A Trace Element Classification Tree for Chalcopyrite from Oktyabrsk Deposit, Norilsk–Talnakh Ore District, Russia: LA-ICPMS Study
Abstract
:1. Introduction
2. Geological Background
2.1. Geology of the Oktyabrsk Deposit
2.2. Three Types of Sulfide Ores
3. Methods
3.1. SEM Analyses
3.2. LA-ICPMS Analysis
3.3. R Package
4. Results
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- George, L.L.; Cook, N.J.; Crowe, B.B.; Ciobanu, C.L. Trace elements in hydrothermal chalcopyrite. Mineral. Mag. 2018, 82, 59–88. [Google Scholar] [CrossRef]
- Roberts, F.I. Trace element chemistry of pyrite: A useful guide to the occurrence of sulfide base metal mineralization. J. Geochem. Explor. 1982, 17, 49–62. [Google Scholar] [CrossRef]
- Ho, S.E.; McQueen, K.G.; McNaughton, N.J.; Groves, D.I. Lead isotope systematics and pyrite trace element geochemistry of two granitoid-associated mesothermal gold deposits in the southeastern Lachlan fold belt. Econ. Geol. 1995, 90, 1818–1830. [Google Scholar] [CrossRef]
- Large, R.R.; Danyushevsky, L.; Hollit, C.; Maslennikov, V.; Meffre, S.; Gilbert, S.; Bull, S.; Scott, R.; Emsbo, P.; Thomas, H.; et al. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits. Econ. Geol. 2009, 104, 635–668. [Google Scholar] [CrossRef]
- Koglin, N.; Frimmel, H.E.; Minter, W.L.; Brätz, H. Trace-element characteristics of different pyrite types in Mesoarchaean to Palaeoproterozoic placer deposits. Miner. Depos. 2010, 45, 259–280. [Google Scholar] [CrossRef]
- Berner, Z.A.; Puchelt, H.; Noeltner, T.; Kramar, U. Pyrite geochemistry in the Toarcian Posidonia Shale of south-west Germany: Evidence for contrasting trace-element patterns of diagenetic and syngenetic pyrites. Sedimentology 2013, 60, 548–573. [Google Scholar] [CrossRef]
- Zhang, J.; Deng, J.; Chen, H.-y.; Yang, L.-q.; Cooke, D.; Danyushevsky, L.; Gong, Q.-j. LA-ICP-MS trace element analysis of pyrite from the Chang’an gold deposit, Sanjiang region, China: Implication for ore-forming process. Gondwana Res. 2014, 26, 557–575. [Google Scholar] [CrossRef]
- Gregory, D.D.; Large, R.R.; Halpin, J.A.; Baturina, E.L.; Lyons, T.W.; Wu, S.; Danyushevsky, L.; Sack, P.J.; Chappaz, A.; Maslennikov, V.V.; et al. Trace element content of sedimentary pyrite in black shales. Econ. Geol. 2015, 110, 1389–1410. [Google Scholar] [CrossRef]
- Keith, M.; Häckel, F.; Haase, K.M.; Schwarz-Schampera, U.; Klemd, R. Trace element systematics of pyrite from submarine hydrothermal vents. Ore Geol. Rev. 2016, 72, 728–745. [Google Scholar] [CrossRef]
- Basori, M.B.I.; Gilbert, S.; Large, R.R.; Zaw, K. Textures and trace element composition of pyrite from the Bukit Botol volcanic-hosted massive sulphide deposit, Peninsular Malaysia. J. Asian Earth Sci. 2018, 158, 173–185. [Google Scholar] [CrossRef]
- Dmitrijeva, M.; Cook, N.J.; Ehrig, K.; Ciobanu, C.L.; Metcalfe, A.V.; Kamenetsky, M.; Kamenetsky, V.S.; Gilbert, S. Multivariate statistical analysis of trace elements in pyrite: Prediction, bias and artefacts in defining mineral signatures. Minerals 2020, 10, 61. [Google Scholar] [CrossRef] [Green Version]
- Butler, I.; Nesbitt, R. Trace element distributions in the chalcopyrite wall of a black smoker chimney: Insights from laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS). Earth Planet. Sci. Lett. 1999, 167, 335–345. [Google Scholar] [CrossRef]
- Duran, C.J.; Dubé-Loubert, H.; Pagé, P.; Barnes, S.-J.; Roy, M.; Savard, D.; Cave, B.J.; Arguin, J.-P.; Mansur, E.T. Applications of trace element chemistry of pyrite and chalcopyrite in glacial sediments to mineral exploration targeting: Example from the Churchill Province, northern Quebec, Canada. J. Geochem. Explor. 2019, 196, 105–130. [Google Scholar] [CrossRef]
- Hawley, J.; Nichol, I. Trace elements in pyrite, pyrrhotite and chalcopyrite of different ores. Econ. Geol. 1961, 56, 467–487. [Google Scholar] [CrossRef]
- Huston, D.L.; Sie, S.H.; Suter, G.F.; Cooke, D.R.; Both, R.A. Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits; Part I, Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part II, Selenium levels in pyrite; comparison with delta 34 S values and implications for the source of sulfur in volcanogenic hydrothermal systems. Econ. Geol. 1995, 90, 1167–1196. [Google Scholar] [CrossRef]
- Mansur, E.T.; Barnes, S.-J.; Duran, C.J.; Sluzhenikin, S.F. Distribution of chalcophile and platinum-group elements among pyrrhotite, pentlandite, chalcopyrite and cubanite from the Noril’sk-Talnakh ores: Implications for the formation of platinum-group minerals. Miner. Depos. 2020, 55, 1215–1232. [Google Scholar] [CrossRef]
- Maslennikov, V.; Maslennikova, S.; Large, R.; Danyushevsky, L. Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy volcanic-hosted massive sulfide deposit (Southern Urals, Russia) using laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS). Econ. Geol. 2009, 104, 1111–1141. [Google Scholar] [CrossRef]
- Yano, R.I. Trace Element Distribution in Chalcopyrite-Bearing Porphyry and Skarn Deposits. Master’s Thesis, University of Nevada, Reno, NV, USA, 2012. [Google Scholar]
- Yuan, B.; Yang, Y.; Yu, H.; Zhao, Y.; Ding, Q.; Yang, J.; Tang, X. Geochemistry of pyrite and chalcopyrite from an active black smoker in 49.6 E Southwest Indian Ridge. Mar. Geophys. Res. 2018, 39, 441–461. [Google Scholar] [CrossRef]
- Spiridonov, E. Ore-magmatic systems of the Noril’sk ore field. Russ. Geol. Geophys. 2010, 51, 1059–1077. [Google Scholar] [CrossRef]
- Ryabov, V.; Shevko, A.Y.; Gora, M. Trap Magmatism and Ore Formation in the Siberian Noril’sk Region: Volume 1. Trap Petrology; Springer Science & Business Media: Berlin, Germany, 2014; Volume 3. [Google Scholar]
- Naldrett, A.J. A model for the Ni-Cu-PGE ores of the Noril’sk region and its application to other areas of flood basalt. Econ. Geol. 1992, 87, 1945–1962. [Google Scholar] [CrossRef]
- Lightfoot, P.C.; Zotov, I.A. Geological relationships between the intrusions, country rocks and Ni-Cu-PGE sulfides of the Kharealakh Intrusion, Noril’sk region: Implications for the role of sulfide differentiation and metasomatism in their genesis. Northwest. Geol. 2014, 47, 1–34. [Google Scholar]
- Griffin, W.; Fisher, N.; Friedman, J.; O’Reilly, S.Y.; Ryan, C. Cr-pyrope garnets in the lithospheric mantle 2. Compositional populations and their distribution in time and space. Geochem. Geophys. Geosyst. 2002, 3, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Griffin, W.; Fisher, N.; Friedman, J.; Ryan, C.; O’Reilly, S. Cr-pyrope garnets in the lithospheric mantle. I. Compositional systematics and relations to tectonic setting. J. Petrol. 1999, 40, 679–704. [Google Scholar] [CrossRef]
- Chasse, M.; Griffin, W.L.; Alard, O.; O’reilly, S.Y.; Calas, G. Insights into the mantle geochemistry of scandium from a meta-analysis of garnet data. Lithos 2018, 310, 409–421. [Google Scholar] [CrossRef] [Green Version]
- Burgess, S.D.; Bowring, S.A. High-precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction. Sci. Adv. 2015, 1, e1500470. [Google Scholar] [CrossRef] [Green Version]
- Latyshev, A.; Rad’ko, V.; Veselovskiy, R.; Fetisova, A.; Pavlov, V. Correlation of the Permian-Triassic ore-bearing intrusions of the Norilsk region with the volcanic sequence of the Siberian Traps based on the paleomagnetic data. Econ. Geol. 2020. [Google Scholar] [CrossRef]
- Turovtsev, D.M. Contact Metamorphism of Norilsk Intrusions; Nauchnyi Mir: Moscow, Russia, 2002. [Google Scholar]
- Sluzhenikin, S.; Krivolutskaya, N.; Rad’ko, V.; Malitch, K.; Distler, V.; Fedorenko, V. Ultramafic–Mafic Intrusions, Volcanic Rocks and PGE–Cu–Ni Sulfide Deposits of the Noril’sk Province, Polar Siberia. Field Trip Guidebook; Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry: Yekaterinburg, Russia, 2014. [Google Scholar]
- Rad’Ko, V. Model of dynamic differentiation of intrusive traps in the northwestern Siberian platform. Geol. Geofiz. 1991, 11, 19–27. [Google Scholar]
- Malitch, K.N.; Latypov, R.M.; Badanina, I.Y.; Sluzhenikin, S.F. Insights into ore genesis of Ni-Cu-PGE sulfide deposits of the Noril’sk Province (Russia): Evidence from copper and sulfur isotopes. Lithos 2014, 204, 172–187. [Google Scholar] [CrossRef]
- Malitch, K.; Belousova, E.; Griffin, W.; Badanina, I.Y. Hafnium-neodymium constraints on source heterogeneity of the economic ultramafic-mafic Noril’sk-1 intrusion (Russia). Lithos 2013, 164, 36–46. [Google Scholar] [CrossRef]
- Vaulin, L.; Sukhanova, E. Oktyabr’skoe Cu-Ni deposit. In Okhrana i Razvedka Nedr; Izdatel’stvo Nedra: Moscow, Russia, 1970; pp. 48–52. [Google Scholar]
- Dodin, D.A.; Batuev, B.N. Geology and petrology of the Talhakh differentiated intrusions and their metamorphic aureoles. In Petrology and Ore Resource Potential of the Talnakh and Noril’sk Differentiated Intrusions; Nedra: Leningrad, Russia, 1971; pp. 31–100. (In Russian) [Google Scholar]
- Zolotukhin, V.; Ryabov, V.; Vasil’ev, Y.R.; Shatkov, V. Petrology of the Talnakh Ore-Bearing Differentiated Trap Intrusion; Nauka: Novosibirsk, Russia, 1975. [Google Scholar]
- Wooden, J.L.; Czamanske, G.K.; Bouse, R.M.; Likhachev, A.P.; Kunilov, V.E.; Lyul’ko, V. Pb isotope data indicate a complex, mantle origin for the Noril’sk-Talnakh ores, Siberia. Econ. Geol. 1992, 87, 1153–1165. [Google Scholar] [CrossRef]
- Lightfoot, P.; Hawkesworth, C.; Hergt, J.; Naldrett, A.; Gorbachev, N.; Fedorenko, V.; Doherty, W. Remobilisation of the continental lithosphere by a mantle plume: Major-, trace-element, and Sr-, Nd-, and Pb-isotope evidence from picritic and tholeiitic lavas of the Noril’sk District, Siberian Trap, Russia. Contrib. Mineral. Petrol. 1993, 114, 171–188. [Google Scholar] [CrossRef]
- Torgashin, A.; Lightfoot, P.; Naldrett, A. Geology of the massive and copper ores of the western part of the Oktyabr’sky deposit. Ont. Geol. Surv. Spec. Publ. 1994, 5, 231–242. [Google Scholar]
- Walker, R.J.; Morgan, J.W.; Beary, E.S.; Smoliar, M.I.; Czamanske, G.K.; Horan, M.F. Applications of the 190Pt-186Os isotope system to geochemistry and cosmochemistry. Geochim. Cosmochim. Acta 1997, 61, 4799–4807. [Google Scholar] [CrossRef]
- Li, C.; Ripley, E.M.; Naldrett, A.J.; Schmitt, A.K.; Moore, C.H. Magmatic anhydrite-sulfide assemblages in the plumbing system of the Siberian Traps. Geology 2009, 37, 259–262. [Google Scholar] [CrossRef]
- Malitch, K.N.; Belousova, E.A.; Griffin, W.L.; Badanina, I.Y.; Pearson, N.J.; Presnyakov, S.L.; Tuganova, E.V. Magmatic evolution of the ultramafic–mafic Kharaelakh intrusion (Siberian Craton, Russia): Insights from trace-element, U–Pb and Hf-isotope data on zircon. Contrib. Mineral. Petrol. 2010, 159, 753–768. [Google Scholar] [CrossRef]
- Malitch, K.N.; Latypov, R.M. Re–Os and S isotope constraints on timing and source heterogeneity of PGE–Cu–Ni sulfide ores: A case study at the Talnakh ore junction, Noril’sk Province, Russia. Can. Mineral. 2011, 49, 1653–1677. [Google Scholar] [CrossRef]
- Krivolutskaya, N.; Sobolev, A.; Mikhailov, V.; Plechova, A.; Kostitsyn, Y.A.; Roschina, I.; Fekiacova, Z. Parental melt of the Nadezhdinsky Formation: Geochemistry, petrology and connection with Cu-Ni deposits (Noril’sk area, Russia). Chem. Geol. 2012, 302, 87–105. [Google Scholar] [CrossRef]
- Sluzhenikin, S.F.; Mokhov, A.V. Gold and silver in PGE–Cu–Ni and PGE ores of the Noril’sk deposits, Russia. Miner. Depos. 2015, 50, 465–492. [Google Scholar] [CrossRef]
- Krivolutskaya, N.; Tolstykh, N.; Kedrovskaya, T.; Naumov, K.; Kubrakova, I.; Tyutyunnik, O.; Gongalsky, B.; Kovalchuk, E.; Magazina, L.; Bychkova, Y.; et al. World-class PGE-Cu-Ni Talnakh deposit: New data on the structure and unique mineralization of the south-western branch. Minerals 2018, 8, 124. [Google Scholar] [CrossRef] [Green Version]
- Krivolutskaya, N.A.; Gongalsky, B.I.; Kedrovskaya, T.B.; Kubrakova, I.V.; Tyutyunnik, O.A.; Chikatueva, V.Y.; Bychkova, Y.V.; Magazina, L.; Kovalchuk, E.N.; Yakushev, A.I.; et al. Geology of the western flanks of the Oktyabr’skoe deposit, Noril’sk district, Russia: Evidence of a closed magmatic system. Miner. Depos. 2019, 54, 611–630. [Google Scholar] [CrossRef]
- Miroshnikov, L.K.; Ufatova, Z.G.; Kirpichenkov, K.A. Seismic shooting in geodynamic zoning of the rock and ore mass in conditions of deep ore mines operation. Min. Ind. J. 2018, 1, 46–47. [Google Scholar] [CrossRef]
- Marfin, A.E.; Ivanov, A.V.; Kamenetsky, V.S.; Abersteiner, A.; Yakich, T.Y.; Dudkin, T.V. Contact Metamorphic and Metasomatic Processes at the Kharaelakh Intrusion, Oktyabrsk Deposit, Norilsk-Talnakh Ore District: Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Dating of Perovskite, Apatite, Garnet, and Titanite. Econ. Geol. 2020. [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S.-S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Pearce, J.A.; Harris, N.B.; Tindle, A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef] [Green Version]
- Patten, C.; Barnes, S.-J.; Mathez, E.A.; Jenner, F.E. Partition coefficients of chalcophile elements between sulfide and silicate melts and the early crystallization history of sulfide liquid: LA-ICP-MS analysis of MORB sulfide droplets. Chem. Geol. 2013, 358, 170–188. [Google Scholar] [CrossRef]
- Mavrogenes, J.; Frost, R.; Sparks, H.A. Experimental evidence of sulfide melt evolution via immiscibility and fractional crystallization. Can. Mineral. 2013, 51, 841–850. [Google Scholar] [CrossRef] [Green Version]
Type of Ores | Groups of Elements | Interpretation |
---|---|---|
Veinlet-disseminated ore | Bi-Se-Te | Co-crystallization of Bi-Te phases with chalcopyrite, isomorphism of Se and Te |
Ti-Sn | Spurious clustering? | |
Zn-Cd | Co-crystallization of sphalerite with chalcopyrite, isomorphism of Cd and Zn | |
Co-Ni | Co-crystallization of pentlandite and Co-pentlandite with chalcopyrite | |
Disseminated ore | Ti-Mn-Mo | Spurious clustering? |
Ag-Co-Ni-Sn-Bi-Tl-Pb-Zn-Cd-Se-Te | Initial crystallization of chalcopyrite from intermediate solid solution (ISS) | |
Massive ore | Mn-Ti-Zn-Ag | Rutile, ilmenite and Ti-magnetite |
Se-Te | Isomorphism of Se and Te in chalcopyrite | |
Co-Ni-Mo-Pb | Co-crystallization of pentlandite, galena, isomorphism of Pb, Mo and Co |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marfin, A.E.; Ivanov, A.V.; Abramova, V.D.; Anziferova, T.N.; Radomskaya, T.A.; Yakich, T.Y.; Bestemianova, K.V. A Trace Element Classification Tree for Chalcopyrite from Oktyabrsk Deposit, Norilsk–Talnakh Ore District, Russia: LA-ICPMS Study. Minerals 2020, 10, 716. https://doi.org/10.3390/min10080716
Marfin AE, Ivanov AV, Abramova VD, Anziferova TN, Radomskaya TA, Yakich TY, Bestemianova KV. A Trace Element Classification Tree for Chalcopyrite from Oktyabrsk Deposit, Norilsk–Talnakh Ore District, Russia: LA-ICPMS Study. Minerals. 2020; 10(8):716. https://doi.org/10.3390/min10080716
Chicago/Turabian StyleMarfin, Alexander E., Alexei V. Ivanov, Vera D. Abramova, Tatiana N. Anziferova, Tatiana A. Radomskaya, Tamara Y. Yakich, and Ksenia V. Bestemianova. 2020. "A Trace Element Classification Tree for Chalcopyrite from Oktyabrsk Deposit, Norilsk–Talnakh Ore District, Russia: LA-ICPMS Study" Minerals 10, no. 8: 716. https://doi.org/10.3390/min10080716
APA StyleMarfin, A. E., Ivanov, A. V., Abramova, V. D., Anziferova, T. N., Radomskaya, T. A., Yakich, T. Y., & Bestemianova, K. V. (2020). A Trace Element Classification Tree for Chalcopyrite from Oktyabrsk Deposit, Norilsk–Talnakh Ore District, Russia: LA-ICPMS Study. Minerals, 10(8), 716. https://doi.org/10.3390/min10080716