3D Geological Model of the Touro Cu Deposit, A World-Class Mafic-Siliciclastic VMS Deposit in the NW of the Iberian Peninsula
Abstract
:1. Introduction
2. Mineral Exploration and Mining
3. Geological Setting
4. Materials and Methods
4.1. Mineralogy and Geochemistry
4.2. The Generation of the Touro 3D Geological Model
- Different drilling surveys performed from 1960 to that most recently carried out by Atalaya Mining were used to reconstruct the 3D geometry of the deposits. This involved access to over 1400 drill-core logs from the Touro area (Figure 2A), from which we selected 1090, containing valuable lithological or structural information and relogged these drill holes in an attempt to unify the criteria used by different geologists in logging operations.We grouped all the different kinds of rock into four lithologies: the paragneisses, the amphibolites, the massive sulfides, and the stringer zones. We considered rock as ore if its Cu content is over 0.2%. In fact, mineralization is much more broadly extended, but we set this limit based on the evaluation criteria used by Atalaya Mining Company [20]. All borehole data (coordinates, descriptions, depth, etc.) were stored in a database in which every hole had a unique identifier.
- Topography at a 1:5000 scale from a topographical survey provided by the company.
- Geological surface data from the authors.
- Historical geological information on the surrounding mining areas and selection of usable data.
5. Geology of the Touro Cu Deposit
6. Results and Structural Characteristics of the Touro 3D Geological Model
7. Discussion
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farias, P.; Gallastegui, G.; Lodeiro, F.G.; Marquínez, J.; Parra, L.M.M.; De Pablo Macía, J.G.; Fernández, L.R.R. Aportaciones al conocimiento de la litoestratigrafia y estructura de Galicia Central. Mem. Fac. Ciências Univ. Porto 1987, 1, 411–431. [Google Scholar]
- Julivert, M.; Fontboté, J.M.; Ribeiro, A.; Conde, L.E.N. Mapa Tectónico de la Península Ibérica y Baleares, E 1:1000000, Memoria Explicativa; Instituto Geológico y Minero de España: Madrid, Spain, 1972; p. 113. [Google Scholar]
- Pérez-Estaún, A.; Bastida, F.; Catalán, J.R.M.; Marco, J.C.G.; Marcos, A.; Pulgar, J.A. West Asturian–Leonese zone, stratigraphy. In Pre-Mesozoic Geology of Iberia; Dallmeyer, R.D., Martínez-García, E., Eds.; Springer: Berlin/Heidelberg, Germany, 1990; pp. 92–102. [Google Scholar]
- Castiñeiras, P. Origen y Evolución Tectonotermal de las Unidades de O Pino y Cariño (Complejos Alóctonos de Galicia). Ph.D. Thesis, Universidad Complutense de Madrid, Madrid, Spain, 2005; p. 289, Serie Terra Nova 28. [Google Scholar]
- Arenas, R.; Martínez, S.S.; Díez Fernández, R.; Gerdes, A.; Abati, J.; Fernández-Suárez, J.; Andonaegui, P.; Cuadra, P.G.; Carmona, A.L.; Albert, R.; et al. Allochthonous terranes involved in the Variscan suture of NW Iberia: A review of their origin and tectonothermal evolution. Earth Sci. Rev. 2016, 161, 140–178. [Google Scholar] [CrossRef]
- Barreiro, J.G.; Catalán, J.R.M.; Fernández, R.D.; Arenas, R.; García, F.D. Upper crust reworking during gravitational collapse: The Bembibre-Pico Sacro detachment system (NW Iberia). J. Geol. Soc. 2010, 167, 769–784. [Google Scholar] [CrossRef] [Green Version]
- Díez Fernández, R.; Catalán, J.R.M.; Martín, R.A.; Gómez, J.A. Tectonic evolution of a continental subduction-exhumation channel: Variscan structure of the basal allochthonous units in NW Spain. Tectonics 2011, 30, TC3009. [Google Scholar] [CrossRef] [Green Version]
- Julivert, M.; Martínez, F.J. The Structure and Evolution of the Hercynian Fold Belt in the Iberian Peninsula. In The Anatomy of Mountain Ranges, Princeton Legacy Library and Princeton Series in Geology and Paleontology, 788; Schaer, J.-P., Rodgers, J., Eds.; Princeton University Press: Princeton, NJ, USA, 2014; Chapter 6; pp. 65–105. [Google Scholar]
- Catalán, J.R.M.; Lobato, F.Á.; Pinto, V.; Barreiro, J.G.; Ayarza, P.; Villalaín, J.J.; Casas, A. Gravity and magnetic anomalies in the allochthonous Órdenes Complex (Variscan belt, northwest Spain): Assessing its internal structure and thickness Tectonics. J. Geol. 2012, 31, TC5007. [Google Scholar]
- Badham, P.; Williams, J. Genetic and Exploration Models for Sulfide Ores in Metaophiolites, Northwest Spain. Econ. Geol. 1981, 76, 2118–2127. [Google Scholar] [CrossRef]
- Sides, E.J. An alternative approach to the modelling of deformed stratiform and stratabound deposits. In Proceedings of the Twentieth lnternational Symposium on the Application of computers and Mathematics in the Mineral Industries, Johannesburg, South Africa, 19–23 October 1987; Volume 3, pp. 187–198. [Google Scholar]
- Serranti, S.; Ferrini, V.; Masi, U.; Nicoletti, M.; Conde, L. Geochemical features of the massive sulfide (Cu) metamorphosed deposit of Arinteiro (Galicia, Spain) and genetic implications. Period. Mineral. 2002, 71, 27–48. [Google Scholar]
- Williams, P.J. The genesis and metamorphism of the Arinteiro-Bama Cu deposits, Santiago de Compostela, northwestern Spain. Econ. Geol. 1983, 78, 1689–1700. [Google Scholar] [CrossRef]
- Galley, A.G.; Hannington, M.D.; Jonasson, I.R. Volcanogenic massive sulphide deposits. Geol. Assoc. Can. Miner. Depos. Div. Spec. Publ. 2007, 5, 141–161. [Google Scholar]
- Martin-Izard, A.; Arias, D.; Arias, M.; Gumiel, P.; Sanderson, D.J.; Castañón, C.; Lavandeira, A.; Sanchez, J. A new 3D geological model and interpretation of structural evolution of the world-class Rio Tinto VMS deposit, Iberian Pyrite Belt (Spain). Ore Geol. Rev. 2015, 71, 457–476. [Google Scholar] [CrossRef] [Green Version]
- Kampmann, T.C.; Stephens, M.B.; Weihed, P. 3D modelling and sheath folding at the Falun pyritic Zn-Pb-Cu-(Au-Ag) sulphide deposit and implications for exploration in a 1.9 Ga ore district, Fennoscandian Shield, Sweden. Miner. Depos. 2016, 51, 665–680. [Google Scholar] [CrossRef] [Green Version]
- Schetselaar, E.; Pehrsson, S.; Devine, C.; Lafrance, B.; White, D.; Malinowski, M. 3-D geologic modeling in the Flin Flon mining district, Trans-Hudson orogen, Canada: Evidence for polyphase imbrication of the Flin Flon-777-Callinan volcanogenic massive sulfide ore system. Econ. Geol. 2016, 111, 877–901. [Google Scholar] [CrossRef]
- López-Burgos, M.A. La mineria española en la obra impressions of Spain de Albert, F. Calvert. Cuad. Geográficos 2005, 37, 227–270. [Google Scholar]
- Calvert, A. Impressions of Spain; London, P., Ed.; University of California Libraries: Oakland, CA, USA, 1903; p. 363. [Google Scholar]
- Technical Report On the Mineral Resources and Reserves of the Touro Copper Project. Available online: https://atalayamining.com/wp-content/uploads/2020/01/NI-43-101-Technical-Report-for-Proyecto-Touro.pdf (accessed on 7 January 2021).
- Díez-Fernández, R.; Arenas, R.; Francisco-Pereira, M.; Sánchez-Martínez, S.; Albert, R.; Martín Parra, L.M.; Rubio Pascual, F.J.; Matas, J. Tectonic evolution of Variscan Iberia: Gondwana–Laurussia collision revisited. Earth Sci. Rev. 2016, 162, 269–292. [Google Scholar] [CrossRef] [Green Version]
- Matte, O. The Variscan collage and orogeny (480 ± 290 Ma) and the tectonic definition of the Armorica microplate: A review. Terra Nova 2001, 13, 122–128. [Google Scholar] [CrossRef]
- Alonso, J.L.; Marcos, A.; Suárez, A. Paleogeographic inversion resulting from large out of sequence breaching thrusts: The León Fault (Cantabrian Zone, NW Iberia). A new picture of the external Variscan Thrust Belt in the Ibero-Armorican Arc. Geol. Acta 2009, 7, 451–473. [Google Scholar]
- Gutiérrez-Alonso, G.; Collins, A.S.; Fernández-Suárez, J.; Pastor-Galán, D.; González-Clavijo, E.; Jourdan, F.; Weil, A.B.; Johnston, S.T. Dating of lithospheric buckling: 40Ar/39Ar ages of syn-orocline strike–slip shear zones in northwestern Iberia. Tectonophysics 2015, 643, 44–54. [Google Scholar] [CrossRef]
- Pastor-Galán, D.; Gutiérrez-Alonso, G.; Murphy, J.B.; Fernández-Suárez, J.; Hofmann, M.; Linnemann, U. Provenance analysis of the Paleozoic sequences of the northern Gondwana margin in NW Iberia: Passive margin to Variscan collision and orocline development. Gondwana Res. 2013, 23, 1089–1103. [Google Scholar] [CrossRef] [Green Version]
- Catalán, R.M.; Arenas, R.; García, F.D.; Abati, J. Variscan accretionary complex of northwest Iberia: Terrane correlation succession of tectonothermal events. Geology 1997, 25, 1103–1106. [Google Scholar] [CrossRef]
- Noblet, C.; Lefort, J.P. Sedimentological evidence for a limited separation between Armorica and Gondwana during the Early Ordovician. Geology 1990, 18, 303–306. [Google Scholar] [CrossRef]
- Ziegler, P.A. (Ed.) Hercynian Suturing of Pangea. In AAPG Memoir Vol. 43: Evolution of the Arctic-North Atlantic and the Western Tethys; The American Association of Petroleum Geologists: Tulsa, OK, USA, 1988; pp. 25–32. [Google Scholar]
- Díez Fernández, R.; Catalán, J.R.M.; Arenas, R.; Abati, J.; Gerdes, A.; Fernández-Suárez, J. U–Pb detrital zircon analysis of the lower allochthon of NW Iberia: Age constraints, provenance and links with the Variscan mobile belt and Gondwanan cratons. J. Geol. Soc. 2012, 169, 655–665. [Google Scholar] [CrossRef] [Green Version]
- Catalán, J.R.M.; Arenas, R.; Abati, J.; Martínez, S.S.; García, F.D.; Suárez, J.F.; Cuadra, P.G.; Castiñeiras, P.; Barreiro, J.G.; Montes, A.D.; et al. A rootless suture and the loss of the roots of a mountain chain: The Variscan belt of NW Iberia. Comptes Rendus Geosci. 2009, 341, 114–126. [Google Scholar]
- Scotese, C.R.; Boucot, A.J.; Mckerrow, W.S. Gondwanan palæogeography and palæoclimatology. J. Afr. Earth Sci. 1999, 28, 99–114. [Google Scholar] [CrossRef]
- Arenas, R.; Sánchez Martínez, S.; Gerdes, A.; Albert, R.; Díez Fernández, R.; Andonaegui, P. Re-interpreting the Devonian ophiolites involved in the Variscan suture: U-Pb and Lu-Hf zircon data of the Moeche Ophiolite (Cabo Ortegal Complex, NW Iberia). Int. J. Earth Sci. 2014, 103, 1385–1402. [Google Scholar] [CrossRef]
- Van Zuuren, A. Structural petrology of an area near Santiago de Compostela (NW Spain). Leidse Geol. Meded. 1970, 45, 1–71. [Google Scholar]
- Catalán, J.M.; García, F.D.; Arenas, R.; Abati, J.; Castiñeiras, P.; Cuadra, P.G.; Barreiro, J.G.; Pascual, F.J.R. Thrust and detachment systems in the Ordenes Complex (northwestern Spain) implications for the Variscan-Appalachian geodynamics. In Variscan-Appalachian Dynamics: The Building of the Late Paleozoic Besement; Catalán, J.R.M., Hatcher, R.D., Jr., Arenas, R., Garcia, F.D., Eds.; Geological Society of America: Boulder, CO, USA, 2002; Volume 364, pp. 163–182. [Google Scholar]
- Castroviejo, R.; Armstrong, E.; Lago, A.; Simón, J.M.M.; Argüelles, A. Geología de las mineralizaciones de sulfuros masivos en los cloritoesquistos de Moeche (complejo de Cabo Ortegal, A Coruña). Bol. Geol. Min. 2004, 115, 3–34. [Google Scholar]
- Abati, J. Petrología Metamórfica y Geocronología de la Unidad Culminante del Complejo de Órdenes en la Región de Carballo (Galicia, NW del Macizo Ibérico); Sada, A., Ed.; Ediciós do Castro: La Coruña, Spain, 2002; p. 269. [Google Scholar]
- Barreiro, J.G.; Catalán, J.R.M.; Arenas, R.; Castiñeiras, P.; Abati, J.; García, F.D.; Wijbrans, J.R. The Evolution of the Rheic Ocean: From Avalonian-Cadomian Active Margin to Alleghenian-Variscan Collision; Geological Society of America: Boulder, CO, USA, 2007; Volume 423. [Google Scholar]
- Arenas, R.; Farias, P.; Gallastegui, G.; Gil Ibarguchi, J.I.; Lodeiro, F.G.; Klein, E.; Marquínez, J.; Parra, L.M.M.; Catalán, J.R.M.; Ortega, E.; et al. Características geológicas y significado de los dominios que componen la Zona de Galicia-Trás-os-Montes. In Simposio Sobre Cinturones Orogénicos. In Proceedings of the II Congreso Geológico de España, Granada, Spain, 14–18 July 1988; pp. 75–84. [Google Scholar]
- Martínez Catalán, J.R.; Arenas, R.; Abatí, J.; Martínez, S.; García, F.; Fernández-Suárez, J.; Cuadra, P.; Castiñeiras, P.; Gómez Barreiro, J.; Díez-Montes, A.; et al. Geología del Complejo de Cabo Ortegal y de las Unidades Relacionadas del Basamento de Galicia; Concello de Cariño: Cariño, Spain, 2010; p. 133. [Google Scholar]
- Gil Ibarguchi, J.I.; Ábalos, B.; Puelles, P.A. Deformation, high-pressure metamorphism and exhumation of ultramafic rocks in a deep subduction/collision setting (Cabo Ortegal, NW Spain). J. Metamorph. Geol. 1999, 17, 747–764. [Google Scholar] [CrossRef]
- Marcos, A.; Marquínez, J.; Perez-Estaún, A.; Pulgar, J.; Bastida, F. Nuevas aportaciones al conocimiento de la evolución tectonometamórfica del complejo de Cabo Ortegal (NW de España). Cuadernos Laboratorio Xeolóxico Laxe 1984, 7, 125–137. [Google Scholar]
- Gómez Barreiro, J.; Catalán, J.R.; Arenas, R.; Castiñeiras, P.; Abati, J.; García, F.; Wijbrans, J.R.; Barreiro, G.; Catalán, M.; Castiñeiras, R.; et al. Tectonic Evolution of the Upper Allochthon of the Órdenes Complex (Northwestern Iberian Massif): Structural Constraints to a Polyorogenic Peri-Gondwanan Terrane. In The Evolution of the Rheic Ocean: From Avalonian-Cadomian Active Margin to Alleghenian-Variscan Collision; Geological Society of America: Boulder, CO, USA, 2007. [Google Scholar]
- Arenas, R.; Catalán, J.R.M. Prograde Development of Corona Textures in Metagabbros of the Sobrado Unit (Ordenes Complex, Northwestern Iberian Massif). Spec. Pap. Geol. Soc. Am. 2002, 364, 73–88. [Google Scholar]
- Gil Ibarguchi, J.I.; Arenas, R. Metamorphic evolution of the allochthonous complexes from the northwest of Iberian Peninsula. In Pre-Mesozoic Geology of Iberia; Dallmeyer, R.D., Martínez-García, E., Eds.; Springer: Berlin/Heidelberg, Germany, 1990; pp. 237–246. [Google Scholar]
- Aranguren, M.S.M.; Gil Ibarguchi, J.I. Petrología de la Unidad Eclogítica del Complejo de Cabo Ortegal (NW de España). Ph.D. Thesis, Universidad Del Pais Vasco, Biscay, Spain, 2000; p. 425, Terra Nova 16. [Google Scholar]
- Vogel, D.E. Petrology of an eclogite- and pyrigarnite-bearing polymetamorphic rock complex at Cabo Ortegal, NW Spain. Leidse Geol. Meded. 1967, 40, 121–213. [Google Scholar]
- Catalán, J.M.; Martín, R.A. Deformación extensional de las unidades alóctonas superiores de la parte oriental del Complejo de Ordenes (Galicia). Geogaceta 1992, 11, 108–111. [Google Scholar]
- Rodríguez-Terente, L.M.; Martin-Izard, A.; Arias, D.; Fuertes-Fuente, M.; Cepedal, A. The Salave Mine, a Variscan intrusion-related gold deposit (IRGD) in the NW of Spain: Geological context, hydrothermal alterations and ore features. J. Geochem. Explor. 2018, 188, 364–389. [Google Scholar] [CrossRef]
- Houlding, S.W. 3D Geoscience Modeling-Computer Techniques for Geological Characterization; Springer: Berlin/Heidelberg, Germany, 1994; pp. 1–6. [Google Scholar]
- Lemon, A.M.; Jones, N.L. Building solid models from boreholes and user- defined cross-sections. Comput. Geosci. 2003, 29, 547–555. [Google Scholar] [CrossRef]
- Calcagno, P.; Courrioux, G.; Guillen, A.; Chiles, J.P. Geological modelling from field data and geological knowledge. Part I. modelling method coupling 3D potential field interpolation and geological rules. Phys. Earth Planet. Inter. 2008, 171, 147–157. [Google Scholar] [CrossRef]
- Kaufmann, O.; Martin, T. 3D geological modelling from boreholes, cross-sections and geological maps, application over former natural gas storages in coal mines. Comput. Geosci. 2008, 34, 278–290, reprint in Comput. Geosci. 2009, 35, 70–82. [Google Scholar] [CrossRef]
- Maxelon, M.; Renard, P.; Courrioux, G.; Brandli, M.; Mancktelow, N. A workflow to facilitate three-dimensional geometrical modelling of complex poly-deformed geological units. Comput. Geosci. 2009, 35, 644–658. [Google Scholar] [CrossRef] [Green Version]
- Schetselaar, E.; Ames, D.; Grunsky, E. Integrated 3D Geological Modeling to Gain Insight in the Effects of Hydrothermal Alteration on Post-Ore Deformation Style and Strain Localization in the Flin Flon Volcanogenic Massive Sulfide Ore System. Minerals 2018, 8, 3. [Google Scholar] [CrossRef] [Green Version]
- Lajaunie, C.; Courrioux, G.; Manuel, L. Foliation fields and 3D cartography in geology: Principles of a method based on potential interpolation. Math. Geol. 1997, 29, 571–584. [Google Scholar] [CrossRef]
- Gumiel, P.; Arias, M.; Martín-Izard, A. 3D geological modelling of a polyphase deformed pre-Variscan IOCG mineralization located at the southeastern border of the Ossa Morena Zone, Iberian Massif (Spain). Geol. J. 2010, 45, 623–633. [Google Scholar] [CrossRef]
- McKinstry, H.E. Geología De Minas; Omega: Barcelona, Spain, 1970; p. 671. [Google Scholar]
- Marjoribanks, R. Geological Methods in Mineral Exploration and Mining; Springer: Berlin, Germany, 2010; p. 233. [Google Scholar]
- Heiman, A.; Spry, P.G.; Teale, G.S.; Conor, C.H.; Leyh, W.R. Geochemistry of Garnet-Rich Rocks in the Southern Curnamona Province, Australia, and Their Genetic Relationship to Broken Hill-Type Pb-Zn-Ag Mineralization. Econ. Geol. 2009, 104, 687–712. [Google Scholar] [CrossRef]
- Calcagno, P.; Martelet, G.; Gumiaux, C. Apport de la modélisation géométrique 3D a’l’interprétation géologique du complexe de Champtoceaux (massif armoricain). In Proceedings of the 19e’me RST Congress, Nantes, France, 9–12 April 2002; p. 79. [Google Scholar]
- Boissonnat, J.D. Shape reconstruction from planar cross-sections. Comput. Vis. Graph. Image Process. 1988, 44, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Bertrand, P.; Dufour, J.F.; Francon, J.; Lienhardt, P. Modélisation Volumique à base Topologique; Actes MICAD: Hermès, Paris, 1992; Volume 1, pp. 59–74. [Google Scholar]
- Böstrom, K. The origin and fate of ferro-mangano in active ridge sediments. Stockh. Contrib. Geol. 1973, 27, 147–243. [Google Scholar]
- Spry, P.G.; Peter, J.M.; Slack, J.F. Meta-Exhalites as Exploation Guides to Ore: Reviews in Economic Geology; Society of Economic Geologists: Lyttelton, CO, USA, 1998; Volume 11, pp. 163–201. [Google Scholar]
- Peter, J.M.; Goodfellow, W.D.; Doherty, W. Hydrothermal Sedimentary Rocks of the Heath Steele Belt, Bathurst Mining Camp, New Brunswick: Part 2. Bulk and Rare Earth Element Geochemistry and Implications for Origin. Econ. Geol. Monogr. 2003, 11, 391–415. [Google Scholar]
- Santos Zalduegui, J.F.; Scharer, U.; Gil Ibarguchi, J.I.; Girardeau, J. Origin and evolution of the Paleozoic Cabo Ortegal ultramafic-mafic complex (NW Spain): U-Pb, Rb-Sr and Pb-Pb isotope data. Chem. Geol. 1996, 129, 281–304. [Google Scholar] [CrossRef]
- Ordóñez Casado, B.; Gebauer, D.; Schafer, H.J.; Gil Ibarguchi, J.I.; Peucat, J.J. A single Devonian subduction event for the HP/HT metamorphism of the Cabo Ortegal complex within the Iberian Massif. Tectonophysics 2001, 332, 359–385. [Google Scholar]
- Fernández-Suárez, J.; Corfu, F.; Arenas, R.; Marcos, A.; Martínez Catalán, J.R.; Díaz García, F.; Abati, J.; Fernández, F.J. U-Pb evidence for a polyorogenic evolution of the HPHT units of the NW Iberian Massif. Contrib. Miner. Petrol. 2002, 143, 236–253. [Google Scholar]
- Fernández-Suárez, J.; Arenas, R.; Abati, J.; Martínez Catalán, J.R.; Whitehouse, M.J.; Jeffries, T.E. U-Pb chronometry of polymetamorphic high-pressure granulites: An example from the allochthonous terranes of the NW Iberian Variscan belt. Geol. Soc. Am. Mem. 2007, 200, 469–488. [Google Scholar]
- Fernandez, F.J.; Marcos, A. Mylonitic foliation developed by heterogeneous pure shear under high-grade conditions in quartz feldspathic rocks (Chimparra gneiss formation, Cabo Ortegal complex, NW Spain). In Basement Tectonics 11 Europe and Other Regions; Springer: Berlin, Germany, 1996; pp. 17–34. [Google Scholar]
- Pirajno, F.; Chen, Y.; Li, N.; Li, C.; Zhou., L.D. Besshi-type mineral systems in the Palaeoproterozoic Bryah Rift-Basin, Capricorn Orogen, Western Australia: Implications for tectonic setting and geodynamic evolution. Geosci. Front. 2016, 7, 345–357. [Google Scholar] [CrossRef] [Green Version]
- Dallmeyer, R.D.; Martínez Catalán, J.R.; Arenas, R.; Gil Ibarguchi, J.I.; Gutiérrez-Alonso, G.; Farias, P.; Bastida, F.; Aller, J. Diachronous Variscan tectonothermal activity in the NW Iberian Massif: Evidence from 40Ar/39Ar dating of regional fabrics. Tectonophysics 1997, 277, 307–337. [Google Scholar] [CrossRef] [Green Version]
- Gómez Barreiro, J.; Wijbrans, J.R.; Castineiras, P.; Martínez Catalán, J.R.; Arenas, R.; Díaz García, F.; Abati, J. 40Ar/39Ar laser probe dating of mylonitic fabrics in a polyorogenic terrane of NW Iberia. J. Geol. Soc. 2006, 163, 61–73. [Google Scholar]
- Martin-Izard, A.; Arias, D.; Arias, M.; Gumiel, P.; Sanderson, D.J.; Castañon, C.; Sanchez, J. Ore deposit types and tectonic evolution of the Iberian Pyrite Belt: From transtensional basins and magmatism to transpression and inversion tectonics. Ore Geol. Rev. 2016, 79, 254–267. [Google Scholar] [CrossRef]
- Munhá, J. Metamorphic evolution of the South Portuguese/Pulo do Lobo Zone. In Pre-Mesozoic Geology of Iberia; Dallmeyer, R.D., Martínez García, E., Eds.; Springer: Berlin/Heidelberg, Germany, 1990; pp. 363–368. [Google Scholar]
Periods of Formation | Tectonic Setting | Processes Involved | Ore and Rocks | Structural Elements |
---|---|---|---|---|
First step: Early Ordovician (±480 Ma) | Extensional back-arc basin setting (transtension) | Deposition of siliciclastic sediments. mafic rocks emplacement as sills | Formation of VMS deposits. Host rock is hydrothermally affected | Normal extensional faults |
Second step: Early Devonian (410–390 Ma) | Burial of siliciclastic sediments, mafic rocks and VMS | Metamorphism of siliciclastic sediments, mafic rocks and VMS under amphibolite facies | Transformation of rocks into amphibolites and paragneisses | Foliation in all the rocks. development of S-type mylonite folds |
Third step: Late Devonian (375–371 Ma) | Exhumation of the sequence, and emplacement by thrust on the top of the Órdenes complex | Broad retrograde metamorphism | Formation of retrograde amphibolites and chlorite-rich schists | Formation of a roughly N–S-trending antiform (arinteiro) during the last Variscan deformation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arias, M.; Nuñez, P.; Arias, D.; Gumiel, P.; Castañón, C.; Fuertes-Blanco, J.; Martin-Izard, A. 3D Geological Model of the Touro Cu Deposit, A World-Class Mafic-Siliciclastic VMS Deposit in the NW of the Iberian Peninsula. Minerals 2021, 11, 85. https://doi.org/10.3390/min11010085
Arias M, Nuñez P, Arias D, Gumiel P, Castañón C, Fuertes-Blanco J, Martin-Izard A. 3D Geological Model of the Touro Cu Deposit, A World-Class Mafic-Siliciclastic VMS Deposit in the NW of the Iberian Peninsula. Minerals. 2021; 11(1):85. https://doi.org/10.3390/min11010085
Chicago/Turabian StyleArias, Mónica, Pablo Nuñez, Daniel Arias, Pablo Gumiel, Cesar Castañón, Jorge Fuertes-Blanco, and Agustin Martin-Izard. 2021. "3D Geological Model of the Touro Cu Deposit, A World-Class Mafic-Siliciclastic VMS Deposit in the NW of the Iberian Peninsula" Minerals 11, no. 1: 85. https://doi.org/10.3390/min11010085
APA StyleArias, M., Nuñez, P., Arias, D., Gumiel, P., Castañón, C., Fuertes-Blanco, J., & Martin-Izard, A. (2021). 3D Geological Model of the Touro Cu Deposit, A World-Class Mafic-Siliciclastic VMS Deposit in the NW of the Iberian Peninsula. Minerals, 11(1), 85. https://doi.org/10.3390/min11010085