. [Google Scholar] [CrossRef]
- Yuan, S.; Peng, J.; Hu, R.; Li, H.; Shen, N.; Zhang, D. A precise U–Pb age on cassiterite from the Xianghualing tin-polymetallic deposit (Hunan, South China). Miner. Depos. 2008, 43, 375–382. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Chen, B.; Ma, X.H. In-Situ LA-ICP-MS U-Pb age and geochemical data of cassiterite of the Furong tin deposit, the Nanling Range: Implications for the origin and evolution of the ore-forming fluid. Chin. Sci. Bull. 2014, 59, 2505–2519, (In Chinese with English abstract). [Google Scholar]
- Ludwig, K. User’s Manual for Isoplot/Ex v. 2.47. A Geochronological Toolkit for Microsoft Excel; BGC Special Publication; Berkeley Geochronological Center: Berkeley, CA, USA, 2001. [Google Scholar]
- Tebano, A.; Balestrino, G.; Boggio, N.; Aruta, C.; Davidson, B.; Medaglia, P. High-Quality in-situ manganite thin films by pulsed laser deposition at low background pressures. Eur. Phys. J. B-Condens. Matter Complex Syst. 2006, 51, 337–340. [Google Scholar] [CrossRef]
- Hewett, D.F. Manganite, hausmannite, braunite; features, modes of origin. Econ. Geol. 1972, 67, 83–102. [Google Scholar] [CrossRef]
- Fan, D.; Yang, P. Introduction to and classification of manganese deposits of China. Ore Geol. Rev. 1999, 15, 1–13. [Google Scholar] [CrossRef]
- Luo, Y.; Li, S.; Tan, W.F.; Liu, F.; Cai, C.F.; Qiu, G.H. Oxidation process of dissolvable sulfide by manganite and its influencing factors. Environ. Sci. 2016, 37, 1539–1545, (In Chinese with English abstract). [Google Scholar]
- Xiao, Q.H.; Hui, W.D.; Qin, K.Z. Genetic types and exploration direction of manganese deposits in Dashui Mn ore belt on northern margin of Central Tianshan, eastern Xinjiang. Miner. Depos. 2007, 26, 89–97, (In Chinese with English abstract). [Google Scholar]
- He, Z.W.; Yang, R.D.; Gao, J.B.; Cheng, W.; Wen, G.G. The structure character of manganese ore deposit of datangpo-period of neoproterozoic in Songtao of Guizhou. China’s Manganese Ind. 2013, 31, 5–8, (In Chinese with English abstract). [Google Scholar]
- Huang, J.S.; Zhu, K.J.; Wang, S.B.; Zhu, Z.S. Outline of marine Mn deposits in the South China. Contrib. Geol. Miner. Resouces Res. 1996, 3, 9–17, (In Chinese with English abstract). [Google Scholar]
- Hey, M.H. International mineralogical association: Commission on new minerals and mineral names. Mineral. Mag. 1982, 46, 513–514. [Google Scholar] [CrossRef]
- Turner, S.; Post, J.E. Refinement of the substructure and superstructure of romanèchite. Am. Mineral. 1988, 73, 1155–1161. [Google Scholar]
- Turner, S.; Buseck, P.R. Manganese oxide tunnel structures and their intergrowths. Science 1979, 203, 456–458. [Google Scholar] [CrossRef]
- Giovanoli, R.; Balmer, B. Darstellung und Reaktionen von Psilomelan(Romanechit) Ba2Mn15O30·4H2O. Chimia 1983, 37, 424–427. [Google Scholar]
- Wadsley, A.D. The crystal structure of psilomelane(Ba,H2O)2Mn5O10. Acta Crystallogr. 1953, 6, 433–438. [Google Scholar] [CrossRef]
- Burns, R.G.; Burns, V.M.; Stockman, H.W. A review of the todorokite-buserite problem: Implications to the mineralogy of marine manganese nodules. Am. Mineral. 1983, 68, 972–980. [Google Scholar]
- Tamada, O.; Yamamoto, N. The crystal structure of a new manganese dioxide (Rb0.27TMnO2) with a giant tunnel. Mineral. J. 1986, 13, 130–140. [Google Scholar] [CrossRef] [Green Version]
- Post, J.E.; Von Dreele, R.B.; Buseck, P.R. Symmetry and cation displacements in hollandites: Structure refinements of hollandite, cryptomelane and priderite. Acta Crystallogr. 1982, 38, 1056–1065. [Google Scholar] [CrossRef]
- Roy, S. Mineralogy of the different genetic types of manganese deposits. Econ. Geol. 1968, 63, 760–786. [Google Scholar] [CrossRef]
- Zhao, S.R.; Bian, Q.J.; Ling, Q.C. The Crystallography and Mineralogy; Higher Education Press: Beijing, China, 2004; pp. 1–441. (In Chinese) [Google Scholar]
- Yuan, S.; Peng, J.; Hao, S.; Li, H.; Geng, J.; Zhang, D. In-Situ LA-MC-ICP-MS and ID-TIMS U–Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China: New constraints on the timing of tin–polymetallic mineralization. Ore Geol. Rev. 2011, 43, 235–242. [Google Scholar] [CrossRef]
- Tan, H.Q.; Liu, Y.P.; Xu, W.; Guo, L.G.; Ye, L.; Li, C.Y. A Study on SHRIMP and TIMS zircons dating on low-to medium-grade ortho-metamorphic rocks: Example on the Nanwenhe granitic gneiss, Southeastern Yunnan Province, China. Acta Mineral. Sin. 2011, 31, 62–69, (In Chinese with English abstract). [Google Scholar]
- Hogdahl, O.; Melsom, S.; Bowen, V.T. Neutron activation analysis of lanthanide elements in sea water. Adv. Chem. Ser. 1968, 73, 308–325. [Google Scholar]
- Boström, K. Genesis of ferromanganese deposits-diagnostic criteria for recent and old deposits. In Hydrothermal Processes at Seafloor Spreading Centers; Plenum Press: New York, NY, USA, 1983; pp. 473–489. [Google Scholar]
- Toth, J.R. Deposition of submarine crusts rich in manganese and iron. Geol. Soc. Am. Bull. 1980, 91, 44–54. [Google Scholar] [CrossRef]
- McLennan, S. Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes. Rev. Mineral. Geochem. 1989, 21, 169–200. [Google Scholar]
- Li, K.W.; Zhang, Q.; Wang, D.P.; Cai, Y.; Liu, Y.P. LA-MC-ICP-MS U-Pb Geochronology of Cassiterite from the Bainiuchang Polymetallic Deposit, Yunnan Province, China. Acta Mieral. Sin. 2013, 33, 203–209, (In Chinese with English abstract). [Google Scholar]
- Xu, B.; Jiang, S.Y.; Wang, R.; Ma, L.; Zhao, K.D.; Yan, X. Late Cretaceous granites from the giant Dulong Sn-polymetallic ore district in Yunnan Province, South China: Geochronology, geochemistry, mineral chemistry and Nd–Hf isotopic compositions. Lithos 2015, 218, 54–72. [Google Scholar] [CrossRef]
Layer No. | Thickness (m) | Lithology | Mineralization |
---|---|---|---|
Fifth (Unit 5) | 244 | Mica schist and quartz schist | Good |
Fourth (Unit 4) | 28–154 | Mica schist, limestone and dolomitic limestone | Better |
Third (Unit 3) | 250 | Quartz schist with subordinate mica schist | Poor |
Second (Unit 2) | 70–298 | Dolomitic marble and some skarn | Poor |
First (Unit 1) | 235 | Quartz schist and skarn | Poor |
Spot No. | Al2O3 | TiO2 | Cr2O3 | MnO | FeO | K2O | Ag2O | ZnO | SiO2 | CaO | Total | Calculated Formula |
---|---|---|---|---|---|---|---|---|---|---|---|---|
sby-28-9 | n.d. | n.d. | 0.20 | 71.79 | 4.29 | 1.12 | 0.50 | 0.66 | n.d. | 0.14 | 78.70 | (Mn0.91Fe0.05 K0.02Zn0.01)0.99O(OH) |
sby-28-10 | n.d. | n.d. | 0.10 | 69.21 | 4.75 | 1.06 | 0.45 | 0.66 | n.d. | 0.17 | 76.40 | (Mn0.90Fe0.06 K0.02Zn0.01)0.99O(OH) |
sby-28-11 | 0.32 | 0.21 | 0.64 | 71.07 | 4.57 | 1.13 | 0.57 | 0.68 | 0.36 | 0.21 | 79.76 | (Mn0.89Fe0.06 K0.02Zn0.01)0.98OOH |
sby-28-12 | 0.44 | n.d. | 0.38 | 73.22 | 4.14 | 1.16 | 0.51 | 0.63 | 0.10 | 0.26 | 80.84 | (Mn0.90Fe0.05 K0.02Zn0.01)0.98OOH |
sby-28-13 | 0.49 | n.d. | 0.21 | 72.78 | 4.45 | 1.16 | 0.56 | 0.72 | n.d. | 0.37 | 80.74 | (Mn0.90Fe0.05 K0.02Zn0.01)0.98OOH |
sby-28-14 | n.d. | n.d. | 0.17 | 70.17 | 3.99 | 1.17 | 0.62 | 0.71 | n.d. | 0.18 | 77.01 | (Mn0.91Fe0.05 K0.02Zn0.01)0.99OOH |
sby-28-15 | n.d. | n.d. | 0.11 | 71.36 | 4.73 | 1.02 | 0.47 | 0.72 | 0.10 | 0.13 | 78.64 | (Mn0.91Fe0.06 K0.02Zn0.01)1.00OOH |
sby-28-16 | n.d. | n.d. | 0.32 | 69.32 | 5.66 | 0.97 | 0.51 | 0.65 | n.d. | 0.13 | 77.56 | (Mn0.89Fe0.07 K0.02Zn0.01)0.99OOH |
sby-28-17 | 0.1 | n.d. | 0.03 | 72.69 | 4.99 | 1.09 | 0.54 | 0.71 | n.d. | 0.12 | 80.27 | (Mn0.90Fe0.06 K0.02Zn0.01)0.99OOH |
sby-28-18 | 0.67 | n.d. | 0.25 | 72.21 | 4.63 | 1.01 | 0.51 | 1.03 | 0.15 | 0.28 | 80.74 | (Mn0.89Fe0.06 K0.02Zn0.01)0.98OOH |
Mean | 0.21 | n.d. | 0.24 | 71.38 | 4.62 | 1.09 | 0.52 | 0.72 | 0.10 | 0.20 | 79.08 | (Mn0.90Fe0.06 K0.02Zn0.01)0.99OOH |
Spot No. | Al2O3 | MnO | FeO | Ag2O | ZnO | CaO | BaO | SrO | Na2O | K2O | Total | Calculated Formula |
---|---|---|---|---|---|---|---|---|---|---|---|---|
sby-03-3 | 0.48 | 63.36 | 7.44 | 2.83 | 0.82 | n.d. | 7.72 | n.d. | n.d. | 0.70 | 83.35 | (Ba0.26Ag0.13K0.08Fe0.03(H2O)1.50)Σ2.00(Mn0.45Zn0.05Mn3.94Fe0.51Al0.05)Σ5.00O10 |
sby-03-4 | 0.58 | 60.19 | 10.54 | 1.87 | 0.73 | n.d. | 8.19 | n.d. | n.d. | 0.55 | 82.65 | (Ba0.23Ag0.08K0.06Fe0.09(H2O)1.50)Σ1.96(Mn0.46Zn0.05Mn3.79Fe0.65Al0.06)Σ5.19O10 |
sby-03-5 | 1.22 | 55.36 | 15.21 | 0.21 | 0.98 | 0.10 | 4.30 | n.d. | 0.34 | 0.43 | 78.15 | (Ba0.14Ag0.01K0.04Na0.05Fe0.25(H2O)1.50)Σ1.99(Mn0.44Zn0.06Mn3.62Fe0.77Al0.12)Σ5.01O10 |
sby-03-6 | 0.55 | 60.86 | 11.01 | 1.55 | 0.92 | 0.10 | 7.21 | n.d. | 0.10 | 0.45 | 82.75 | (Ba0.12Ag0.03K0.03Fe0.11(H2O)1.50)Σ1.79(Mn0.44Zn0.06Mn3.81Fe0.63Al0.06)Σ5.00O10 |
sby-03-7 | 0.61 | 57.88 | 11.44 | 1.44 | 0.89 | n.d. | 6.53 | n.d. | 0.10 | 0.43 | 79.32 | (Ba0.21Ag0.06K0.05Fe0.12(H2O)1.50)Σ1.94(Mn0.45Zn0.06Mn3.80Fe0.64Al0.06)Σ5.01O10 |
sby-03-9 | 1.07 | 61.08 | 6.40 | 0.04 | 5.41 | n.d. | 1.06 | n.d. | 0.20 | 0.42 | 75.68 | (Ba0.04 K0.05Fe0.38(H2O)1.50)Σ1.97(Mn0.15Zn0.35Mn4.30Fe0.09Al0.11)Σ5.00O10 |
sby-03-10a | 2.21 | 64.80 | 6.44 | 0.26 | 1.14 | 0.10 | 4.11 | 0.11 | 0.11 | 0.75 | 80.03 | (Ba0.14Ag0.01K0.08Fe0.23(H2O)1.50)Σ1.96(Mn0.43Zn0.07Mn4.03Fe0.24Al0.23)Σ5.00O10 |
sby-03-10b | 2.01 | 65.73 | 6.09 | 0.19 | 1.33 | 0.12 | 3.60 | n.d. | 0.20 | 0.90 | 80.17 | (Ba0.13Ag0.01K0.10 Fe0.22(H2O)1.50)Σ1.96(Mn0.41Zn0.07Mn4.06Fe0.23Al0.21)Σ4.98O10 |
sby-03-10c | 3.70 | 60.57 | 6.47 | 0.18 | 1.75 | 0.06 | 3.44 | n.d. | 0.13 | 1.11 | 77.41 | (Ba0.11Ag0.01K0.12Fe0.23(H2O)1.50)Σ1.97(Mn0.39Zn0.11Mn3.90Fe0.22Al0.37)Σ4.99O10 |
sby-03-11 | 0.55 | 59.94 | 8.95 | 2.47 | 1.17 | 0.12 | 6.59 | n.d. | 0.10 | 0.61 | 80.50 | (Ba0.22Ag0.11K0.07Fe0.08(H2O)1.50)Σ1.98(Mn0.43Zn0.07Mn3.89Fe0.56Al0.06)Σ5.01O10 |
Mean | 1.30 | 60.97 | 9.00 | 1.10 | 1.51 | 0.10 | 5.27 | n.d. | 0.12 | 0.63 | 80.00 | (Ba0.18Ag0.05K0.07Fe0.18(H2O)1.50)Σ1.98(Mn0.41Zn0.10Mn3.91Fe0.46Al0.13)Σ4.74O10 |
Sample No. | Lithology | Ag | Li | V | Cr | Co | Ni | Cu | As | Sr | Zr | Nb | Mo | Sb | Cs | Ba | W | Ti | Pb | Th | U | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
sby-01 | Oxidized ore | 261 | 14.5 | 23 | 78 | 3.7 | 73.8 | 91.1 | 375 | 80.8 | 11.4 | 0.8 | 0.82 | 66.9 | 20.9 | 290 | 4.0 | 0.029 | 17,540 | 4 | 1.9 | 16,520 |
sby-02 | Oxidized ore | 530 | 6.9 | 2 | 19 | 1 | 24.6 | 35.8 | 125.5 | 153 | 3.9 | 0.4 | 0.52 | 28.1 | 10.6 | 20 | 2.1 | 0.005 | 9450 | 0.5 | 1 | 8910 |
sby-03 | Oxidized ore | 806 | 1.6 | 1 | 48 | 0.6 | 14.5 | 153.5 | 216 | 243 | 3.9 | 0.5 | 0.45 | 97.5 | 9.92 | 10 | 2.3 | 0.005 | 18,750 | 0.4 | 1 | 17,660 |
sby-06 | Oxidized ore | 98.7 | 224 | 68 | 68 | 807 | 153.5 | 186.5 | 126.5 | 171 | 21.3 | 1.6 | 3.79 | 66 | 11.2 | 5700 | 2.9 | 0.075 | 2240 | 10.4 | 7.5 | 2110 |
sby-16 | Oxidized ore | 65.3 | 18.2 | 31 | 42 | 9.2 | 30.0 | 22.4 | 2790 | 184 | 16.7 | 1.0 | 0.51 | 867 | 23.9 | 140 | 1.9 | 0.044 | 3510 | 7.6 | 1.3 | 4960 |
sby-22 | Oxidized ore | 1.42 | 333 | 136 | 158 | 90.6 | 452 | 81.2 | 73.5 | 82.6 | 50.3 | 5.1 | 1.92 | 36.9 | 14.95 | 470 | 7.5 | 0.184 | 2210 | 28.9 | 6.1 | 1430 |
sby-23 | Oxidized ore | 19 | 142.5 | 23 | 149 | 123.5 | 154.5 | 197 | 179.5 | 19.3 | 8.8 | 1.1 | 1.3 | 133.5 | 5.07 | 660 | 3.4 | 0.034 | 5360 | 5.4 | 3.2 | 5240 |
sby-24 | Oxidized ore | 116 | 47.1 | 14 | 272 | 204 | 68.1 | 405 | 301 | 21.7 | 4.1 | 0.5 | 1.6 | 294 | 4.55 | 2690 | 3.0 | 0.012 | 8140 | 2.9 | 4.9 | 7630 |
sby-25 | Oxidized ore | 94.6 | 112 | 32 | 372 | 232 | 179.5 | 434 | 422 | 28.9 | 15 | 1.1 | 1.8 | 264 | 7.31 | 2890 | 4.5 | 0.04 | 8590 | 7 | 6.3 | 8100 |
sby-26 | Oxidized ore | 12.45 | 107.5 | 80 | 90 | 87.2 | 163 | 143 | 974 | 33.2 | 58.5 | 4.4 | 0.63 | 47.8 | 14.2 | 890 | 6.9 | 0.193 | 4000 | 36.1 | 3.1 | 1650 |
sby-27 | Oxidized ore | 173 | 58 | 59 | 90 | 19.6 | 242 | 469 | 1340 | 52.1 | 33 | 1.6 | 2.29 | 131 | 14.5 | 3840 | 7.8 | 0.108 | 6480 | 14.7 | 5.1 | 7660 |
sby-28 | Oxidized ore | 1253 | 18 | 22 | 98 | 2.6 | 231 | 124 | 1750 | 81.1 | 8.3 | 0.6 | 7.71 | 173.5 | 10.8 | 25,020 | 21.3 | 0.015 | 5800 | 2.8 | 7.8 | 6180 |
sby-29 | Oxidized ore | 321 | 17.7 | 19 | 137 | 2.0 | 138.5 | 68.7 | 1290 | 68.3 | 7.0 | 0.6 | 2.61 | 154.5 | 26.0 | 3520 | 3.0 | 0.012 | 4170 | 2 | 3.9 | 9790 |
sbyd-10 | Pure rhodochrosite | 91.4 | 0.4 | <1 | <1 | 3.2 | 4.5 | 108.5 | 744 | 196 | 7.1 | 0.7 | 0.26 | 299 | 0.85 | 40 | 1.2 | <0.005 | 51,880 | 0.7 | 1.8 | 48,670 |
sbyd-12 | Pure rhodochrosite | 55.1 | 0.6 | <1 | <1 | 2.5 | 6.3 | 180 | 594 | 48.7 | 3.0 | 0.8 | 0.08 | 44.9 | 0.31 | <10 | 1.4 | <0.005 | 6000 | 0.3 | 0.7 | 35,310 |
sbyd-14 | Pure rhodochrosite | 43.1 | 0.5 | <1 | 3 | 2.9 | 6.4 | 152 | 484 | 83.2 | 11.1 | 0.4 | 1.21 | 54.4 | 0.18 | 70 | 8.7 | <0.005 | 52,230 | 0.4 | 1.8 | 48,970 |
sbyd-20 | Pure rhodochrosite | 32.5 | 1.4 | <1 | <1 | 2.8 | 4.1 | 203 | 193.5 | 96.1 | 5.2 | 0.7 | 0.3 | 11.4 | 0.88 | 10 | 5.2 | <0.005 | 1980 | 0.3 | 0.7 | 12,170 |
2sby-3 | Pure rhodochrosite | 8.3 | 1.5 | <1 | <1 | 1.4 | 1.4 | 56.7 | 294 | 154.5 | 6.1 | 0.9 | 0.51 | 6.97 | 1.04 | 20 | 0.5 | <0.005 | 3860 | 0.2 | 0.8 | 24,240 |
sby-12 | Wall rock | 1.69 | 34.4 | 97 | 83 | 22 | 57.7 | 57.1 | 17.9 | 183.5 | 24.6 | 10.1 | 0.34 | 0.74 | 6.41 | 420 | 3.0 | 0.325 | 51.9 | 18.1 | 2.3 | 187 |
sby-13 | Wall rock | 1.41 | 3.2 | 8 | 9 | 4.6 | 6.7 | 7.1 | 8 | 615 | 8.9 | 1 | 0.8 | 2.64 | 0.87 | 70 | 1.0 | 0.026 | 111.5 | 5.1 | 1.8 | 173 |
Sample No. | sbyd-10 | sbyd-12 | sbyd-14 | sbyd-20 | 2SBY-3 | sby-12 | sby-13 |
---|---|---|---|---|---|---|---|
Lithology | Pure Rhodochrosite | Wall Rock | |||||
La | 8.1 | 12.4 | 10.6 | 11.2 | 8.3 | 31.9 | 7.9 |
Ce | 15.25 | 21.4 | 20.9 | 16.5 | 15.15 | 79.8 | 20.3 |
Pr | 1.46 | 2.2 | 1.5 | 1.73 | 1.67 | 8.43 | 2.03 |
Nd | 5.1 | 8.0 | 4.9 | 5.8 | 6.0 | 31.1 | 7.9 |
Sm | 0.93 | 1.43 | 0.82 | 0.93 | 1.1 | 5.63 | 1.54 |
Eu | 1.22 | 1.56 | 2.32 | 1.46 | 1.06 | 1.06 | 0.34 |
Gd | 1.1 | 1.19 | 0.97 | 0.76 | 0.94 | 4.95 | 1.41 |
Tb | 0.14 | 0.13 | 0.11 | 0.09 | 0.11 | 0.73 | 0.21 |
Dy | 0.66 | 0.68 | 0.56 | 0.45 | 0.55 | 4.15 | 1.19 |
Ho | 0.12 | 0.13 | 0.11 | 0.09 | 0.1 | 0.82 | 0.24 |
Er | 0.32 | 0.32 | 0.31 | 0.24 | 0.26 | 2.24 | 0.68 |
Tm | 0.05 | 0.05 | 0.05 | 0.03 | 0.03 | 0.3 | 0.1 |
Yb | 0.3 | 0.29 | 0.29 | 0.19 | 0.21 | 1.82 | 0.63 |
Lu | 0.05 | 0.05 | 0.05 | 0.04 | 0.03 | 0.25 | 0.1 |
Y | 4.8 | 6.4 | 4.3 | 3.9 | 4.8 | 22 | 9.1 |
ΣREE | 34.8 | 49.83 | 43.49 | 39.51 | 35.51 | 173.18 | 44.57 |
LREE(light rare earth elements) | 32.06 | 46.99 | 41.04 | 37.62 | 33.28 | 157.92 | 40.01 |
HREE(heavy rare earth elements) | 2.74 | 2.84 | 2.45 | 1.89 | 2.23 | 15.26 | 4.56 |
LREE/HREE | 11.7 | 16.55 | 16.75 | 19.9 | 14.92 | 10.35 | 8.77 |
LaN/YbN | 2.55 | 4.03 | 3.45 | 5.56 | 3.73 | 1.65 | 1.18 |
δEu | 5.6 | 5.61 | 12.08 | 8.15 | 4.89 | 0.94 | 1.08 |
δCe | 1.04 | 0.96 | 1.19 | 0.86 | 0.96 | 1.15 | 1.2 |
sby-03 | 238U/206Pb | 2σ (%) | 207Pb/206Pb | 2σ (%) | 238U/206Pb | 2σ (%) | 207Pb/206Pb | 2σ (%) |
---|---|---|---|---|---|---|---|---|
4.22 | 4.5 | 0.5878 | 6.7 | 11.58 | 3.7 | 0.1652 | 17.3 | |
2.40 | 4.6 | 0.7087 | 4.1 | 10.44 | 4.2 | 0.2488 | 13.3 | |
3.09 | 5.9 | 0.6852 | 4.7 | 2.93 | 2.9 | 0.6970 | 2.7 | |
7.15 | 5.3 | 0.4961 | 11.1 | 5.75 | 3.2 | 0.5468 | 3.3 | |
5.73 | 3.8 | 0.5066 | 4.4 | 2.24 | 4.2 | 0.7110 | 2.6 | |
2.59 | 4.1 | 0.6494 | 4.6 | 7.64 | 3.5 | 0.4073 | 6.0 | |
1.20 | 2.6 | 0.7818 | 2.4 | 9.42 | 3.7 | 0.3153 | 10.0 | |
4.44 | 2.8 | 0.6063 | 3.1 | 3.22 | 3.8 | 0.6929 | 3.5 | |
3.77 | 3.2 | 0.7029 | 3.8 | 3.46 | 3.6 | 0.7144 | 4.2 | |
8.77 | 4.3 | 0.3746 | 9.6 | 1.85 | 6.8 | 0.7102 | 6.6 | |
6.75 | 6.8 | 0.4969 | 12.3 | 8.29 | 6.2 | 0.3871 | 16.4 | |
11.27 | 4.3 | 0.1871 | 17.4 | 8.60 | 2.8 | 0.3634 | 5.9 | |
13.15 | 3.6 | 0.1747 | 15.3 | 7.12 | 4.2 | 0.4675 | 6.0 | |
6.42 | 4.5 | 0.4821 | 6.3 | 12.03 | 4.0 | 0.2581 | 15.1 | |
11.91 | 2.9 | 0.1451 | 12.4 | |||||
AY-4 | 238U/206Pb | 2σ (%) | 207Pb/206Pb | 2σ (%) | 238U/206Pb | 2σ (%) | 207Pb/206Pb | 2σ (%) |
34.59 | 3.34 | 0.1204 | 9.00 | 36.80 | 2.73 | 0.0759 | 13.86 | |
29.22 | 4.86 | 0.2410 | 10.53 | 36.28 | 3.15 | 0.0694 | 10.05 | |
37.94 | 3.53 | 0.1008 | 9.52 | 34.91 | 4.01 | 0.0860 | 8.05 | |
38.18 | 3.51 | 0.1091 | 12.74 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, S.; Wen, H.; Liu, S.; Qin, C.; Yan, Y.; Yang, G.; Feng, P. Mineralogy and Metallogenesis of the Sanbao Mn–Ag (Zn-Pb) Deposit in the Laojunshan Ore District, SE Yunnan Province, China. Minerals 2020, 10, 650. https://doi.org/10.3390/min10080650
Du S, Wen H, Liu S, Qin C, Yan Y, Yang G, Feng P. Mineralogy and Metallogenesis of the Sanbao Mn–Ag (Zn-Pb) Deposit in the Laojunshan Ore District, SE Yunnan Province, China. Minerals. 2020; 10(8):650. https://doi.org/10.3390/min10080650
Chicago/Turabian StyleDu, Shengjiang, Hanjie Wen, Shirong Liu, Chaojian Qin, Yongfeng Yan, Guangshu Yang, and Pengyu Feng. 2020. "Mineralogy and Metallogenesis of the Sanbao Mn–Ag (Zn-Pb) Deposit in the Laojunshan Ore District, SE Yunnan Province, China" Minerals 10, no. 8: 650. https://doi.org/10.3390/min10080650
APA StyleDu, S., Wen, H., Liu, S., Qin, C., Yan, Y., Yang, G., & Feng, P. (2020). Mineralogy and Metallogenesis of the Sanbao Mn–Ag (Zn-Pb) Deposit in the Laojunshan Ore District, SE Yunnan Province, China. Minerals, 10(8), 650. https://doi.org/10.3390/min10080650