Solubility Product of Vanadinite Pb5(VO4)3Cl at 25 °C—A Comprehensive Approach to Incongruent Dissolution Modeling
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of Vanadinite
2.2. Solid Characterization
2.3. Solution Analysis
2.4. Dissolution Experiments
2.5. Statistics
3. Results
3.1. Synthesized Solid
3.2. Dissolution Experiments
4. Discussion
- The concentration of background electrolyte KNO3 = 0.05 M;
- Constant temperature (24 °C, 25 °C or 26 °C);
- Initial fixed pH = 3.5;
- Forced equilibrium of the solution with the vanadinite and chervetite.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
Vanadinite Pb5(VO4)3Cl | Dissolution Residuum, This Study | Chervetite Pb2V2O7 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
h k l | Dai and Hughes [66] | Trotter and Barnes [67] | Synthesis, This Study | [70] | [69] | h k l | |||||||
d-Spacing (Å) | I/Io | d-Spacing/ (Å) | I/Io | d-Spacing/ (Å) | I/Io | d-Spacing/ (Å) | I/Io | d-Spacing/ (Å) | I/Io | d-Spacing/ (Å) | I/Io | ||
110 | 5.1587 | 7.83 | 5.1655 | 8.91 | 5.171 | 7 | 5.170 | 10 | |||||
4.998 | 4 | 4.9545 | 6.98 | 4.9573 | 7.26 | 11 | |||||||
4.949 | 15 | 4.9422 | 57.75 | 4.9438 | 61.74 | 011 | |||||||
200 | 4.4676 | 24.21 | 4.4735 | 25.16 | 4.476 | 20 | 4.475 | 29 | |||||
4.339 | 9 | 4.3337 | 37.88 | 4.3337 | 42.95 | 111 | |||||||
111 | 4.2202 | 32.9 | 4.2249 | 34.62 | 4.230 | 27 | 4.227 | 30 | |||||
4.155 | 6 | 4.1469 | 4.71 | 4.1460 | 3.79 | 201 | |||||||
201 | 3.8159 | 4.89 | 3.8203 | 2.97 | 3.824 | 4 | 3.828 | 5 | |||||
3.680 | 5 | 3.6770 | 1.66 | 3.6762 | 1.59 | 310 | |||||||
002 | 3.6689 | 7.66 | 3.6715 | 6.84 | 3.678 | 8 | |||||||
3.592 | 14 | 3.5886 | 60.57 | 3.5879 | 61.34 | 211 | |||||||
3.450 | 22 | 3.4491 | 100 | 3.4487 | 100 | 120 | |||||||
3.433 | 15 | 3.4312 | 66.96 | 3.4351 | 76.92 | 02 | |||||||
102 | 3.3939 | 26.22 | 3.3966 | 26.95 | 3.390 | 38 | 3.403 | 14 | |||||
120, 210 | 3.3772 | 17.03, 18.84 | 3.3816 | 14.39, 19.26 | 3.381 | 29 | |||||||
3.273 | 4 | 3.2749 | 18.70 | 3.2761 | 18.90 | 01 | |||||||
3.217 | 29 | 3.2138 | 85.59 | 3.2130 | 83.30 | 400 | |||||||
3.188 | 4 | 3.1815 | 15.91 | 3.1840 | 12.88 | 12 | |||||||
3.172 | 10 | 3.1743, 3.1710 | 1.48, 32.64 | 3.1748, 3.1713 | 2.11, 33.84 | 21, 021 | |||||||
121, 211 | 3.0678 | 45,76, 54.24 | 3.0716 | 46.19, 53.81 | 3.073, 2.993 | 94, 100 | 3.073 | 100 | |||||
112 | 2.9899 | 95.04 | 2.9926 | 91.58 | 2.996 | 65 | |||||||
300 | 2.9784 | 53.24 | 2.9823 | 55.19 | 2.841 | 1 | 2.982 | 28 | |||||
2.934 | 6 | 2.9320 | 12.83 | 2.9314 | 11.63 | 410 | |||||||
2.863 | 6 | 2.8607 | 30.45 | 2.8633 | 35.03 | 12 | |||||||
2.839 | 4 | 2.8419 | 13.05 | 2.8427 | 16.40 | 112 | |||||||
301 | 2.7597 | 1.45 | 2.7631 | 1.16 | 2.763 | 1 | |||||||
2.748 | 8 | 2.7475 | 28.12 | 2.7471 | 27.05 | 320 | |||||||
2.724 | 7 | 2.7219 | 41.21 | 2.7221 | 41.71 | 202 | |||||||
2.711 | 5 | 2.7100 | 27.44 | 2.7096 | 26.70 | 221 | |||||||
220 | 2.5793 | 2.89 | 2.5828 | 1.99 | 2.582 | 3 | 2.585 | 5 | |||||
2.519 | 6 | 2.5213 | 23.04 | 2.5225 | 25.58 | 22 | |||||||
122 | 2.4848 | 2.01 | 2.4873 | 1.96 | 2.489 | 3 | 2.493 | ||||||
2.419 | 4 | 2.4198 | 3.64 | 2.4192 | 3.61 | 510 | |||||||
2.351 | 4 | 2.3525 | 10.57 | 2.3538 | 11.55 | 22 | |||||||
131 | 2.3479 | 1.27 | 2.3508 | 1.40 | 2.350 | 1 | |||||||
302 | 2.3124 | 5.55 | 2.3149 | 4.43 | 2.316 | 6 | 2.316 | 6 | |||||
2.276 | 5 | 2.2766, 2.2704 | 17.94, 2.40 | 2.2782, 2.2720 | 20.30, 2.96 | 003, 12 | |||||||
2.237 | 13 | 2.2376 | 23.01, 2.51 | 2.2394, 2.2373 | 1.62, 24.71 | 13, 230 | |||||||
400 | 2.2338 | 5.48 | 2.2367 | 4.94 | 2.238 | 5 | |||||||
113 | 2.2101 | 10.66 | 2.2119 | 9.69 | 2.214 | 9 | 2.215 | 7 | |||||
2.184 | 4 | 2.1892, 2.1860 | 6.51, 12.57 | 2.1893, 2.1859 | 8.28, 12.40 | 31, 131 | |||||||
2.127 | 5 | 2.1259, 2.1258 | 2.07, 17.04 | 2.1262, 2.1252 | 1.12, 18.00 | 11, 421 | |||||||
222 | 2.1101 | 35.78 | 2.1124 | 34.74 | 2.114 | 33 | 2.114 | 29 | 2.1153 | 10.67 | 2.1145 | 11.02 | 511 |
2.090 | 8 | 2.0918 | 6.17 | 2.0930 | 7.02 | 02 | |||||||
2.068 | 5 | 2.0687 | 2.61 | 2.0684 | 3.73 | 231 | |||||||
132, 312 | 2.0536 | 3.93, 12.51 | 2.0559 | 5.09, 12.68 | 2.055 | 18 | 2.056 | 15 | |||||
2.006 | 4 | 2.0078 | 21.67 | 2.0090 | 23.93 | 12 | |||||||
123, 213 | 1.9810 | 17.15, 11.10 | 1.9828 | 15.11, 10.38 | 1.982 | 28 | 1.984 | 13 | 1.9810 | 5.89 | 1.9815 | 8.14 | 32 |
1.977 | 13 | 1.9774 | 15.87 | 1.9772 | 17.79 | 322 | |||||||
140, 410 | 1.9498 | 8.28, 16.55 | 1.9524 | 7.87, 14.76 | 1.952 | 21 | 1.952 | 20 | |||||
402 | 1.9080 | 28.52 | 1.9102 | 28.36 | 1.911 | 25 | 1.911 | 21 | |||||
1.891 | 4 | 1.8906 | 6.31 | 1.8907 | 6.84 | 21 | |||||||
1.838 | 11 | 1.8388 | 2.54 | 1.8393 | 2.13 | 123 | |||||||
004 | 1.8345 | 12.99 | 1.8357 | 12.81 | 1.838 | 12 | |||||||
322 | 1.7895 | 1.69 | 1.7916 | 1.20 | 1.791 | 2 | 1.791 | 4 | |||||
1.732 | 5 | 1.7337 | 1.36 | 1.7340 | 1.52 | 223 |
Appendix B
Appendix C
SOLUTION 1 temp 25 pe 4 redox pe units mmol/kgw density 1 -water 1 # kg K 50 N(5) 50 PHASES pH_Fix H+ = H+ log_K = 0.0 Vanadinite Pb5(VO4)3Cl = 5Pb+2 + 3VO4-3 + Cl− log_k −91.87 EQUILIBRIUM_PHASES 1 CO2(g) −3.5 1.0 chervetite 0.0 Vanadinite 0.0 pH_Fix −3.5 HNO3 10.0 -force_equality END |
References
- Crans, D.C.; Smee, J.J.; Gaidamauskas, E.; Yang, L. The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem. Rev. 2004, 104, 849–902. [Google Scholar] [CrossRef] [PubMed]
- Hubregtse, T.; Neeleman, E.; Maschmeyer, T.; Sheldon, R.A.; Hanefeld, U.; Arends, I.W.C.E. The first enantioselective synthesis of the amavadin ligand and its complexation to vanadium. J. Inorg. Biochem. 2005, 99, 1264–1267. [Google Scholar] [CrossRef] [PubMed]
- Kraepiel, A.M.L.; Bellenger, J.P.; Wichard, T.; Morel, F.M.M. Multiple roles of siderophores in free-living nitrogen-fixing bacteria. Biometals 2009, 22, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Renirie, R.; Charnock, J.M.; Garner, C.D.; Wever, R. Vanadium K-edge XAS studies on the native and peroxo-forms of vanadium chloroperoxidase from Curvularia inaequalis. J. Inorg. Biochem. 2010, 104, 657–664. [Google Scholar] [CrossRef] [PubMed]
- Ceci, A.; Kierans, M.; Hillier, S.; Persiani, A.M.; Gadd, G.M. Fungal bioweathering of mimetite and a general geomycological model for lead apatite mineral biotransformations. Appl. Environ. Microbiol. 2015, 81, 4955–4964. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ramasarma, T.; Venkataraman, B.V. A perspective of smooth muscle contractility through actions of vanadium compounds. Indian J. Physiol. Pharmacol. 1999, 43, 277–295. [Google Scholar]
- Ceci, A.; Rhee, Y.J.; Kierans, M.; Hillier, S.; Pendlowski, H.; Gray, N.; Persiani, A.M.; Gadd, G.M. Transformation of vanadinite [Pb 5 (VO 4) 3 Cl] by fungi: Fungal biotransformation of vanadinite. Environ. Microbiol. 2015, 17, 2018–2034. [Google Scholar] [CrossRef]
- Ertl, A.; Rakovan, J.; Hughes, J.M.; Bernhardt, H.-J.; Rossman, G.R. Vanadium-rich Muscovite from Austria: Crystal structure, chemical analysis, and spectroscopic investigations. Can. Miner. 2019, 57, 383–389. [Google Scholar] [CrossRef]
- Stoppa, F.; Schiazza, M.; Rosatelli, G.; Castorina, F.; Sharygin, V.V.; Ambrosio, F.A.; Vicentini, N. Italian carbonatite system: From mantle to ore-deposit. Ore Geol. Rev. 2019, 114, 103041. [Google Scholar] [CrossRef]
- Gerke, T.L.; Scheckel, K.G.; Schock, M.R. Identification and distribution of vanadinite (Pb5(V5+O4)3Cl) in lead pipe corrosion by-products. Environ. Sci. Technol. 2009, 43, 4412–4418. [Google Scholar] [CrossRef]
- Gerke, T.L.; Scheckel, K.G.; Maynard, J.B. Speciation and distribution of vanadium in drinking water iron pipe corrosion by-products. Sci. Total. Environ. 2010, 408, 5845–5853. [Google Scholar] [CrossRef] [PubMed]
- Markl, G.; Marks, M.A.W.; Holzäpfel, J.; Wenzel, T. Major, minor, and trace element composition of pyromorphite-group minerals as recorder of supergene weathering processes from the Schwarzwald mining district, SW Germany. Am. Miner. 2014, 99, 1133–1146. [Google Scholar] [CrossRef]
- Song, H.; Liu, J.; Cheng, H. Structural and spectroscopic study of arsenate and vanadate incorporation into apatite group: Implications for semi-quantitative estimation of As and V contents in apatite. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 188, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Solecka, U.; Bajda, T.; Topolska, J.; Zelek-Pogudz, S.; Manecki, M. Raman and fourier transform infrared spectroscopic study of pyromorphite-vanadinite solid solutions. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 190, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Petoukhov, S.V.; He, M. Advances in artificial systems for medicine and education II. In Advances in Intelligent Systems and Computing; Shakhovska, N., Ed.; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Pasero, M.; Kampf, A.R.; Ferraris, C.; Pekov, I.V.; Rakovan, J.; White, T.J. Nomenclature of the apatite supergroup minerals. Eur. J. Miner. 2010, 22, 163–179. [Google Scholar] [CrossRef]
- Cockbain, A.G. The crystal chemistry of the apatites. Miner. Mag. J. Miner. Soc. 1968, 36, 654–660. [Google Scholar] [CrossRef]
- White, T.J.; Zhili, D. Structural derivation and crystal chemistry of apatites. Acta Crystallogr. Sect. B Struct. Sci. 2003, 59, 1–16. [Google Scholar] [CrossRef]
- Frost, R.L.; Crane, M.; Williams, P.A.; Kloprogge, J.T. Isomorphic substitution in vanadinite [Pb5(VO4)3Cl]?—A raman spectroscopic study. J. Raman Spectrosc. 2003, 34, 214–220. [Google Scholar] [CrossRef]
- Baikie, T.; Mercier, P.H.J.; Elcombe, M.M.; Kim, J.Y.; Le Page, Y.; Mitchell, L.D.; White, T.J.; Whitfield, P.S. Triclinic apatites. Acta Crystallogr. Sect. B Struct. Sci. 2007, 63, 251–256. [Google Scholar] [CrossRef]
- Baikie, T.; Ferraris, C.; Klooster, W.T.; Madhavi, S.; Pramana, S.S.; Pring, A.; Schmidt, G.; White, T.J. Crystal chemistry of mimetite, Pb10(AsO4)6Cl1.48O0.26, and finnemanite, Pb10(AsO3)6Cl2. Acta Crystallogr. Sect. B Struct. Sci. 2008, 64, 34–41. [Google Scholar] [CrossRef]
- Bajda, T.; Mozgawa, W.; Manecki, M.; Flis, J. Vibrational spectroscopic study of mimetite–pyromorphite solid solutions. Polyhedron 2011, 30, 2479–2485. [Google Scholar] [CrossRef]
- Baikie, T.; Schreyer, M.; Wei, F.; Herrin, J.S.; Ferraris, C.; Brink, F.; Topolska, J.; Piltz, R.O.; Price, J.; White, T.J. The influence of stereochemically active lone-pair electrons on crystal symmetry and twist angles in lead apatite-2 H type structures. Miner. Mag. 2014, 78, 325–345. [Google Scholar] [CrossRef]
- Sordyl, J.; Puzio, B.; Manecki, M.; Borkiewicz, O.J.; Topolska, J.; Zelek-Pogudz, S. Structural Assessment of Fluorine, Chlorine, bromine, iodine, and hydroxide substitutions in lead arsenate apatites (mimetites)–Pb5(AsO4)3X. Minerals 2020, 10, 494. [Google Scholar] [CrossRef]
- Ewing, R.C.; Wang, L. Phosphates as nuclear waste forms. Rev. Miner. Geochem. 2002, 48, 673–699. [Google Scholar] [CrossRef]
- Dong, Z.; White, T.J.; Wei, B.; Laursen, K. Model apatite systems for the stabilization of toxic metals: I, calcium lead vanadate. J. Am. Ceram. Soc. 2002, 85, 2515–2522. [Google Scholar] [CrossRef]
- Kim, J.Y.; Dong, Z.; White, T.J. Model apatite systems for the stabilization of toxic metals: II, cation and metalloid substitutions in chlorapatites. J. Am. Ceram. Soc. 2005, 88, 1253–1260. [Google Scholar] [CrossRef]
- Madhavi, S.; Ferraris, C.; White, T.J. Cadmium and lead ion capture with three dimensionally ordered macroporous hydroxyapatite. Environ. Sci. Technol. 2006, 40, 7054–7059. [Google Scholar] [CrossRef]
- Oelkers, E.H.; Montel, J.-M. Phosphates and nuclear waste storage. Elements 2008, 4, 113–116. [Google Scholar] [CrossRef]
- Oelkers, E.H.; Valsami-Jones, E. Phosphate mineral reactivity and global sustainability. Elements 2008, 4, 83–87. [Google Scholar] [CrossRef]
- Majzlan, J. Thermodynamic stabilization of hydrous ferric oxide by adsorption of phosphate and arsenate. Environ. Sci. Technol. 2011, 45, 4726–4732. [Google Scholar] [CrossRef]
- Rakovan, J.F.; Pasteris, J.D. A Technological gem: Materials, medical, and environmental mineralogy of Apatite. Elements 2015, 11, 195–200. [Google Scholar] [CrossRef]
- Bhattacharjee, A.; Fang, Y.N.; Hooper, T.J.; Kelly, N.L.; Gupta, D.; Balani, K.; Manna, I.; Baikie, T.; Bishop, P.T.; White, T.J.; et al. Crystal Chemistry and Antibacterial Properties of Cupriferous Hydroxyapatite. Materials 2019, 12, 1814. [Google Scholar] [CrossRef]
- Kanagawa, S.; Dong, Z.; Baikie, T.; White, T.; Takeshita, K. Synthesis and characterization of apatite wasteforms using simulated radioactive liquid waste. Chem. Lett. 2019, 48, 881–884. [Google Scholar] [CrossRef]
- Topolska, J.; Latowski, D.; Kaschabek, S.; Manecki, M.; Merkel, B.J.; Rakovan, J. Pb remobilization by bacterially mediated dissolution of pyromorphite Pb5(PO4)3Cl in presence of phosphate solubilizing Pseudomonas putida. Environ. Sci. Poll. Res. 2014, 21, 1079–1089. [Google Scholar] [CrossRef] [PubMed]
- Bajda, T. Solubility of mimetite Pb5(AsO4)3Cl at 5–55 °C. Environ. Chem. 2010, 7, 268–278. [Google Scholar] [CrossRef]
- Flis, J.; Manecki, M.; Bajda, T. Solubility of pyromorphite Pb5(PO4)3Cl–mimetite Pb5(AsO4)3Cl solid solution series. Geochim. Cosmochim. Acta 2011, 75, 1858–1868. [Google Scholar] [CrossRef]
- Xie, Y.; Giammar, D.E. Effects of flow and water chemistry on lead release rates from pipe scales. Water Res. 2011, 45, 6525–6534. [Google Scholar] [CrossRef]
- Topolska, J.; Manecki, M.; Bajda, T.; Borkiewicz, O.; Budzewski, P. Solubility of pyromorphite Pb5(PO4)3Cl at 5–65°C and its experimentally determined thermodynamic parameters. J. Chem. Thermodyn. 2016, 98, 282–287. [Google Scholar] [CrossRef]
- Ma, Q.Y.; Traina, S.J.; Logan, T.J.; Ryan, J.A. In situ lead immobilization by apatite. Environ. Sci. Technol. 1993, 27, 1803–1810. [Google Scholar] [CrossRef]
- Manecki, M.; Maurice, P.A.; Traina, S.J. Uptake of aqueous Pb by Cl−, F−and OH−apatites: Mineralogic evidence for nucleation mechanisms. Am. Miner. 2000, 85, 932–942. [Google Scholar]
- Miretzky, P.; Fernandez-Cirelli, A. Phosphates for Pb immobilization in soils: A review. Environ. Chem. Lett. 2008, 6, 121–133. [Google Scholar] [CrossRef]
- Park, J.H.; Bolan, N.; Megharaj, M.; Naidu, R. Concomitant rock phosphate dissolution and lead immobilization by phosphate solubilizing bacteria (Enterobacter sp.). J. Environ. Manag. 2011, 92, 1115–1120. [Google Scholar] [CrossRef] [PubMed]
- Imtiaz, M.; Rizwan, M.S.; Xiong, S.; Li, H.; Ashraf, M.; Shahzad, S.M.; Shahzad, M.; Rizwan, M.; Tu, S. Vanadium, recent advancements and research prospects: A review. Environ. Int. 2015, 80, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Ray, R.; Dutta, B.; Mandal, S.K.; González, A.G.; Pokrovsky, O.S.; Jana, T.K. Bioaccumulation of vanadium (V), niobium (Nb) and tantalum (Ta) in diverse mangroves of the Indian Sundarbans. Plant. Soil 2020, 448, 553–564. [Google Scholar] [CrossRef]
- World Health Organisation. Vanadium. In Air Quality Guidelines, 2nd ed.; World Health Organization, Regional Office for Europe, Ed.; World Health Organization: Copenhagen, Denmark, 2000; pp. 170–172. [Google Scholar]
- Agency for Toxic Substances and Disease Registry; Environmental Protection Agency. Toxicological Profile for Vanadium; US Department of Health and Human Services; Public Health Service: Atlanta, GA, USA, 2012.
- Gatta, G.D.; Lee, Y.; Kao, C.-C. Elastic behavior of vanadinite, Pb10(VO4)6Cl2, a microporous non-zeolitic mineral. Phys. Chem. Miner. 2008, 36, 311–317. [Google Scholar] [CrossRef]
- Suetsugu, Y. Synthesis of lead vanadate iodoapatite utilizing dry mechanochemical process. J. Nucl. Mater. 2014, 454, 223–229. [Google Scholar] [CrossRef]
- Lei, P.; Yao, T.; Gong, B.; Zhu, W.; Ran, G.; Lian, J. Spark plasma sintering-densified vanadinite apatite-based chlorine waste forms with high thermal stability and chlorine confinement. J. Nucl. Mater. 2020, 528, 151857. [Google Scholar] [CrossRef]
- Petit, S.; Thomas, C.; Millot, Y.; Krafft, J.; Laberty-Robert, C.; Costentin, G. Activation of C−H bond of propane by strong basic sites generated by bulk proton conduction on v-modified hydroxyapatites for the formation of propene. Chemcatchem 2020, 12, 2506–2521. [Google Scholar] [CrossRef]
- Knyazev, A.V.; Bulanov, E.N.; Smirnova, N.N.; Kuznetsova, N.Y.; Letyanina, I.A.; Pryamova, E.D. Thermodynamic properties of pentalead tris(vanadate) chloride. Thermochim. Acta 2011, 515, 79–83. [Google Scholar] [CrossRef]
- Schindler, M.; Hawthorne, F.C.; Baur, W.H. A crystal-chemical approach to the composition and occurrence of vanadium minerals. Can. Miner. 2000, 38, 1443–1456. [Google Scholar] [CrossRef]
- Evans, J.H.T.; Garrels, R.M. Thermodynamic equilibria of vanadium in aqueous systems as applied to the interpretation of the Colorado Plateau ore deposits. Geochim. Cosmochim. Acta 1958, 15, 131–149. [Google Scholar] [CrossRef][Green Version]
- Topolska, J.; Bajda, T.; Puzio, B.; Manecki, M.; Kozub-Budzyń, G.K.-B. Time constraints on experimental studies of lead apatites. Geol. Q. 2019, 63, 721–728. [Google Scholar] [CrossRef]
- Breit, G.N.; Wanty, R.B. Vanadium accumulation in carbonaceous rocks: A review of geochemical controls during deposition and diagenesis. Chem. Geol. 1991, 91, 83–97. [Google Scholar] [CrossRef]
- Lu, X.; Johnson, W.D.; Hook, J. Reaction of vanadate with aquatic humic substances: An ESR and 51V NMR study. Environ. Scien. Technol. 1998, 32, 2257–2263. [Google Scholar] [CrossRef]
- Bruyère, V.I.; Rodenas, L.A.G.; Morando, P.J.; Blesa, M.A. Reduction of vanadium (V) by oxalic acid in aqueous acid solutions. J. Chem. Soc. Dalton Trans. 2001, 24, 3593–3597. [Google Scholar] [CrossRef]
- Gustafsson, J.P. Vanadium geochemistry in the biogeosphere–speciation, solid-solution interactions, and ecotoxicity. App. Geochem. 2019, 102, 1–25. [Google Scholar] [CrossRef]
- Cornelis, G.; Van Gerven, T.; Snellings, R.; Verbinnen, B.; Elsen, J.; Vandecasteele, C. Stability of pyrochlores in alkaline matrices: Solubility of calcium antimonate. Appl. Geochem. 2011, 26, 809–817. [Google Scholar] [CrossRef]
- Merchán, D.; Auqué, L.F.; Acero, P.; Gimeno, M.J.; Causape, J. Geochemical processes controlling water salinization in an irrigated basin in Spain: Identification of natural and anthropogenic influence. Sci. Total. Environ. 2015, 502, 330–343. [Google Scholar] [CrossRef]
- Dangla, P.; Thiéry, M.; Morandeau, A. Thermodynamic of incongruent solubility of C–S–H. Adv. Cem. Res. 2015, 27, 601–609. [Google Scholar] [CrossRef]
- Sahai, N.; Schoonen, M.A. Accuracy of thermodynamic databases for hydroxyapatite dissolution Constant. Astrobiology 2020, 20, 157–160. [Google Scholar] [CrossRef]
- Parkhurst, D. User’s guide to PHREEQC, a computer program for speciation, reaction-path, advective-transport, and inverse geochemical calculations. USA Geol. Surv. Rep. 1995, 95–4227. [Google Scholar] [CrossRef]
- Allison, J.D.; Brown, D.S.; Novo-Gradac, K.J. MINTEQA2/PRODEFA2, A Geochemical Assessment Model for Environmental Systems: Version 3.0 User’s Manual; Environmental Research Laboratory; USA Environmental Protection Agency: Athens, GA, USA, 1991; p. 92.
- Dai, Y.S.; Hughes, J.M. Crystal-structure refinements of vanadinite and pyromorphite. Can. Min. 1989, 27, 189–192. [Google Scholar]
- Trotter, J.; Barnes, W.H. The structure of vanadinite. Can. Min. 1958, 6, 161–173. [Google Scholar]
- Puzio, B.; Manecki, M.; Kwaśniak-Kominek, M. Transition from endothermic to exothermic dissolution of Hydroxyapatite Ca5(PO4)3OH–Johnbaumite Ca5(AsO4)3OH solid solution series at temperatures ranging from 5 to 65 °C. Minerals 2018, 8, 281. [Google Scholar] [CrossRef]
- Kawahara, A. La structure cristalline de la chervétite. Bull. Soc. Française Minéral. Cristallogr. 1967, 90, 279–284. [Google Scholar] [CrossRef]
- Shannon, R.D.; Calvo, C. Refinement of the crystal structure of synthetic chervetite, Pb2V2O7. Can. J. Chem. 1973, 51, 70–76. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, X.; Chen, Y.; Xie, Q.; Lan, J.; Qian, M.; He, N. A comparative study on the dissolution and solubility of hydroxylapatite and fluorapatite at 25 °C and 45 °C. Chem. Geol. 2009, 268, 89–96. [Google Scholar] [CrossRef]
- Liu, H.-L.; Zhu, Y.; Yu, H.-X. Solubility and stability of lead arsenates at 25 °C. J. Environ. Sci. Health Part A 2009, 44, 1465–1475. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, Y.; Zeng, H.; Wang, D.; Liu, J.; Liu, H.; Qian, M.; Xu, L. Dissolution and solubility of the arsenate–phosphate hy-droxylapatite solid solution [Ca5(PxAs1–xO4)3(OH)] at 25 °C. Environ. Chem. 2011, 8, 133–145. [Google Scholar]
- Zhu, Y.; Huang, B.; Zhu, Z.; Liu, H.; Huang, Y.; Zhao, X.; Liang, M. Characterization, dissolution and solubility of the hy-droxypyromorphite–hydroxyapatite solid solution [(PbxCa1−x)5(PO4)3OH] at 25 °C and pH 2–9. Geochem. Trans. 2016, 17, 2–9. [Google Scholar] [CrossRef]
Time | Concentration µmol·dm−3 | [Pb]tot/[V]tot | [Pb]tot /[Cl]tot | Log SI * Chervetite | Log IAP ** Vanadinite | Log IAP *** Vanadinite | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pbtot. | Vtot. | Cltot. | |||||||||||||
weeks | 0.1 | 5.7 | ± | 0.4 | b.d. | ± | - | 8.3 | ± | 11.0 | - | 0.7 | - | - | - |
0.7 | 18.5 | ± | 18.6 | b.d. | ± | - | 18.1 c | ± | 11.1 | - | 1.0 | - | - | - | |
2.0 | 19.6 | ± | 1.4 | b.d. | ± | - | 19.2 c | ± | 11.2 | - | 1.0 | - | - | - | |
4.6 | 24.0 | ± | 0.7 | b.d. | ± | - | 20.9 c | ± | 11.2 | - | 1.1 | - | - | - | |
7.7 | 26.7 | ± | 0.8 | b.d. | ± | - | 23.1 c | ± | 4.0 | - | 1.2 | - | - | - | |
13.4 | 27.5 | ± | 2.7 | 0.37 | ± | 0.04 | 14.9 | ± | 6.4 | 75 | 1.8 | −0.68 | −92.43 | −94.57 | |
18.9 | 28.5 | ± | 2.0 | 0.50 | ± | 0.04 | 20.2 c | ± | 5.2 | 57 | 1.4 | −0.56 | −92.28 | −94.05 | |
23.9 | 28.4 | ± | 0.7 | 0.46 | ± | 0.08 | 18.6 | ± | 5.6 | 62 | 1.5 | −0.59 | −92.32 | −94.17 | |
months | 116 | 46.3 a | ± | 10.6 | 2.39 b | ± | 0.86 | 24.8 c | ± | 4.0 | 19 | 1.9 | 0.14 | −91.87 | −91.42 |
132 | 45.6 a | ± | 3.0 | 2.62 b | ± | 2.84 | 23.4 c | ± | 4.0 | 17 | 1.9 | 0.16 | −91.91 | −91.39 | |
147 | 45.8 a | ± | 4.4 | 2.28 b | ± | 1.61 | 25.2 c | ± | 4.5 | 20 | 1.8 | 0.13 | −91.87 | −91.47 |
Method of Obtaining the Data | Equilibrium Concentration | Residual Phases * | ||||
---|---|---|---|---|---|---|
Pb (µmol dm−3) | V (µmol dm−3) | Cl (µmol dm−3) | ||||
Experimental | 45.9 ± 7.0 a | 2.4 ± 1.6 b | 24.4 ± 3.2 c | none | ||
Geochemical modeling assuming: ** | Approach (ii) | Log Ksp,V = −90.42 | 66.5 ± 8.4 | 0.9 ± 0.2 b | 32.8 ± 4.3 | none |
Log Ksp,V = −91.47 | 64.0 ± 8.0 | 0.9 ± 0.2 b | 31.5 ± 4.1 | none | ||
Log Ksp,V = −91.39 | 68.0 ± 7.7 | 0.9 ± 0.2 b | 33.5 ± 3.9 | none | ||
Approach (i) | Log Ksp,V = −91.87 | 47.3 ± 7.0 a | 1.4 ± 0.2 b | 22.9 ± 3.6 c | none | |
Log Ksp,V = −91.91 | 45.9 ± 6.7 a | 1.5 ± 0.3 b | 22.2 ± 3.5 c | none |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Topolska, J.; Puzio, B.; Borkiewicz, O.; Sordyl, J.; Manecki, M. Solubility Product of Vanadinite Pb5(VO4)3Cl at 25 °C—A Comprehensive Approach to Incongruent Dissolution Modeling. Minerals 2021, 11, 135. https://doi.org/10.3390/min11020135
Topolska J, Puzio B, Borkiewicz O, Sordyl J, Manecki M. Solubility Product of Vanadinite Pb5(VO4)3Cl at 25 °C—A Comprehensive Approach to Incongruent Dissolution Modeling. Minerals. 2021; 11(2):135. https://doi.org/10.3390/min11020135
Chicago/Turabian StyleTopolska, Justyna, Bartosz Puzio, Olaf Borkiewicz, Julia Sordyl, and Maciej Manecki. 2021. "Solubility Product of Vanadinite Pb5(VO4)3Cl at 25 °C—A Comprehensive Approach to Incongruent Dissolution Modeling" Minerals 11, no. 2: 135. https://doi.org/10.3390/min11020135
APA StyleTopolska, J., Puzio, B., Borkiewicz, O., Sordyl, J., & Manecki, M. (2021). Solubility Product of Vanadinite Pb5(VO4)3Cl at 25 °C—A Comprehensive Approach to Incongruent Dissolution Modeling. Minerals, 11(2), 135. https://doi.org/10.3390/min11020135