Relationship between Uranium Minerals and Pyrite and Its Genetic Significance in the Mianhuakeng Deposit, Northern Guangdong Province
Abstract
:1. Introduction
2. Geological Background
3. Ore Body Geology and Uranium Ore Types
4. Genetic Relationship between Uranium Minerals and Pyrites
5. Discussion of the Precipitation and Mineralization Mode of Granite-Related Uranium Deposits
6. Conclusions
- (1)
- From the differing styles of uranium mineralization in the Mianhuakeng deposit, uranium ores, pyrites, and other gangue minerals (e.g., calcite, fluorite, and microcrystalline quartz) that formed during the mineralization stage all show coeval relationships indicative of co-crystallization phases from the same ore-forming fluid in the Mianhuakeng uranium deposit.
- (2)
- Redox reactions are not crucial phases for uranium precipitation-mineralization in granite-related uranium mineralization. In contrast, the leading factors constraining the crystallization of uranium minerals and associated gangue minerals are decompression, decreasing temperature, changes in pH value, and solubility (saturation) of the ore-forming fluid.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, Z.Y.; Li, X.Z.; Lin, J.R. On the meso-cenozoic mantle plume tectonics, its relationship to uranium metallogenesis and prospecting directions in south china. Uranium Geol. 1999, 15, 9–17. (In Chinese) [Google Scholar]
- Wang, Z.Q.; Li, Z.Y.; Tang, J.W. Deep Geodynamic Mechanism of the Volcanic-Type Uranium Mineralization in Xinlu Basin, Western Zhejiang Province. Acta Geol. Sin. 2013, 87, 703–714. [Google Scholar]
- Wang, Z.Q.; Li, Z.Y. Mesozoic Magmatism Is Involved in the Dynamics of Uranium Mineralization in Xinlu Basin; Geological Publishing House: Beijing, China, 2016; pp. 104–105. [Google Scholar]
- Romberger, S.B. Transport and deposition of uranium in hydrothermal systems at temperatures up to 300, geochemical implications. In Uranium Geochemistry, Mineralogy, Geology, Exploration and Resources. IMM; Springer: Dordrecht, The Netherlands; London, UK, 1984; pp. 12–17. [Google Scholar]
- Dahlkamp, F.J. Uranium Ore Deposits; Springer: Heidelberg, Germany, 1993; pp. 118–122. [Google Scholar]
- Castor, S.B.; Henry, C.D. Geology, geochemistry and origin of volcanic rock-hosted uranium deposits in northwestern Nevada and southeastern Oregon. Ore Geol. Rev. 2000, 16, 1–40. [Google Scholar] [CrossRef]
- Chabiron, A.; Cuney, M.; Poty, B. Possible uranium sources for the largest uranium district associated with volcanism-The Streltsovka caldera (Transbaikalia Russia). Miner. Depos. 2003, 38, 127–140. [Google Scholar] [CrossRef]
- Yu, D.G.; Wu, R.G.; Chen, P.R. Uranium Geology Harbin; Harbin Engineering University Press: Harbin, China, 2005; pp. 1–450. (In Chinese) [Google Scholar]
- Ling, H.F. Origin of hydrothermal fluids of granite–type uranium deposits: Constraints from redox conditions. Geol. Rev. 2011, 57, 193–206. [Google Scholar]
- Liu, Z.Y.; Han, X.Z.; Gao, Y.; Du, L.T.; Li, X.G. Physical and chemical factors of uranium enrichment in hydrothermal uranium deposits. East China Univ. Technol. Nat. Sci. Ed. 2011, 34, 1–10. [Google Scholar]
- Li, Z.Y.; Huang, Z.Z.; Li, X.Z.; Guo, J.; Fan, C. The Discovery of Natural Native Uranium and Its Significance. Acta Geol. Sin. (Engl. Ed.) 2015, 89, 1561–1567. [Google Scholar]
- Ou, G.X.; Chen, A.F.; Cui, J.Y.; Xu, Y.H.; Wang, C.H.; Xu, Y. Uranium Metallogenic Model Related to CO2 and Hydrocarbon in Granite Type Uranium Deposits; China Nuclear Science and Technology Report; China Nuclear Information Centre: Beijing, China, 2020; pp. 1–16. [Google Scholar]
- Zhang, H.X.; Xu, Z.F.; Huang, Z.L.; Liu, C.Q. The primary characters and origin of mantle fluids. Geol. Geochem. 2000, 28, 1–5. [Google Scholar]
- Du, L.T. The Basic Metallogenic Criteria of Hydrothermal Uranium Deposits in China and the General Hydrothermal Metallogeny; Atomic Energy Press: Beijing, China, 2001; pp. 57–110, 151–237. [Google Scholar]
- Deng, P.; Shen, W.Z.; Ling, H.F.; Ye, H.M.; Wang, X.C.; Pu, W.; Tan, Z.Z. Uranium mineralization re-lated to mantle fluid: A case study of the Xianshi deposit in the Xiazhuang uranium ore field. Geochimica 2003, 32, 520–528. [Google Scholar]
- Jiang, Y.H.; Jiang, S.Y.; Ling, H.F. Mantle-derived flu-ids and uranium mineralization. Earth Sci. Front. 2004, 11, 491–499. [Google Scholar]
- Mao, J.W.; Li, X.F.; Wang, Y.T.; Hao, Y. Deep Fluid Metallogenic System; China Dadi Publishing House: Beijing, China, 2005; pp. 199–218. [Google Scholar]
- Shang, P.Q.; Hu, R.Z.; Bi, X.W.; Liu, L.; Zhang, G.Q. Study on carbon and oxygen isotopes in granite-type hydrothermal uranium deposits: A case of the Xiazhuang uranium ore field in northern Guangdong. Miner. Petrol. 2006, 26, 71–76. [Google Scholar]
- Wang, Z.Q.; Li, Z.Y. Discussion on Mantle-derived Uranium Mineralization. Geol. Rev. 2007, 53, 608–614. [Google Scholar]
- Zhang, G.Q.; Hu, R.Z.; Shang, P.Q.; Tian, J.J.; Shuang, Y. Study on the C-O Isotopic Composition of Calcites and Metallogenic Dynamics Background in the No.302 Uranium Deposit. Acta Mineral. Sin. 2008, 28, 413–420. [Google Scholar]
- Shen, W.Z.; Ling, H.F.; Sun, T.; Deng, P.; Zhu, B.; Huang, G.L.; Tan, Z.Z. Mantle fluid metallogeny of granite-type uranium deposits in northern Guangdong. Prog. Rep. China Nucl. Sci. Technol. 2009, 1, 1–12. [Google Scholar]
- Zhang, G.Q.; Hu, R.Z.; Jiang, G.H.; Liu, S.; Zhu, W.G.; Tian, J.J.; Shuang, Y.; Fan, X.R. Mantle-derived volatile components involved in uranium mineralization: Evidence from He isotopes of the No. 302 uranium deposit. Geochimica 2010, 39, 386–395. [Google Scholar]
- Huang, G.L.; Liu, X.Y.; Sun, L.Q.; Li, Z.S.; Zhang, S.J. Zircon U-Pb Dating, Geochemical Characteristic and Genesis of the Changjiang Granite in northern Guangdong. Acta Geol. Sin. 2014, 88, 836–849. [Google Scholar]
- Huang, G.L.; Yin, Z.P.; Ling, H.F.; Deng, P.; Zhu, B.; Shen, W.Z. Formation age, geochemical characteristics and genesis of pitchblende from No. 302 uranium deposit in northern Guangdong. Miner. Depos. 2010, 29, 353–360. [Google Scholar]
- Zhong, F.J.; Yan, J.; Xia, F.; Pan, J.Y.; Liu, W.Q.; Lai, J.; Zhao, Q.F. In-situ U-Pb isotope geochronology of uraninite for Changjiang granite-type uranium ore field in northern Guangdong, China: Implications for uranium mineralization. Acta Petrol. Sin. 2019, 35, 2727–2744. [Google Scholar]
- Pirajno, F. Ore Deposit and Mantle Plumes; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000; p. 556. [Google Scholar]
- Fan, H.H.; Ling, H.F.; Wang, D.Z.; Shen, W.Z.; Liu, C.S.; Jiang, Y.H. Ore-Forming Material Sources for Xiangshan Uranium Ore-Field in Jiangxi Province: Evidence from Nd-Sr-Pb Isotopes. Univ. Geol. J. 2001, 7, 139–145. [Google Scholar]
- Jiang, Y.H.; Ling, H.F.; Jiang, S.Y.; Shen, W.Z.; Fan, H.H.; Ni, P. Trace element and Sr-Nd isotope geochemistry of fluorite from the Xiangshan uranium deposit, southeast China. Econ. Geol. 2006, 101, 1613–1622. [Google Scholar] [CrossRef]
- Li, Z.Y. Hostspot uranium metallogenesis in South China. Uranium Geol. 2006, 22, 65–69. [Google Scholar]
- Hu, R.Z.; Burnad, P.G.; Bi, X.W.; Zhou, M.F.; Peng, J.T.; Su, W.C.; Zhao, J.H. Mantle-derived gaseous components in ore-forming fluids of the Xiangshan uranium deposit, Jiangxi province, China: Evidence from He, Ar and C isotopes. Chem. Geol. 2009, 266, 86–95. [Google Scholar] [CrossRef]
- Zhu, B. The study of mantle liquid and uranium metallogenesis-take uranium ore field of south Zhuguang mountain as an example. Chengdu Univ. Technol. 2010, 81. [Google Scholar]
- Shen, W.Z.; Ling, H.F.; Deng, P.; Zhu, B.; Huang, G.L.; Tan, Z.Z. Study on isotope geochemistry of uranium deposit 302 in northern Guangdong province. Uranium Geol. 2010, 26, 80–87. [Google Scholar]
- Pang, Y.Q.; Fan, H.H.; Gao, F.; Wu, J.Y.; Xie, X.Z. Helium and argon isotopic compositions of fluid inclusions and tracing to the source of ore-forming fluids for the southern Zhuguang uranium ore field in northern Guangdong Province. Acta Petrol. Sin. 2019, 35, 2765–2773. [Google Scholar]
- Ni, S.J.; Hu, R.Z.; Jin, J.F.A. vertical zoning model generated by the mixing and boiling of hydrothermal solution for uranium deposit No. 302. Uranium Geol. 1994, 10, 70–77. [Google Scholar]
- Zhang, L.; Chen, Z.; Li, X.; Li, S.; Santosh, M.; Huang, G. Zircon U-Pb geochronology and geochemistry of granites in the Zhuguangshan complex, South China: Implications for uranium mineralization. Lithos 2018, 308, 19–33. [Google Scholar] [CrossRef]
- Qi, J.M.; Zhu, B.; Wu, J.Y.; Cao, H.J.; Liu, W.Q.; XU, Z. The evolution of ore forming fluid and its constraint onmineralization process in Mianhuakeng uranium deposit, northern Guangdong, China. Acta Petrlogica Sin. 2019, 35, 2711–2726. [Google Scholar]
- Timofeev, A.; Artaches, A.; Migdisov Anthony, E.; Williams-Jones Roback, R.; Andrew, T.; Nelson Xu, H.W. Uranium transport in acidic brines under reducing conditions. Nat. Commun. 2018, 61, 1–6. [Google Scholar]
- Zhang, J.L.; Zhou, L.M.; Huang, K.L. Uranium Mineral-Solution Equilibrium; Atomic Energy Press: Beijing, China, 2005; pp. 55–124. [Google Scholar]
- Giblin, A.M.; Appleyard, E.C. Uranium mobility in non-oxidizing brines: Field and experimental evidence. Appl. Geochem. 1987, 2, 285–295. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Liu, J.F.; Zhang, X.Z.; Zhang, B.J.; Yao, L.Y.; Xu, D.M. Activation of uranium in hydrothermal uranium deposits and its prospecting significance. Radioact. Geol. 1982, 6, 488–494. [Google Scholar]
- Liu, Z.Y. Experiment on concentration mechanism of uranium in hydrothermal solutions. Progress in Geosciences of China (1985–1988)-Paper to 28th IGC. V, II; Geological Publishing House: Beijing, China, 1989; pp. 29–34. [Google Scholar]
- Bonnetti, C.; Liu, X.; Cuney, M.; Mercadier, J.; Riegler, T.; Yu, C. Evolution of the uranium mineralisation in the Zoujiashan deposit, Xiangshan ore field: Implications for the genesis of volcanic-related hydrothermal U deposits in South China. Ore Geol. Rev. 2020, 122, 103514. [Google Scholar] [CrossRef]
- Zheng, H.; Chen, H.; Wu, C.; Jiang, H.; Gao, C.; Kang, Q.; Yang, C.; Wang, D.; Lai, C.K. Genesis of the supergiant Huayangchuan carbonatite-hosted uranium-polymetallic deposit in the Qinling Orogen, Central China. Gondwana Res. 2020, 86, 250–265. [Google Scholar] [CrossRef]
- Zhong, J.; Wang, S.Y.; Gu, D.Z.; Cai, Y.Q.; Fan, H.H.; Shi, C.H.; Hu, C.N. Geology and fluid geochemistry of the Na-metasomatism U deposits in the Longshoushan uranium metallogenic belt, NW China: Constraints on the ore-forming process. Ore Geol. Rev. 2020, 116, 103214. [Google Scholar] [CrossRef]
Sample No. | Ore Type | Ore Characteristic Description | Sample Location |
---|---|---|---|
M17-126 | Carbonate | Veined filling; center is pitchblendes, and periphery is red calcite. Figure 3A | −150 m middle ore body |
M17-1 | Fluorite | Veined filling; gangue minerals are mainly purple black fluorite, including microcrystalline quartz and calcite; and metallic minerals include uranium minerals, pyrite, etc. Reddening type uranium ore in the periphery of veins. Figure 4A. | KZK41-3, level −90.5 m |
M17-62 | KZK41-2, level −230.5 m | ||
M17-82 | Siliceous vein | Deep red; occurring as veined filling or silicified cataclastic rocks; gangue minerals are mainly microcrystalline quartz, including calcite and fluorite; and uranium minerals are symbiotic with pyrite. Reddening type uranium ore in the periphery of veins. Figure 5A. | KZK41-3, level −296.0 m |
M17-88 | KZK41-3, level −301.5 m | ||
M17-5 | Reddening | Deep red or deep brownish red; host rock is cataclastic granite; occurring in the periphery of vein filled ore; forming minerals, such as hydromica, carbonate, pyrite, etc., and alterations, such as silicification and fluoritization. Figure 6A. | KZK41-3, level −192.5 m |
M17-61 | KZK41-2, level −233.5 m | ||
M17-81 | KZK41-3, level −289.6 m |
Spot | Sample | U | O | Si | Ca | S | Fe | Al | As | Total | Minerals |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | M17-1 | 75.58 | 17.78 | 1.54 | 5.10 | 100 | Pitchblende | ||||
2 | M17-1 | 72.49 | 20.27 | 2.34 | 4.90 | 100 | Pitchblende | ||||
3 | M17-1 | 54.52 | 45.48 | 100 | Pyrite | ||||||
4 | M17-62 | 73.73 | 18.81 | 2.05 | 5.42 | 100 | Pitchblende | ||||
5 | M17-62 | 52.99 | 45.79 | 1.22 | 100 | Pyrite | |||||
6 | M17-82 | 65.03 | 24.87 | 7.97 | 1.53 | 0.61 | 100 | Pitchblende | |||
7 | M17-88 | 73.38 | 20.22 | 2.53 | 3.87 | 100 | Pitchblende | ||||
8 | M17-88 | 53.03 | 46.97 | 100 | Pyrite | ||||||
9 | M17-88 | 62.87 | 25.64 | 9.01 | 1.76 | 0.72 | 100 | Pitchblende | |||
10 | M17-81 | 65.22 | 23.43 | 3.72 | 2.05 | 2.13 | 2.78 | 0.68 | 100 | Pitchblende | |
11 | M17-81 | 54.04 | 45.96 | 100 | Pyrite | ||||||
12 | M17-81 | 62.96 | 27.89 | 7.46 | 0.97 | 0.72 | 100 | Pitchblende | |||
13 | M17-81 | 53.97 | 46.03 | 100 | Pyrite | ||||||
14 | M17-81 | 56.26 | 32.62 | 8.25 | 1.95 | 0.92 | 100 | Pitchblende | |||
15 | M17-61 | 44.08 | 32.35 | 11.88 | 1.75 | 2.65 | 5.32 | 1.97 | 100 | coffinite | |
16 | M17-61 | 0.87 | 52.59 | 46.54 | 100 | Pyrite | |||||
17 | M17-5 | 53.44 | 46.56 | 100 | Pyrite | ||||||
18 | M17-5 | 55.18 | 44.82 | 100 | Pyrite |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Wang, Z.; Xu, D. Relationship between Uranium Minerals and Pyrite and Its Genetic Significance in the Mianhuakeng Deposit, Northern Guangdong Province. Minerals 2021, 11, 73. https://doi.org/10.3390/min11010073
Li L, Wang Z, Xu D. Relationship between Uranium Minerals and Pyrite and Its Genetic Significance in the Mianhuakeng Deposit, Northern Guangdong Province. Minerals. 2021; 11(1):73. https://doi.org/10.3390/min11010073
Chicago/Turabian StyleLi, Lirong, Zhengqi Wang, and Deru Xu. 2021. "Relationship between Uranium Minerals and Pyrite and Its Genetic Significance in the Mianhuakeng Deposit, Northern Guangdong Province" Minerals 11, no. 1: 73. https://doi.org/10.3390/min11010073
APA StyleLi, L., Wang, Z., & Xu, D. (2021). Relationship between Uranium Minerals and Pyrite and Its Genetic Significance in the Mianhuakeng Deposit, Northern Guangdong Province. Minerals, 11(1), 73. https://doi.org/10.3390/min11010073