Complex Characteristic of Zircon from Granitoids of the Verkhneurmiysky Massif (Amur Region)
Abstract
:1. Introduction
2. Geological Settings of the Verkhneurmiysky Massif and Characteristics of Granitoids
2.1. Geological Structure of the Verkhneurmiysky Massif
2.2. Mineral and Chemical Composition of Granitoids of the Verkhneurmiysky Massif
3. Materials and Methods
4. Results and Discussion
4.1. Zircon Mineral Associations
4.2. Zircon Morphology
- The first type is represented by the relatively short prisms, brown and honey-colored, semi-transparent idiomorphic crystals. Some grains have rims, which are cleaner, lighter, and have a lower refractive index. Such rims may indicate postmagmatic changes or at least a significant interruption in zircon growth and a change in physical and chemical growth conditions. Almost all grains have metamict cores and partial amorphization in the near-core regions (Figure 8a,b);
- The second type includes virtually colorless, long-prismatic grains without metamict cores; however, mineral and melt inclusions are present in considerable quantities (Figure 8c,d).
4.3. SE and BSE Zircon Images
4.4. Trace-Element Composition of Zircon
4.5. Raman Spectroscopy of Zircon
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maiboroda, A.F.; Emelianenko, A.S.; Vtorushina, V.F. Scheme of magmatism of the Badzhal volcanic zone. Rep. USSR Acad. Sci. 1977, 235, 155–158. [Google Scholar]
- Alekseev, V.I. Li-F Granites of the Far East. Ph.D. Thesis, Geological and Mineralogical Sciences, Mining University, Saint Petersburg, Russia, 2014. [Google Scholar]
- Vdovina, I.A. Evaluation of the Denudation Sheet of the Badzhal Ore Region by Morphostructural and Crystal Morphological Methods; Candidate of Geography, Institute of Geography: Moscow, Russia, 2004. [Google Scholar]
- Stepanov, V.A.; Melnikov, A.V. Deposits of gold-quartz formation of the Amur province. J. Min. Inst. 2017, 223, 20. [Google Scholar]
- Brusnitsin, A.I.; Panova, E.G.; Smolensky, V.V. The discovery of Li-F granites within the Verkhneurmiysky ore cluster. Izv. VUZov. Geol. Explor. 1993, 6, 150–151. [Google Scholar]
- Krivovichev, V.G.; Brusnitsin, A.I.; Zaitsev, A.N. Absolute age and geochemical characteristics of granites of the Verkhneurmiysky massif (Priamurye, Far East). Geochemistry 1996, 2, 106–111. [Google Scholar]
- Rodionov, S.M. Tin Metallogeny of the Russian East. Ph.D. Thesis, Geological and Mineralogical Sciences, Lomonosov Moscow State University, Moscow, Russia, 2003. [Google Scholar]
- Grigoriev, S.I. Features of the material composition of the Late Mesozoic granitoids of the Badzhal and Komsomolsk ore regions, their petrogenesis and connection with mineralization. Reg. Geol. Metallog. 1997, 6, 103–115. [Google Scholar]
- Gonevchuk, V.G. Tin-Bearing Magmatic Systems of the Far East: Magmatism and Ore Genesis; Dalnauka: Vladivostok, Russia, 2002; pp. 140–167. [Google Scholar]
- Alekseev, V.I. Rare metals in minerals of tin-bearing metasomatites of the Verkhneurmiysky ore cluster (Far East of Russia). J. Min. Inst. 2018, 232, 335–340. [Google Scholar]
- Dobretsov, G.L.; Marin, Y.B.; Beskin, S.M.; Leskov, S.A. Principles of Dissection and Mapping of Granitoid Intrusions and Identification of Petrological-Metallogenic Variants of Granitoid Series; VSEGEI Publishing House: Saint Petersburg, Russia, 2007; pp. 39–56. [Google Scholar]
- Marin, Y.B.; Beskin, S.M. Typification of rare-metal granites and forecast of rare-metal mineralization. In Proceedings of the International Petrographic Meeting “Petrography of the XXI Century”, Petrology and Ore Content of the CIS Regions and the Baltic Shield, Apatity, Russia, 28–30 June 2005; pp. 47–48. [Google Scholar]
- Beskin, S.M.; Marin, Y.B.; Matthias, V.V. So what exactly is “rare metal granite”? Zapiski RMS 1999, 6, 28–40. [Google Scholar]
- Alekseev, V.I.; Sukhanova, K.G.; Marin, Y.B. Niobium Minerals as Indicators of a Genetic Link between Tin-Bearing Zwitter and Lithium-Fluorine Granite of the Verkhneurmiysky Massif in the Amur River Region. Geol. Ore Depos. 2019, 8, 698–707. [Google Scholar] [CrossRef]
- Skublov, S.G.; Krasotkina, A.O.; Makeev, A.B.; Rizvanova, N.G.; Koiman, E. The first data on the age (U-Pb method, TIMS, LA-ICP-MS) of rutile from the polymineral ore occurrence Ichetyu, Middle Timan. J. Min. Inst. 2018, 232, 357–363. [Google Scholar]
- Frost, B.R.; Barnes, C.G.; Collins, W.J.; Arculus, R.J.; Ellis, D.J.; Frost, C.D. A geochemical classification of granitic rocks. J. Petrol. 2001, 42, 2033–2048. [Google Scholar] [CrossRef]
- Breiter, K.; Škoda, R. Vertical zonality of fractionated granite plutons reflected in zircon chemistry: The Cínovec A-type versus the Beauvoir S-type suite. Geol. Carpathica 2012, 63, 383–398. [Google Scholar] [CrossRef] [Green Version]
- Nikolaeva, N.; Aleksandrova, T.; Romashev, A. Effect of grinding on the fractional composition of polymineral laminated bituminous shales. Miner. Process. Extr. Metall. Rev. 2018, 39, 231–234. [Google Scholar] [CrossRef]
- Pashkevich, M.A.; Petrova, T.A. Recyclability of ore beneficiation wastes at the Lomonosov Deposit. J. Ecol. Eng. 2019, 20, 27–33. [Google Scholar] [CrossRef]
- Sirotkin, A.N.; Talovina, I.V.; Duryagina, A.M. Mineralogy and geochemistry of alkaline lamprophyres of north-western Spitsbergen (Svalbard). Chem. Erde 2020, 80, 125508. [Google Scholar] [CrossRef]
- Fedotova, A.A.; Bibikova, E.V.; Simakin, S.G. Zircon Geochemistry (Ionic Microprobe Data) as an Indicator of Mineral Genesis in Geochronological Research. Geochemistry 2008, 9, 980–997. [Google Scholar]
- Popov, O.A.; Talovina, I.V.; Lieberwirth, H.; Duryagina, A.M. Quantitative microstructural analysis and X-ray computed tomography of ores and rocks—Comparison of results. Minerals 2020, 2, 129. [Google Scholar] [CrossRef] [Green Version]
- McDonough, W.F.; Sun, S.S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Dawson, P.; Hargreave, M.M.; Wilkinson, G.R. The vibrational spectrum of zircon (ZrSiO4). J. Phys. C 1971, 4, 240–256. [Google Scholar] [CrossRef]
- Gusik, A.; Zhang, M.; Koeberl, C.; Salje, E.; Redfern, S.; Pruenda, M. Infrared and Raman spectra of ZrSiO4 experimentally shocked at high pressures. Mineral. Mag. 2004, 65, 801–811. [Google Scholar] [CrossRef]
- Mikheeva, P.I.; Alekseev, V.I. Allanite in Granites of the Verkhneurmiysky massif (Amur region). In Proceedings of the XLIX International Scientific Conference “Student and Scientific and Technical Progress”, Novosibirsk, Russia, 16–20 April 2011; p. 23. [Google Scholar]
- Leontev, V.I.; Skublov, S.G.; Shatova, N.V.; Berezin, A.V. Zircon U-Pb Geochronology Recorded Late Cretaceous Fluid Activation in the Central Aldan Gold Ore District, Aldan Shield, Russia: First Data. J. Earth Sci. 2020, 31, 481–491. [Google Scholar] [CrossRef]
- Kempe, U.; Wolf, D.; Sala, M. Members of the philipsbornite—Florencite and chernovite-xenotime solid solution series in metasomatic altered granites of the Zinnwald tin deposit (Erzgebirge, Germany). Beih. Eur. J. Miner. 1999, 11, 120. [Google Scholar]
- Pupin, J.P. Zircon and granite petrology. Contrib. Mineral. Petrol. 1980, 73, 207–220. [Google Scholar] [CrossRef]
- Brodskaya, R.L.; Marina, E.Y.; Shnay, G.K.; Saminin, I.A. Restoration of conditions and formations kinetics of rare metal granites according to crystallomorphology of accessory zircon. Zapiski RMS 1986, 115, 50–62. [Google Scholar]
- Nasdala, L.; Wenzel, M.; Vavra, G.; Irmer, G.; Wenzel, T.; Kober, B. Metamictisation of natural zircon: Accumulation versus thermal annealing of radioactivity-induced damage. Contrib. Mineral. Petrol. 2001, 141, 125–144. [Google Scholar] [CrossRef]
- Corfu, F.; Hanchar, J.M.; Hoskin, P.W.O.; Kinny, P. Atlas of zircon textures. Rev. Mineral. Geochem. 2003, 53, 469–500. [Google Scholar] [CrossRef]
- Geisler, T.; Schaltegger, U.; Tomaschek, F. Re-equilibration of zircon in aqueous fluids and melts. Elements 2007, 3, 43–50. [Google Scholar] [CrossRef]
- Hay, D.C.; Dempster, T.J. Zircon behaviour during low-temperature metamorphism. J. Petrol. 2009, 50, 571–589. [Google Scholar] [CrossRef]
- Vasilev, E.A.; Zedgenizov, D.A.; Klepikov, I.V. The enigma of cuboid diamonds: The causes of inverse distribution of optical centers within the growth zones. J. Geosci. 2020, 65, 59–70. [Google Scholar] [CrossRef]
- Förster, H.-J.; Ondrejka, M.; Uher, P. Mineralogical responses to subsolidus alteration of granitic rocks by oxidizing As-bearing fluids: REE arsenates and As-rich silicates from the Zinnwald granite, eastern Erzgebirge, Germany. Can. Mineral. 2011, 49, 913–930. [Google Scholar] [CrossRef]
- Ondrejka, M.; Uher, P.; Pršek, J.; Ozdín, D. Arsenian monazite-(Ce) and xenotime-(Y), REE arsenates and carbonates from the Tisovec-Rejkovo rhyolite, Western Carpathians, Slovakia: Composition and substitutions in the (REE,Y)XO4 system (X = P, As, Si, Nb, S). Lithos 2007, 95, 116–129. [Google Scholar] [CrossRef]
- Pidgeon, R.T. Recrystallization of oscillatory-zoned zircon: Some geochronological and petrological implications. Contrib. Mineral. Petrol. 1992, 110, 463–472. [Google Scholar] [CrossRef]
- Förster, H.-J. Composition and origin of intermediate solid solutions in the system thorite–xenotime–zircon–coffinite. Lithos 2006, 88, 35–55. [Google Scholar] [CrossRef]
- Johan, Z.; Johan, V. Accessory minerals of the Cínovec (Zinnwald) granite cupola, Czech Republic: Indicators of petrogenetic evolution. Mineral. Petrol. 2005, 83, 113–150. [Google Scholar] [CrossRef]
- Pettke, T.; Andreas, A.; Schaltegger, U.; Heinricha, C.A. Magmatic-to-hydrothermal crystallization in the W–Sn mineralized Mole Granite (NSW, Australia) Part II: Evolving zircon and thorite trace element chemistry. Chem. Geol. 2005, 220, 191–213. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Schaltegger, U. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Rev. Mineral. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- Marin, Y.B. Accessory minerals of the granitoid series of tin and molybdenum provinces. Zap. Ross. Mineral. O-va 2004, 6, 1–7. [Google Scholar]
- Tichomirowa, M.; Gerdes, A.; Lapp, M.; Leonhardt, D.; Whitehouse, M. The Chemical Evolution from Older (323–318 Ma) towards Younger Highly Evolved Tin Granites (315–314 Ma)—Sources and Metal Enrichment in Variscan Granites of the Western Erzgebirge (Central European Variscides, Germany). Minerals 2019, 9, 769. [Google Scholar] [CrossRef] [Green Version]
- Hoskin, P.W.O. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochim. Cosmochim. Acta 2005, 69, 637–648. [Google Scholar] [CrossRef]
- Kempe, U.; Gruner, T.; Renno, A.D.; Wolf, D.; René, M. Discussion on Wang. ‘Chemistry of Hf-rich zircons from the Laoshan I- and A-type granites, Eastern China. Mineral. Mag. 2004, 68, 669–675. [Google Scholar] [CrossRef]
- Poller, U.; Huth, J.; Hoppel, P.; Williams, I.S. REE, U, Th and Hf distribution in zircon from Western Carpathian Variscan granitoids: A combained cathodeluminescence and ion microprobe study. Am. J. Sci. 2001, 301, 585–876. [Google Scholar] [CrossRef]
- Kudryashov, N.M.; Skublov, S.G.; Galankina, O.L.; Udoratina, O.V.; Voloshin, A.V. Abnormally high-hafnium zircon from rare-metal pegmatites of the Vasin-Mylk deposit (the northeastern part of the Kola Peninsula). Chem. Erde 2019, 79, 1–8. [Google Scholar] [CrossRef]
- Watson, E.B.; Wark, D.A.; Thomas, J.B. Crystallization thermometers for zircon and rutile. Contrib. Mineral. Petrol. 2006, 151, 413–433. [Google Scholar] [CrossRef]
- Ferry, J.M.; Watson, E.B. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib. Mineral. Petrol. 2007, 154, 429–437. [Google Scholar] [CrossRef]
- Fu, B.; Page, F.Z.; Cavosie, A.J.; Fournelle, J. Ti-in-zircon thermometry: Applications and limitations. Contrib. Mineral. Petrol. 2008, 156, 197–215. [Google Scholar] [CrossRef]
- Watson, E.B.; Harrison, T.M. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth Planet Sci. Lett. 1983, 64, 295–304. [Google Scholar] [CrossRef]
- Hanchar, J.M.; Watson, E.B. Zircon Saturation Thermometry. Rev. Mineral. Geochem. 2003, 53, 89–112. [Google Scholar] [CrossRef]
- Boehnke, P.; Watson, E.B.; Trail, D.; Harrison, T.M.; Schmitt, A.K. Zircon Saturation Re-Revisited. Chem. Geol. 2013, 351, 324–334. [Google Scholar] [CrossRef]
- Cao, Y.; Li, S.R.; Zhang, H.F.; Liu, X.B.; Li, Z.Z.; Ao, C.; Yao, M.J. Significance of zircon trace element geochemistry, the Shihu gold deposit, western Hebei Province, North China. J. Rare Earths 2011, 29, 277–286. [Google Scholar] [CrossRef]
- Pelleter, E.; Cheillets, A.; Gasquet, D. A tool for ion microprobe U-Pb dating of gold mineralization (Tamlalt-Menhouhou gold deposit—Morocco). Chem. Geol. 2007, 245, 135–161. [Google Scholar] [CrossRef]
- Balashov, Y.A.; Skublov, S.G. Unique indicator capabilities of cerium in zircons of different genesis. In Proceedings of the Conference Dedicated to the 110th Anniversary of the Birth of Acad. D.S. Korzhinsky, IGEM RAS, Moscow, Russia, 7–9 October 2009; pp. 67–70. [Google Scholar]
- Kozhevnikov, V.N.; Ivashevskaya, S.N.; Kevlich, V.I. Geochemistry and Raman spectra of zircons from ore (PGE*Au) amphibolites of the Travyanaya guba massif, North Karelia. Proc. Karelian Res. Centre Russ. Acad. Sci. 2015, 7, 36–53. [Google Scholar] [CrossRef] [Green Version]
- Nasdala, L.; Irmer, G.; Wolf, D. The degree of metamictization in zircon: A Raman spectroscopic study. Eur. J. Mineral. 1995, 7, 471–487. [Google Scholar] [CrossRef] [Green Version]
Verkhneurmiysky Massif | Severny Massif | Erzgebirge | ||||||
---|---|---|---|---|---|---|---|---|
Bt * | Znw * | Bt | Znw | Bt | Znw | Pr | Znw | |
SiO2 | 75.71 | 76.95 | 76.38 | 76.63 | 75.46 | 77.59 | 75.53 | 72.22 |
TiO2 | 0.07 | 0.07 | 0.13 | 0.03 | 0.13 | 0.06 | 0.07 | 0.01 |
Al2O3 | 13.03 | 12.18 | 12.48 | 13.08 | 11.72 | 10.9 | 12.54 | 15.92 |
Fe2O3 | 1.59 | 1.93 | 0.27 | 0.15 | 1.68 | 1.49 | 0.6 | 0.2 |
FeO | – | – | 1.58 | 1.09 | – | – | 0.78 | 0.45 |
MnO | 0.019 | 0.027 | 0.01 | 0.02 | 0.02 | 0.04 | 0.05 | 0.09 |
MgO | 0.07 | 0.06 | 0.11 | 0.05 | 0.17 | 0.05 | 0.07 | 0.09 |
CaO | 0.52 | 0.51 | 0.53 | 0.23 | 0.68 | 0.27 | 0.64 | 0.38 |
Na2O | 3.53 | 3.3 | 3.53 | 4.24 | 3.84 | 3.45 | 3.49 | 4.83 |
K2O | 4.86 | 4.45 | 4.55 | 5.48 | 4.96 | 5.22 | 4.73 | 2.39 |
P2O5 | 0.03 | 0.02 | 0.02 | 0.02 | 0.07 | 0.03 | 0.011 | 0.015 |
LOI | 0.13 | 0.18 | 0.74 | 0.11 | 1.26 | 0.54 | 0.87 | 1.95 |
B | – | – | 38 | 35 | 9 | 10 | – | – |
F | – | – | 2900 | 3557 | 560 | 2000 | 5100 | 7900 |
Li | – | – | 160 | 363 | 95 | 364 | 98 | 384 |
Rb | 322 | 314 | 594 | 750 | 290 | 860 | 802 | 1440 |
Cs | 8.9 | 13.5 | 35 | 41 | 30 | 51 | – | – |
Sr | 21 | 14 | 25 | 6 | 152 | 7 | 13 | 72 |
Ba | 56 | 50 | 293 | 45 | 280 | 8 | – | – |
Zr | 93 | 94 | 102 | 39 | 86 | 157 | 124 | 44 |
Sn | 2 | 4 | 18 | 8 | 3 | 8 | – | – |
Pb | 33 | 32 | 39 | 48 | 30 | 41 | – | – |
Bi | <0.1 | 0.1 | 4 | 13 | 2 | 7 | – | – |
Nb | 15.8 | 14.3 | 46 | 54 | 13 | 20 | 52 | 109 |
Ta | 2.06 | 2.8 | 9 | 14 | 3 | 10 | 7 | 52 |
W | <0.5 | 1.5 | 26 | 53 | 7 | 30 | 12 | 13 |
Th | 32.1 | 32.6 | 19 | 12 | 8 | 29 | 58 | 15 |
Y | 30.8 | 75 | 100 | 64 | 33 | 29 | 103 | 7.5 |
Ce | 67.4 | 48.2 | 80 | 68 | 70 | 6 | 83 | 13.5 |
Sample No. | Granite Type | Number of Zircon Grains | Analysis |
---|---|---|---|
60136 | Biotite granite, Badzhal complex | 130 | OM; SEM (28 analysis); SEM * (39 zircon grains); XRF, ICP-MS |
82053 | 60 | OM | |
85200 | 75 | OM | |
85203 | 75 | OM | |
97029 | 90 | OM | |
60070 | 50 | OM; SEM (38 analysis); SEM * (19 grains); SIMS (30 analysis/16 grains); Raman (20 spectra/10 grains) | |
60186 | 35 | OM | |
60108 | 40 | OM | |
60063 | Zinnwaldite granite, Pravourmiysky complex | 35 | OM |
60205 | 200 | OM, SEM (100 analysis); XRF, ICP-MS | |
82073 | 65 | OM; SEM (67 analysis), SEM * (38 grains); | |
04001 | 70 | OM; SEM * (24 grains); | |
82240 | 90 | OM; SIMS (37 analysis/25 grains); Raman (16 spectra/8 grains) |
Zircon from Biotite Granites | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Element | Verkhneurmisky Massif Amur Region | Severny Massif Chukotka | ||||||||||
Core | Rim | |||||||||||
Quartile 50% | Quartile 75% | Quartile 25% | Quartile 50% | Quartile 75% | Quartile 25% | |||||||
Li | 1.02 | 1.91 | 0.59 | 1.82 | 2.06 | 1.59 | 0.1 | 0.1 | 0.05 | 0.57 | 0.1 | 2.38 |
P | 421 | 706 | 289 | 893 | 1077 | 778 | – | – | – | – | – | – |
Ca | 11.1 | 45.6 | 8.05 | 3.94 | 7.49 | 2.29 | 0.81 | 0.72 | 0.55 | 132 | 0.38 | 5.99 |
Ti | 36.6 | 79.5 | 24.6 | 7.10 | 22.5 | 3.34 | 10.7 | 9.04 | 21.3 | 5.63 | 17.5 | 7.46 |
Sr | 1.32 | 1.79 | 0.97 | 2.04 | 2.21 | 1.83 | 0.63 | 0.67 | 0.6 | 1.09 | 0.72 | 1.27 |
Y | 3084 | 5327 | 2001 | 6469 | 7449 | 5718 | 504 | 516 | 912 | 1946 | 637 | 2225 |
Nb | 37.9 | 65.4 | 25.2 | 110 | 135 | 94.1 | 26.7 | 24.7 | 22 | 43.5 | 20.6 | 62.7 |
Cs | 0.89 | 1.47 | 0.66 | 1.88 | 1.98 | 1.74 | – | – | – | – | – | – |
Ba | 4.05 | 4.83 | 1.69 | 1.56 | 2.47 | 1.41 | 1.47 | 1.21 | 1.06 | 1.78 | 1.39 | 1.55 |
Hf | 9074 | 11,403 | 7523 | 11,856 | 13,484 | 10,437 | 7191 | 7547 | 6471 | 8281 | 7136 | 8593 |
Th | 618 | 1974 | 275 | 1973 | 2378 | 1497 | 62.1 | 70.2 | 64.1 | 583 | 68.5 | 658 |
U | 1673 | 2428 | 859 | 8437 | 8783 | 6768 | 227 | 280 | 190 | 2534 | 230 | 3582 |
La | 1.59 | 3.46 | 0.27 | 0.50 | 0.86 | 0.13 | 0.03 | 0.05 | 0.09 | 2.59 | 0.1 | 1.15 |
Ce | 26.3 | 48.9 | 16.9 | 26.9 | 30.4 | 23.1 | 7.61 | 7.04 | 4.84 | 21.3 | 5.38 | 17.8 |
Pr | 1.31 | 3.21 | 0.43 | 0.47 | 0.80 | 0.14 | 0.06 | 0.03 | 0.1 | 1.38 | 0.08 | 0.6 |
Nd | 8.69 | 23.8 | 3.72 | 4.14 | 6.05 | 2.71 | 0.86 | 0.79 | 1.54 | 8.04 | 1.15 | 4.06 |
Sm | 12.5 | 27.2 | 6.95 | 11.5 | 14.1 | 8.85 | 1.66 | 1.67 | 3.51 | 6.58 | 2.03 | 5.17 |
Eu | 0.25 | 0.46 | 0.17 | 0.13 | 0.16 | 0.04 | 0.02 | 0.03 | 0.13 | 0.01 | 0.02 | 0.02 |
Gd | 59.6 | 81.7 | 39.7 | 76.7 | 95.5 | 50.9 | 8.54 | 8.39 | 19.4 | 27.2 | 10.9 | 27.3 |
Dy | 257 | 284 | 200 | 461 | 552 | 335 | 36.5 | 36.7 | 70.4 | 136 | 46.8 | 159 |
Er | 510 | 635 | 328 | 1118 | 1299 | 897 | 75.5 | 82.2 | 140 | 302 | 98.1 | 371 |
Yb | 945 | 1140 | 523 | 2274 | 2384 | 1884 | 138 | 150 | 234 | 570 | 173 | 769 |
Lu | 140 | 168 | 77.3 | 337 | 351 | 293 | 21 | 22.9 | 36.7 | 85.3 | 27.5 | 113 |
H2O | 943 | 1500 | 723 | 1270 | 1568 | 1110 | – | – | – | – | – | – |
F | 22.0 | 32.3 | 13.0 | 11.4 | 15.0 | 9.76 | – | – | – | – | – | – |
Th/U | 0.38 | 0.47 | 0.31 | 0.25 | 0.28 | 0.19 | 0.27 | 0.25 | 0.34 | 0.23 | 0.3 | 0.18 |
Eu/Eu* | 0.03 | 0.04 | 0.02 | 0.01 | 0.02 | 0.01 | 0.02 | 0.03 | 0.05 | 0.00 | 0.01 | 0.01 |
Ce/Ce* | 4.91 | 11.1 | 3.98 | 11.5 | 37.3 | 9.86 | 41.4 | 42.5 | 12.8 | 2.37 | 14.2 | 5.2 |
ΣLREE | 37.3 | 81.0 | 19.9 | 30.9 | 36.6 | 28.8 | 9 | 8 | 7 | 33 | 7 | 24 |
ΣHREE | 1886 | 2271 | 1243 | 4280 | 4573 | 3401 | 280 | 301 | 500 | 1120 | 357 | 1440 |
Zircon from Li-F Granites | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Element | Verkhneurmisky Massif | Severny Massif | Mole Massif | Zinnwald Deposit | ||||||||
Core | Rim | Erzgebirge | ||||||||||
Quartile 50% | Quartile 75% | Quartile 25% | Quartile 50% | Quartile 75% | Quartile 25% | Mean Value | ||||||
Li | 0.62 | 0.82 | 0.29 | 3.38 | 9.33 | 2.41 | 5.45 | 14.1 | 0.57 | 93 | – | – |
P | 466 | 473 | 288 | 1137 | 1499 | 944 | – | – | – | – | 3392 | – |
Ca | 16.7 | 33.3 | 6.07 | 126 | 311 | 72.4 | 0.19 | 7.07 | 173 | – | 7218 | 194.9 |
Ti | 6.80 | 11.4 | 4.66 | 36.3 | 97.1 | 9.59 | 25.7 | 11.2 | 7.57 | – | – | 17.79 |
Sr | 1.31 | 1.55 | 1.05 | 6.63 | 13.2 | 3.91 | 0.57 | 1.08 | 0.56 | – | – | 1.19 |
Y | 3105 | 3371 | 2168 | 6663 | 10,682 | 4240 | 659 | 572 | 1478 | 7430 | 2225 | 2864.6 |
Nb | 49.8 | 89.3 | 25.3 | 647 | 962 | 340 | 107 | 64.8 | 36.7 | 72.0 | – | 17.23 |
Cs | 1.98 | 11.59 | 0.50 | 9.35 | 52.59 | 4.45 | – | – | – | 14.0 | – | – |
Ba | 1.98 | 4.02 | 1.10 | 7.09 | 15.2 | 2.41 | 1.59 | 2.42 | 1.32 | – | – | 1.21 |
Hf | 7523 | 8167 | 6913 | 15,023 | 17,883 | 12,567 | 6271 | 7360 | 7260 | 15,400 | 36,400 | 8833.4 |
Th | 421 | 691 | 291 | 1844 | 3086 | 1305 | 30.5 | 50.1 | 369 | 2515 | 2293 | 297.5 |
U | 1052 | 1722 | 909 | 8395 | 13,374 | 6901 | 56 | 156 | 1503 | 8192 | 6972 | 1413.2 |
La | 0.99 | 1.92 | 0.34 | 8.28 | 12.0 | 2.70 | 0.11 | 0.41 | 3.12 | 22.7 | – | 1.87 |
Ce | 15.5 | 17.6 | 11.0 | 64.4 | 92.5 | 44.0 | 33.6 | 28.6 | 27.5 | 111 | – | 18.15 |
Pr | 0.77 | 1.74 | 0.28 | 4.85 | 7.72 | 1.80 | 0.21 | 0.64 | 1.84 | 13.0 | 85 | 1.15 |
Nd | 7.04 | 13.10 | 3.32 | 29.36 | 42.71 | 12.11 | 2.08 | 4.78 | 9.29 | 70.0 | – | 10.63 |
Sm | 15.53 | 19.51 | 8.07 | 30.05 | 50.15 | 20.29 | 3.73 | 4.48 | 7.21 | 48.9 | 345 | 14.27 |
Eu | 0.16 | 0.36 | 0.14 | 0.29 | 0.49 | 0.12 | 0.32 | 0.5 | 0.01 | 1.30 | – | 1.29 |
Gd | 54.7 | 69.9 | 45.3 | 102 | 145 | 65.2 | 15.0 | 11.9 | 25.8 | 143 | – | 63.44 |
Dy | 218 | 312 | 163 | 541 | 824 | 382 | 49.7 | 39.1 | 110 | 713 | 1505 | 255.1 |
Er | 456 | 566 | 320 | 1361 | 2011 | 1001 | 92.7 | 84.2 | 224 | 1227 | 2838 | 467.2 |
Yb | 835 | 947 | 622 | 3661 | 4678 | 2495 | 168 | 194 | 398 | 2742 | 10,315 | 745.1 |
Lu | 124 | 146 | 115 | 515 | 668 | 379 | 25.2 | 30.9 | 59.2 | 475 | – | 112.5 |
H2O | 536 | 853 | 418 | 2294 | 3974 | 1323 | – | – | – | – | – | – |
F | 66.4 | 87.3 | 20.5 | 186 | 345 | 108 | – | – | – | – | 8400 | – |
Th/U | 0.40 | 0.51 | 0.37 | 0.22 | 0.30 | 0.16 | 0.54 | 0.32 | 0.25 | 0.31 | 0.33 | 0.21 |
Eu/Eu* | 0.02 | 0.04 | 0.02 | 0.02 | 0.02 | 0.01 | 0.13 | 0.21 | 0.01 | 0.05 | – | 0.13 |
Ce/Ce* | 5.63 | 9.13 | 3.68 | 2.32 | 5.26 | 1.79 | 53.7 | 13.4 | 2.78 | 1.60 | – | 2.99 |
ΣLREE | 23.10 | 42.38 | 14.10 | 99.52 | 150.93 | 67.95 | 36 | 34 | 42 | 217 | 85 | 47.36 |
ΣHREE | 1707 | 2058 | 1250 | 6485 | 8740 | 4390 | 350 | 360 | 817 | 5907 | 14,658 | 1643.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machevariani, M.M.; Alekseenko, A.V.; Bech, J. Complex Characteristic of Zircon from Granitoids of the Verkhneurmiysky Massif (Amur Region). Minerals 2021, 11, 86. https://doi.org/10.3390/min11010086
Machevariani MM, Alekseenko AV, Bech J. Complex Characteristic of Zircon from Granitoids of the Verkhneurmiysky Massif (Amur Region). Minerals. 2021; 11(1):86. https://doi.org/10.3390/min11010086
Chicago/Turabian StyleMachevariani, Maria M., Alexey V. Alekseenko, and Jaume Bech. 2021. "Complex Characteristic of Zircon from Granitoids of the Verkhneurmiysky Massif (Amur Region)" Minerals 11, no. 1: 86. https://doi.org/10.3390/min11010086
APA StyleMachevariani, M. M., Alekseenko, A. V., & Bech, J. (2021). Complex Characteristic of Zircon from Granitoids of the Verkhneurmiysky Massif (Amur Region). Minerals, 11(1), 86. https://doi.org/10.3390/min11010086