Shear-Hosted Uranium Deposits: A Review
Abstract
:1. Introduction and Economic Significance
Economic Significance
2. Descriptive Geological Model
2.1. Structural Control and Host Rocks
2.2. Ore Mineral Assemblages
2.3. Hydrothermal Alteration Controlled by Brittle Structures
3. Geodynamic Settings
4. Hydrothermal Fluids, Ligands and Metals
5. Fluid Pathways
6. Drivers of Fluid Flow
7. Depositional Processes
8. Discussion
8.1. What’s In a Name? Shear-Hosted vs. Albitite vs. Metasomatite
8.2. Mineral System Model
9. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Belevtsev, Y. Endogenic uranium deposits of Precambrian shields: Environment of deposition. In Albitized Uranium Deposits: Six Articles Translated from Russian Literature; Abou-Zied, S., Kerns, G., Eds.; U.S. Department of Energy: Washington, DC, USA, 1980; pp. 55–80. [Google Scholar]
- Cuney, M.; Emetz, A.; Mercadier, J.; Mykchaylov, V.; Shunko, V.; Yuslenko, A. Uranium deposits associated with Na-metasomatism from central Ukraine: A review of some of the major deposits and genetic constraints. Ore Geol. Rev. 2012, 44, 82–106. [Google Scholar] [CrossRef]
- Wilde, A. Towards a model for Albitite-type uranium. Minerals 2013, 3, 36–48. [Google Scholar] [CrossRef] [Green Version]
- International Atomic Energy Agency. Geological Classification of Uranium Deposits and Description of Selected Examples; International Atomic Energy Agency: Vienna, Austria, 2018; p. 430. [Google Scholar]
- Wyborn, L.; Heinrich, C.; Jacques, L. Australian proterozoic mineral systems: Essential ingredients and mappable criteria. In Proceedings of the AusIMM Annual Conference: Darwin, Victoria, Australia, 5–9 August 1994; pp. 109–115. [Google Scholar]
- Industrias Nucleares do Brasil. 2020. Available online: https://www.inb.gov.br/en-us/INB/Where-we-are/Santa-Quiteria (accessed on 1 May 2020).
- Komarova, M.M.; Komarov, V.B.; Aleshin, A.P.; Krylova, T.L. Physical-chemical formation conditions of uranium-titanium-metagel mineralization at the gold-uranium Elkon deposit. Proc. High. Educ. Establ. Geol. Explor. 2017, V, 52–57. [Google Scholar] [CrossRef]
- State Service for Geology and Subsoil of Ukraine. 2020. Available online: http://geoinf.kiev.ua (accessed on 1 May 2020).
- De Oliveira, A.; Fuzikawa, F.; Moura, L.; Raposo, C. Provincia Uranifera de Lagoa Real, Bahia. Princ. Depos. Minerais Bras. 1985, 1, 105–120. [Google Scholar]
- Angeiras, A. Geology and metallogeny of the Northeastern Brazil uranium-phosphorous province emphasising the Itataia deposit. Ore Geol. Rev. 1988, 3, 211–225. [Google Scholar] [CrossRef]
- Kalayaev, G.I. Mode of Albitite Distribution in Zones of the Ukrainian Shield; Abou-Zied, S., Kerns, G., Eds.; US Dept. of Energy: Washington, DC, USA, 1980; pp. 1–13.
- Wilde, A.; Otto, A.; Jory, J.; Macrae, C.; Pownceby, M.; Wilson, N.; Torpy, A. Geology and mineralogy of uranium deposits from Mount Isa, Australia: Implications for Albitite uranium deposit models. Minerals 2013, 3, 258–283. [Google Scholar] [CrossRef]
- Alexandre, P. Mineralogy and geochemistry of the sodium metasomatism-related uranium occurrence of Aricheng South, Guyana. Miner. Depos. 2010, 45, 351–367. [Google Scholar] [CrossRef]
- Lobato, L.M.; Fyfe, W. Metamorphism, metasomatism, and mineralisation at Lagoa Real, Bahia, Brazil. Econ. Geol. 1990, 85, 968–989. [Google Scholar] [CrossRef] [Green Version]
- Hannan, K.W.; Golding, S.D.; Herbert, H.K.; Krouse, H.R. Contrasting alteration assemblages in metabasites from Mount Isa, Queensland; implications for copper ore genesis. Econ. Geol. 1993, 88, 1135–1175. [Google Scholar] [CrossRef]
- Omel’Yanenko, B.I.; Mineyeva, I.G. Pre- and syn-ore vertical zonation in Precambrian uraniferous sodic metasomatites. Int. Geol. Rev. 1982, 24, 422–430. [Google Scholar] [CrossRef]
- Tugarinov, A.I. Complex metasomatic uranium deposits. In Albitized Uranium Deposits: Six Articles Translated from Russian Literature; Abou-Zied, S., Kerns, G., Eds.; U.S. Department of Energy: Washington, DC, USA, 1980; pp. 45–53. [Google Scholar]
- Hall, S.; Beard, J.; Neymark, L.; Paces, J.; Breit, G.; Zielinski, R.; Johnson, C.; Potter, C.; Aylor, J. Genetic Model. for the Coles Hill Uranium Deposit, Virginia, USA; United States Geological Survey: Reston, WV, USA, 2020; in press.
- Gregory, M.J.; Wilde, A.R.; Jones, P.J. Uranium deposits of the Mount Isa region and their relationship to deformation metamorphism and copper deposition. Econ. Geol. 2005, 100, 537–546. [Google Scholar] [CrossRef]
- Tappa, M.J.; Ayuso, R.A.; Bodnar, R.J.; Aylor, J.G.; Beard, J.; Henika, W.S.; Vázquez, J.A.; Wooden, J.L.; Poblete, J.A.; Bissig, T.; et al. Age of host rocks at the coles hill uranium deposit, Pittsylvania County, Virginia, based on zircon U-Pb geochronology. Econ. Geol. 2013, 109, 513–530. [Google Scholar] [CrossRef]
- Havelcová, M.; Machovič, V.; René, M.; Sýkorová, I.; Lapčák, L.; Špaldoňová, A. Geochemistry of shear zone-hosted uranium mineralisation at the Zadní Chodov uranium deposit (Bohemian Massif). Ore Geol. Rev. 2020, 120, 103428. [Google Scholar] [CrossRef]
- Polito, P.; Kyser, K.; Stanley, C. The proterozoic albitite-hosted Valhalla uranium deposit, Queensland, Australia: A description of the mineralisation in diamond drillhole V39. Min. Dep. 2007, 44, 11–40. [Google Scholar] [CrossRef]
- Shumlyanskyy, L.; Hawkesworth, C.J.; Billström, K.; Bogdanova, S.; Mytrokhyn, O.; Romer, R.; Dhuime, B.; Claesson, S.; Ernst, R.; Whitehouse, M.; et al. The origin of the Palaeoproterozoic AMCG complexes in the Ukrainian shield: New U-Pb ages and Hf isotopes in zircon. Precambrian Res. 2017, 292, 216–239. [Google Scholar] [CrossRef] [Green Version]
- Shumlyanskyy, L.; Mytrohin, O.; Bogdanova, S.; Bratchuk, O.; Yakubenko, P. U-Pb zircons isotopic age of the Korsun-Novomyrgorod Anorthosite-Rapakivi-granite pluton. Geol. Ukr. 2008, 1–2, 77–85. (In Ukrainian) [Google Scholar]
- Emetz, A.V.; Donsky, M.O.; Cuney, M.; Vyshnevsky, O.A.; Moroz, V.S.; Proskurko, L.I. Conditions of formation of uranium deposits in sodium metasomatites in the Ukrainian Shield. Geochem. Ore Form. 2008, 26, 95–101. [Google Scholar]
- Scherbak, N.P.; Artemenko, G.V.; Lesnaya, I.M.; Ponomarenko, A.N.; Shumlansy, L.V. Geochronology of Early Precambrian of the Ukrainian Shield Proterozoic; Naukova Dumka Press: Kiev, Ukraine, 2008. (In Russian) [Google Scholar]
- Lobato, L.M.; Pimentel, M.M.; Cruz, S.C.; Machado, N.; Noce, C.M.; Alkmim, F.F. U–Pb geochronology of the Lagoa Real uranium district, Brazil: Implications for the age of the uranium mineralization. J. South. Am. Earth Sci. 2015, 58, 129–140. [Google Scholar] [CrossRef] [Green Version]
- Cordani, U.G.; Iyer, S.S.; Taylor, P.N.; Kawashita, K.; Sato, K.; McReath, I. Pb-Pb, Rb-Sr, and K-Ar systematics of the Lagoa Real uranium province (south-central Bahia, Brazil) and the Espinhao cycle (ca. 1.5–1.0 Ga). J. South. Am. Earth Sci. 1992, 5, 33–46. [Google Scholar] [CrossRef]
- Turpin, L.; Maruéjol, P.; Cuney, M. U-Pb, Rb-Sr and Sm-Nd chronology of granitic basement, hydrothermal albitites and uranium mineralization (Lagoa Real, South-Bahia, Brazil). Contrib. Miner. Pet. 1988, 98, 139–147. [Google Scholar] [CrossRef]
- Chaves, A.O.; Tubrett, M.; Rios, F.; Oliveira, L.; Alves, J.; Fuzikawa, K.; Neves, J.; Matos, E.; Chaves, A.; Prates, S. U-Pb ages related to uranium mineralisation of Lagoa Real, Bahia, Brazil: Tectonic implications. Rev. Geol. 2007, 20, 141–156. [Google Scholar]
- Gregory, M.J.; Schaefer, B.F.; Keays, R.R.; Wilde, A. Rhenium–osmium systematics of the Mount Isa copper orebody and the Eastern Creek Volcanics, Queensland, Australia: Implications for ore genesis. Miner. Deposita 2008, 43, 553–573. [Google Scholar] [CrossRef]
- Connors, K.A.; Page, R.W. Relationships between magmatism, metamorphism and deformation in the western Mount Isa Inlier, Australia. Precambrian Res. 1995, 71, 131–153. [Google Scholar] [CrossRef]
- Bain, J.; Heinrich, C.A.; Henderson, G.A.M. Stratigraphy, structure and metasomatism of the haslingdon group, East Moondarra Area, Mt Isa: A deformed and mineralised proterozoic multistage rift-sag sequence. In Detailed Studies of the Mount Isa Inlier, AGSO; Blake, D.H., Stewart, A.J., Eds.; Australian Geological Survey Organisation: Canberra, Australia, 1992; pp. 125–136. [Google Scholar]
- Oliver, N.H.; Cleverley, J.S.; Mark, G.; Pollard, P.; Bin, F.; Marshall, L.; Rubenach, M.; Williams, P.; Baker, T. Modeling the role of sodic alteration in the genesis of iron oxide copper-gold deposits, eastern Mount Isa Block. Aust. Econ. Geol. 2004, 99, 1145–1176. [Google Scholar] [CrossRef]
- Duncan, R.J.; Stein, H.J.; Evans, K.A.; Hitzman, M.W.; Nelson, E.P.; Kirwin, D.J. A New geochronological framework for mineralization and alteration in the Selwyn-mount dore corridor, Eastern fold belt, Mount Isa Inlier, Australia: Genetic implications for iron oxide copper-gold deposits. Econ. Geol. 2011, 106, 169–192. [Google Scholar] [CrossRef]
- Rubenach, M.; Foster, D.R.W.; Evins, P.M.; Blake, K.; Fanning, C. Age constraints on the tectonothermal evolution of the Selwyn Zone, Eastern Fold Belt, Mount Isa Inlier. Precambrian Res. 2008, 163, 81–107. [Google Scholar] [CrossRef]
- Cave, B.; Lilly, R.; Glorie, S.; Gillespie, J. Geology, apatite geochronology, and geochemistry of the Ernest Henry Inter-Lens: Implications for a re-examined deposit model. Minerals 2018, 8, 405. [Google Scholar] [CrossRef] [Green Version]
- Hicks, C.L. Petrological and mineralogical investigation of the Michelin Uranium deposit, central mineral belt, Labrador. Master’s Thesis, Memorial University, St. John, NL, Canada, 2015; p. 466. [Google Scholar]
- Schärer, U.; Krogh, T.E.; Wardle, R.J.; Ryan, B.; Gandhi, S.S. U-Pb ages of early and middle Proterozoic volcanism and metamorphism in the Makkovik Orogen, Labrador. Can. J. Earth Sci. 1988, 25, 1098–1107. [Google Scholar] [CrossRef]
- Sparkes, G. Uranium mineralization within the Central Mineral Belt of Labrador: A summary of the diverse styles, settings and timing of mineralization. In Openfile Report LAB/1684; Newfoundland & Labrador Natural Resources & Mines: St. Johns, NL, Canada, 2017; p. 198. [Google Scholar]
- Hinchey, A.M. The Paleoproterozoic metavolcanic, metasedimentary and igneous rocks of the Aillik Domain, Makkovik Province, Labrador (NTS Map Area 13O/03): Current research, Newfoundland & Labrador Dept. Nat. Resour. Geol. Surv. Rep. 2007, 1, 25–44. [Google Scholar]
- Sparkes, G.W.; Dunning, G.R. Preliminary investigations into the style, setting and timing of uranium mineralization, Jacques Lake deposit, Central Mineral Belt, Labrador. Curr. Res. (2009) Nfld. Labrador Dep. Nat. Res. Geol. Surv. Rep. 2009, 1, 81–93. [Google Scholar]
- Wilton, D.H.C.; Longerich, H.P. Metallogenic significance of trace element and U-Pb isotope data for uraninite-rich mineral separates from the Labrador Central Mineral Belt. Can. J. Earth Sci. 1993, 30, 2352–2365. [Google Scholar] [CrossRef]
- Culshaw, N.G.; Reynolds, P.H.; Sinclair, G.; Barr, S. Amphibole and mica 40Ar/39Ar ages from the Kaipokok and Aillik domains, Makkovik Province, Labrador: Towards a characterization of back-arc processes in the Paleoproterozoic. Can. J. Earth Sci. 2002, 39, 749–764. [Google Scholar] [CrossRef]
- McGloin, M.; Tomkins, A.G. Release of uranium from highly radiogenic zircon through metamictization: The source of orogenic uranium ores: Reply. Geology 2016, 44, e404. [Google Scholar] [CrossRef] [Green Version]
- Zhong, J.; Wang, S.-Y.; Gu, D.-Z.; Cai, Y.-Q.; Fan, H.-H.; Shi, C.-H.; Hu, C.-N. Geology and fluid geochemistry of the Na-metasomatism U deposits in the Longshoushan uranium metallogenic belt, NW China: Constraints on the ore-forming process. Ore Geol. Rev. 2020, 116, 103214. [Google Scholar] [CrossRef]
- Cuney, M. Release of uranium from highly radiogenic zircon through metamictization: The source of orogenic uranium ores: Comment. Geology 2016, 44, e403. [Google Scholar] [CrossRef] [Green Version]
- Lobato, L.M.; Forman, J.M.; Fyfe, W.S.; Kerrich, R.; Barnett, R.L. Uranium enrichment in archean crustal basement associated with overthrusting. Nature 1983, 303, 235–237. [Google Scholar] [CrossRef]
- Fuzikawa, K.; Alves, J.V. Dilatacao de inclusoes fluidas em palgioclasos da provincia uranifera de Lagoa real-caetite, BA. Cong. Bras. Geol. 1984, 3, 4453–4462. [Google Scholar]
- De Souza, A. Inclusoes Fluidas nos Minerales Associados a Mineralizacao Uranifera da Jazida do Engehno (Anomalia 09), Provincia Uranifera de Lagoa Real, Bahia. Master’s Thesis, Centro de Desenvolvimento da Technologia Nuclear, Belo Horizonte, Brazil, 2009; p. 135. [Google Scholar]
- Fuzikawa, K.; Alves, J.V.; Maruejol, P.; Cuney, M.; Kostolanyi, B.; Poty, B. The Lago Real Uranium Province, Bahia State, Brazil. Some petrographic aspects and fluid inclusion studies. Geochim. Bras. 1988, 2, 109–118. [Google Scholar]
- Belevstev, N.Y.; Koval, V.B.; Lalko, V.I.; Bloh, A.M.; Zhukov, F.I.; Nikolayenko, V.I. Metamorphogenic Ore Formation in Precambrian: Physico-chemical Basis for Theory of Metamorphogenic Ore Formation; Naukova Dumka Press: Kiev, Ukraine, 1985. (In Russian) [Google Scholar]
- Fomin, Y.A.; Korostyskevsky, Y.Z. Dependence of carbon and oxygen isotopic contents in carbonates on their temperature (in Zones of Alkali calcareous metasomatism). Rep. Nat. Acad. Sci. USSR 1986, 28–30. (In Russian) [Google Scholar]
- Cinelu, S.; Cuney, M. Sodic metasomatism and U-Zr mineralization: A model based on the Kurupung batholith (Guyana). Geochim. Cosmochim. Acta 2006, 70, A103. [Google Scholar] [CrossRef]
- Cox, S.; Etheridge, M. Coupled grain-scale dilatancy and mass transfer during deformation at high fluid pressures: Examples from Mount Lyell, Tasmania. J. Struct. Geol. 1989, 11, 147–162. [Google Scholar] [CrossRef]
- Oliver, N.H.S. Linking of regional and local hydrothermal systems in the mid-crust by shearing and faulting. Tectonophysics 2001, 335, 147–161. [Google Scholar] [CrossRef]
- Connors, K.A.; Lister, G.S. Polyphase deformation in the western Mount Isa Inlier, Australia: Episodic or continuous deformation? J. Struct. Geol. 1995, 17, 305–328. [Google Scholar] [CrossRef]
- Oliver, N.H.S.; McLellan, J.; Hobbs, B.E.; Cleverley, J.; Ord, A.; Feltrin, L. 100th Anniversary special paper: Numerical models of extensional deformation, heat transfer, and fluid flow across basement-cover interfaces during basin-related mineralization. Econ. Geol. 2006, 101, 1–31. [Google Scholar] [CrossRef]
- Cui, T.; Yang, J.; Samson, I.M. Tectonic deformation and fluid flow: Implications for the formation of unconformity-related uranium deposits. Econ. Geol. 2012, 107, 147–163. [Google Scholar] [CrossRef]
- Rene, M.; Dolnicek, Z. Uraninite, coffinite and brannerite on shear-zone coupled uranium deposits of the Bohemian Massif (Central European Variscan Belt). Minerals 2017, 7, 50. [Google Scholar] [CrossRef] [Green Version]
- Morrissey, L.J.; Tomkins, A.G. Evaporite-bearing orogenic belts produce ligand-rich and diverse metamorphic fluids. Geochim. Cosmochim. Acta 2020, 275, 163–187. [Google Scholar] [CrossRef]
District | Country | Total U3O8 Tonnes | Deposits | Largest Deposit |
---|---|---|---|---|
Kropyvnytskyi | Ukraine | 327,670 | 22 | Novokostantynivka |
Lagoa Real | Brazil | 132,120 | 10 | Engenho |
Mount Isa | Australia | 74,590 | 17 | Valhalla |
Central Mineral Belt | Canada | 69,114 | 11 | Michelin |
Bohemia | Czech Republic | 40,140 | 5 | Rozna |
Beaverlodge | Canada | 38,557 | 7 | Gunnar |
Arjeplog-Arvidsjaur | Sweden | 16,710 | 11 | Duobblon |
Total | 566,781 | 81 |
Deposit Name | Alternative Name | Contained t U3O8 | Grade % U3O8 | Uranium District | Country |
---|---|---|---|---|---|
Novokostantynivka | Novokonstantinovskoye | 93,626 | 0.14 | Kropyvnytskyi | Ukraine |
Centralnye | 72,300 | 0.12 | Kropyvnytskyi | Ukraine | |
Coles Hill | Swanson Project North and South | 59,742 | 0.06 | USA | |
Severynka | Severinskoye | 55,100 | 0.11 | Kropyvnytskyi | Ukraine |
Michelin | 46,810 | 0.10 | Central Mineral Belt | Canada | |
Valhalla-Odin | 38,593 | 0.09 | Mount Isa | Australia | |
Michurin | Ingul’skii mine | 29,760 | 0.10 | Kropyvnytskyi | Ukraine |
Vatutin | Smolino mine | 28,100 | 0.15 | Kropyvnytskyi | Ukraine |
Eldorado | Fay, Ace, Verna, Bolger | 27,769 | 0.22 | Beaverlodge | Canada |
Engehno | Anomaly 9 | 27,418 | Lagoa Real | Brazil | |
Rozna | 27,120 | 0.28 | Bohemia | Czech Republic | |
Zhovta Richka | Zheltorechenskoye | 22,113 | 0.14 | Kropyvnytskyi | Ukraine |
Cachoeira | Anomaly 13 | 20,305 | 0.35 | Lagoa Real | Brazil |
Eko Remaja | Kalan | 15,000 | Indonesia | ||
Modesto | Anomaly 7 | 14,380 | Lagoa Real | Brazil | |
Pidgaytsi | Podgaytsevskoe | 13,800 | 0.10 | Kropyvnytskyi | Ukraine |
Kitongo | Goble | 13,000 | 0.10 | Cameroon | |
Pershotravneve | Pervomayskoye | 12,870 | 0.10 | Kropyvnytskyi | Ukraine |
Zadni-Chodov | 11,520 | Bohemia | Czech Republic | ||
A238 | 10,610 | 0.02 | Mauritania |
Deposit. | Mineral | Primary or Secondary | Th | Salinity (%NaCl eq) | % Vapour | Source |
---|---|---|---|---|---|---|
KROPYVNYTSKYI | ||||||
Novokonstantinivka | Albite | Primary | >350 | - | 10–30 | [2,25] |
Quartz | Primary | >295 | 16–19 | 30–40 | [2,25] | |
Calcite | Primary and Secondary | 131–198 | 14–21 | 4–7 | [2,25] | |
Andradite | Secondary | 122–189 | 6–12 | 3–35 | [2,25] | |
Quartz | Secondary | 110–210 | 5–11 | 4–8 | [2,25] | |
Pershotravneve | Quartz | - | 140–220 | - | - | [52] |
Aegirine | - | >210 | - | - | [52] | |
Carbonate | - | 195–255 | - | - | [52] | |
Severynka | Ankerite | Primary | 237–252 | - | - | [53] |
Calcite | Primary | 70–165 | - | - | [53] | |
Zhovta Richka | Albite/Quartz | Primary? | 250–380 | - | 30 | [52] |
LAGOA REAL | ||||||
Engenho | Pyroxene, garnet, epidote | - | nd | 14–18 | none | [50] |
Garnet | - | 200–230 | 12 | [9] | ||
Albite | - | nd | <14 | none | [50] | |
Albite | - | 200–320 | 3 | [9] | ||
Cachoeira | Garnet | - | - | 15 | [9] | |
Rabicha | Garnet | - | 200–240 | 12 | [9] | |
Albite | - | 223–383 | 3 | [9] | ||
OTHER | ||||||
Jiling and Xinshuijing | Calcite | Syn-uranium | 70–228 | 1–15 | - | [46] |
Calcite | Post-uranium | 97–232 | 0–6 | - | [46] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilde, A. Shear-Hosted Uranium Deposits: A Review. Minerals 2020, 10, 954. https://doi.org/10.3390/min10110954
Wilde A. Shear-Hosted Uranium Deposits: A Review. Minerals. 2020; 10(11):954. https://doi.org/10.3390/min10110954
Chicago/Turabian StyleWilde, Andy. 2020. "Shear-Hosted Uranium Deposits: A Review" Minerals 10, no. 11: 954. https://doi.org/10.3390/min10110954
APA StyleWilde, A. (2020). Shear-Hosted Uranium Deposits: A Review. Minerals, 10(11), 954. https://doi.org/10.3390/min10110954