Feasibility of a Chemical Washing Method for Treating Soil Enriched with Fluorine Derived from Mica
Abstract
1. Introduction
2. Materials and Methods
2.1. Soil Preparation and the Determination of Its Characteristics
2.2. Chemical Washing Procedures for Natural Fluorine-Enriched Soil
2.3. Determination of the Total Fluorine Concentration in Soil
2.4. Sequential Extraction Procedures for Fluorine in Soil
3. Results
3.1. Characteristics of Fluorine-Natural Enriched Soil
3.2. Chemical Washing Efficiency
3.3. Origin of Fluorine in Soil
3.3.1. X-Ray Diffraction Analysis
3.3.2. Sequential Extraction Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Major Element | Composition (%) |
---|---|
SiO2 | 52.85 |
Al2O3 | 24.63 |
Fe2O3 | 11.03 |
K2O | 4.25 |
MgO | 2.41 |
TiO2 | 1.85 |
CaO | 1.55 |
Na2O | 0.44 |
P2O5 | 0.43 |
SO3 | 0.14 |
pH | Organic Matter Content (%) | CEC (cmol/kg) | Fe Oxides (mg/kg) | Al Oxides (mg/kg) | Mn Oxides (mg/kg) |
---|---|---|---|---|---|
7.4 | 0.6 | 11.8 | 26,655 | 2584 | 374 |
References
- An, J.; Kim, J.-A.; Yoon, H.-O. A review on the analytical techniques for the determination of fluorine contents in soil and solid phase samples. J. Soil Groundw. Environ. 2013, 18, 112–122. [Google Scholar] [CrossRef]
- Kabir, H.; Gupta, A.K.; Tripathy, S. Fluoride and human health: Systematic appraisal of sources, exposures, metabolism, and toxicity. Crit. Rev. Environ. Sci. Technol. 2020, 50, 1116–1193. [Google Scholar] [CrossRef]
- Luo, K.; Ren, D.; Xu, L.; Dai, S.; Cao, D.; Feng, F.; Tan, J.A. Fluorine content and distribution pattern in Chinese coals. Int. J. Coal Geol. 2004, 57, 143–149. [Google Scholar] [CrossRef]
- Mukherjee, I.; Singh, U.K. Groundwater fluoride contamination, probable release, and containment mechanisms: A review on Indian context. Environ. Geochem. Health 2018, 60, 2259–2301. [Google Scholar] [CrossRef]
- Deshmukh, A.N.; Wadaskar, P.M.; Malpd, D.B. Fluorine in environment: A review. Gondwana Geol. Mag. 1995, 9, 1–20. [Google Scholar]
- Fuge, R.; Andrews, M.J. Fluorine in the UK environment. Environ. Geochem. Health 1988, 10, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Berger, T.; Peltola, P.; Drake, H.; Åström, M. Impact of a fluorine-rich granite intrusion on levels and distribution of fluoride in a small boreal catchment. J. Aquat. Geochem. 2012, 18, 77–94. [Google Scholar] [CrossRef]
- Lee, J.-H.; Jeong, J.-O.; Kim, K.-K.; Lee, S.-W.; Kim, S.-O. Geochemical study on the naturally originating fluorine distributed in the area of Yongyudo and Sammokdo, Incheon. Econ. Environ. Geol. 2019, 52, 275–290. [Google Scholar] [CrossRef]
- Noda, T.; Roy, R. OH-F exchange in fluorine phlogopite. Am. Mineral. 1956, 41, 929–932. [Google Scholar]
- Oh, H.-J.; Lee, J.-Y. A Study on the characteristical evaluation of metals and fluorine concentrations in the southern part of Seoul. J. Soil Groundw. Environ. 2003, 8, 68–73. [Google Scholar]
- Rao, C.R.N. Fluoride and Environment—A Review. In Proceedings of the Third International Conference on Environment and Health, Chennai, India, 15–17 December 2003; pp. 386–399. [Google Scholar]
- Sen Gupta, J.G. Determination of fluorine in silicate and phosphate rocks, micas and stony meteorites. Anal. Chim. Acta. 1968, 42, 119–125. [Google Scholar] [CrossRef]
- Czerwinski, E.; Nowak, J.; Dabrowska, D.; Skolarczyk, A.; Kita, B.; Ksiezyk, M. Bone and joint pathology in fluoride-exposed workers. Arch. Environ. Health 1988, 43, 340–343. [Google Scholar] [CrossRef] [PubMed]
- Hodge, H.C.; Smith, F.A. Occupational fluoride exposure. J. Occup. Med. 1977, 19, 12–39. [Google Scholar] [CrossRef] [PubMed]
- Grandjean, P. Classical syndromes in occupational medicine occupational fluorosis through 50 years: Clinical and epidemiological experiences. Am. J. Ind. Med. 1982, 3, 227–236. [Google Scholar] [CrossRef] [PubMed]
- WHO. Preventing Disease through Healthy Environments: Inadequate or Excess Fluoride: A Major Public Health Concern. License: CC BY-NC-SA 3.0 IGO World Health Organization. 2019. Available online: https://apps.who.int/iris/handle/10665/329484 (accessed on 11 November 2020).
- Moon, D.H.; Jo, R.; Koutsospyros, A.; Cheong, K.H.; Park, J.-H. Soil washing of fluorine contaminated soil using various washing solutions. Bull. Environ. Contam. Toxicol. 2015, 94, 334–339. [Google Scholar] [CrossRef][Green Version]
- Korean Ministry of Environment. The Korean Standard Test (KST) Methods for Soils; Korean Ministry of Environment: Gwachun-si, Korea, 2010.
- Reed, B.E.; Carriere, P.C.; Moore, R. Flushing of a Pb(II) contaminated soil using HCl and CaCl2. J. Environ. Eng. 1996, 122, 48–50. [Google Scholar] [CrossRef]
- Moutsatsou, A.; Gregou, M.; Matsas, D.; Protonotarios, V. Washing as a remediation technology applicable in soils heavily polluted by mining–metallurgical activities. Chemosphere 2006, 63, 1632–1640. [Google Scholar] [CrossRef]
- Tokunaga, S.; Hakuta, T. Acid washing and stabilization of an artificial arsenic-contaminated soil. Chemosphere 2002, 46, 31–38. [Google Scholar] [CrossRef]
- Abumaizar, R.J.; Smith, E.H. Heavy metal contaminants removal by soil washing. J. Hazard. Mater. 1999, 70, 71–86. [Google Scholar] [CrossRef]
- Alaboudi, K.A.; Ahmed, B.; Brodie, G. Soil washing technology for removing heavy metals from a contaminated soil: A case study. Pol. J. Environ. Stud. 2020, 29, 1029–1036. [Google Scholar] [CrossRef]
- Ye, M.; Sun, M.M.; Kengara, F.O.; Wang, J.T.; Ni, N.; Wang, L.; Song, Y.; Yang, X.L.; Li, H.X.; Hu, F.; et al. Evaluation of soil washing process with carboxymethyl-β-cyclodextrin and carboxymethyl chitosan for recovery of PAHs/heavy metals/fluorine from metallurgic plant site. J. Environ. Sci. 2014, 26, 1661–1672. [Google Scholar] [CrossRef] [PubMed]
- Ahn, Y.; Pandi, K.; Cho, D.-W.; Choi, J. Feasibility of soil washing agents to remove fluoride and risk assessment of fluoride-contaminated soils. J. Soils Sediments 2020, 1–8. [Google Scholar] [CrossRef]
- Kitsopoulos, K.P. Cation-exchange capacity (CEC) of zeolitic volcaniclastic materials: Applicability of the ammonium acetate saturation (AMAS) method. Clays Clay Miner. 1999, 47, 688–696. [Google Scholar] [CrossRef]
- Robinson, G.W. A new method for the mechanical analysis of soils and other dispersions. J. Agric. Sci. 1922, 12, 306–321. [Google Scholar] [CrossRef]
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H.; Soltanpour, P.N.; Tabatabai, M.A.; Johnson, C.T.; Sumner, M.E. Methods of Soil Analysis, Part 3; Chemical Methods ASA-SSSA: Madison, WI, USA, 1996. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–37. [Google Scholar] [CrossRef]
- McQuaker, N.R.; Gurney, M. Determination of total fluoride in soil and vegetation using an alkali fusion-selective ion electrode technique. Anal. Chem. 1977, 49, 53–56. [Google Scholar] [CrossRef]
- Gao, H.; Zhang, Z.; Wan, X. Influences of charcoal and bamboo charcoal amendment on soil-fluoride fractions and bioaccumulation of fluoride in tea plants. Environ. Geochem. Health. 2012, 34, 551–562. [Google Scholar] [CrossRef]
- Yi, X.; Qiao, S.; Ma, L.; Wang, J.; Ruan, J. Soil fluoride fractions and their bioavailability to tea plants (Camellia sinensis L.). Environ. Geochem. Health. 2017, 39, 1005–1016. [Google Scholar] [CrossRef]
- Wenzel, W.W.; Kirchbaumer, N.; Prohaska, T.; Stingeder, G.; Lombi, E.; Adriano, D.C. Arsenic fractionation in soils using an improved sequential extraction procedure. Anal. Chim. Acta. 2001, 436, 309–323. [Google Scholar] [CrossRef]
- Davison, C.M.; Thomas, R.P.; McVey, S.E.; Perala, R.; Littlejohn, D.; Ure, A.M. Evaluation of a sequential extraction procedure for the speciation of heavy metals in sediments. Anal. Chim. Acta. 1994, 291, 277–286. [Google Scholar] [CrossRef]
- Chen, W.; Pang, X.-F.; LI, J.-H.; Hang, X. Effect of oxalic acid and humic acid on the species distribution and activity of fluoride in soil. Chem. Asian. J. 2013, 25, 469–474. [Google Scholar] [CrossRef]
- FÖrstner, U. Trace metal analysis of polluted sediments, Part 1. Assessment of sources and intensities. Environ. Technol. Lett. 1980, 1, 494–505. [Google Scholar] [CrossRef]
- Haque, M.A.; Subramanian, V. Cu, Pb and Zn pollution of soil environment. CRC Crit. Rev. Environ. Contr. 1982, 12, 13–90. [Google Scholar] [CrossRef]
- Bassett, W.A. Role of hydroxyl orientation in mica alteration. Geol. Soc. Am. Bull. 1960, 71, 449–456. [Google Scholar] [CrossRef]
- Kalinowski, B.E.; Schweda, P. Kinetics of muscovite, phlogopite, and biotite dissolution and alteration at pH 1–4, room temperature. Geochim. Cosmochim. Acta 1995, 60, 367–385. [Google Scholar] [CrossRef]
Soil | Contaminant | Concentration (mg/kg) | Washing Conditions | Removal Efficiency (%) | Reference | ||
---|---|---|---|---|---|---|---|
Washing Agents | Washing Conditions | ||||||
Erie County, N.Y. (pH 5.5) | Pb | 500–600 | 0.1 N HCl, 0.01 M EDTA, 1 M CaCl2 | 900 g soil, acrylic column (upflow 10 mL/min, 24 h) | HCl—85 EDTA—100 CaCl2—78 | [19] | |
Lavrion Technology and Cultural Park (LTCP)—mine, refinery, industrial park (pH 7.0) | Fe Pb Zn As Mn Cu | 223,600 64,195 55,900 7540 6500 4100 | 1 M HCl, 0.1 M Na2EDTA | Soil/solution = 30 g/L, 150 rpm, 4 h for 1 M HCl, 1 h for 0.1 M Na2EDTA | HCl 45 44 82 77 80 61 | Na2EDTA 14 44 38 13 42 41 | [20] |
Ibaraki of Kuroboku, Japan—forest area soil (pH 5.94) | As | 2830 | 9.4% H3PO4, 11% H2SO4 | 1 g soil: 25 mL solution, 20 °C, 2 h | H3PO4—97.9 H2SO4—87.7 | [21] | |
Construction site in University Park, TX (pH 7.9) | Pb Cd Zn | 742 603 624 | 0.01 M Na2EDTA + 0.1 M Na2S2O5 | 1 g soil: 12.5 mL solution, Shaker table operated at 175 rpm for 2 h | 56.1 92.3 71.0 | [22] | |
Burnley campus garden at Melbourne University, Australia (pH 6.14) | Pb Cd Cr | 200 400 600 | 0.5 M FeCl3 | Shaker table operated at 180 rpm for 1 h | 93.8 97.4 81.8 | [23] | |
Fluoride contaminated soil from a chemical company in Changwon, Gyeongsangnam-do, Korea (pH 3.7) | F | 740 | 3 M HCl 2 M NaOH 3 M HNO3 3 M H2SO4 3 M C4H6O6 | 5 g soil: 50 mL solution, Shaking incubator at 200 rpm, 20 °C for 1 h | 97 71 91 88 64 | [17] | |
Abandoned metallurgic plant located in Wubu, an old city district of Anhui Province, China (pH 6.7) | PAH Pb Cd Cr Ni F | 352.8 839.7 23.7 622.4 432.8 2376.5 | carboxymethyl-β-cyclodextrin (CMCD) carboxymethyl chitosan (CMC) | 50 g/L CMCD + 5 g/L CMC solution Shaking at 100 rpm, 25 °C for 60 min and centrifugation at 1000 rpm for 30 min, multi-stage washing (3 cycle) | 94.3 93.2 85.8 93.4 83.2 97.3 | [24] | |
Fluorine-contaminated soil from Incheon City, South Korea (pH 6.4), No source information provided | F | 488 | 1 M HNO3 1 M H2SO4 1 M NaOH 2 M H2SO4 | 30 g soil: 270 mL solution, Shaking at 25 °C for 30 min | 19.5 26.7 10.2 40.1 | [25] |
Fraction of Fluorine in Soil | Extractant | Experimental Conditions | ||
---|---|---|---|---|
Temperature (°C) | Incubation time (h) | Agitation speed (rpm) | ||
Water soluble (F1) | Deionized water | 70 | 0.5 | 30–40 a |
Exchangeable (F2) | 1 mol/L MgCl2 (pH 7) | 25 | 1 | |
Bound to Mn and Fe oxides (F3) | 0.04 mol/L NH2OH·HCl dissolved in 20% acetic acid | 60 | 1 | |
Bound to organic matter (F4) | 0.02 mol/L HNO3 + 30% H2O2 + 3.2 mol/L and ammonium acetate b | 25 | 0.5 | |
Residual (F5) | Alkali fusion with NaOH | 600 | 1.5 | None |
Particle Size (mm) | Weight Composition (%) | Total Fluorine Concentration (mg/kg) |
---|---|---|
<2 | 100 | 1078 ± 178 |
0.5–2 | 26.3 | 1126 ± 272 |
0.15–0.5 | 26.8 | 1036 ± 34 |
0.075–0.15 | 10.2 | 1564 ± 159 |
<0.075 | 36.7 | 1594 ± 42 |
Washing Reagent (1 M) | Extracted Fluorine Concentration (mg/kg) | Washing Efficiency (%) |
---|---|---|
H2SO4 | 16.2 ± 1.5 | 1.5 |
H3PO4 | 6.8 ± 0.6 | 0.6 |
NaOH | 20.3 ± 1.9 | 1.9 |
KOH | 20.2 ± 1.9 | 1.9 |
H2C2O4 | 6.2 ± 0.6 | 0.6 |
HNO3 | 30.3 ± 2.8 | 2.8 |
HClO4 | 27.2 ± 2.5 | 2.5 |
HCl | 32.7 ± 3.0 | 3.0 |
Washing Conditions | Extracted Fluorine Concentration (mg/kg) | Washing Efficiency (%) | |
---|---|---|---|
Solid–liquid ratio (g:mL) | 1:2 | 18.2 ± 1.1 | 1.7 |
1:3 | 24.4 ± 1.8 | 2.3 | |
1:5 | 32.8 ± 1.1 | 3.0 | |
Reaction time (min) | 10 | 58.7 ± 2.5 | 5.4 |
30 | 36.8 ± 0.6 | 3.4 | |
60 | 32.8 ± 1.1 | 3.0 | |
120 | 30.3 ± 1.6 | 2.8 | |
240 | 24.9 ± 0.0 | 2.3 | |
Agitation speed (rpm) | 100 | 34.5 ± 0.3 | 3.2 |
150 | 36.6 ± 0.9 | 3.4 | |
200 | 58.7 ± 2.5 | 5.4 | |
Concentration of HCl (mol/L) | 0 | 1.5 ± 0.0 | 0.1 |
1 | 32.8 ± 1.1 | 3.0 | |
2 | 26.8 ± 0.2 | 2.5 | |
2.5 | 24.8 ± 1.8 | 2.3 | |
Aeration time (min) | 10 | 49.6 ± 4.1 | 4.6 |
30 | 62.3 ± 0.3 | 5.8 | |
60 | 66.7 ± 5.3 | 6.2 | |
Ultrasonicating time (min) | 10 | 37.7 ± 0.3 | 3.5 |
30 | 43.4 ± 0.7 | 4.0 | |
60 | 41.9 ± 0.7 | 3.9 | |
Multi-stage washing (cycle) | 1 | 35.3 ± 2.1 | 3.3 |
2 | 14.3 ± 1.1 | 1.3 | |
3 | 6.1 ± 0.3 | 0.6 | |
4 | 2.8 ± 0.4 | 0.3 |
Fraction of Fluorine in Soil | Soil Sample (<2 mm) | Sample of Crushed Mica Selected by Hand from Gravel (>2 mm) | ||
---|---|---|---|---|
Extracted Fluorine Concentration (mg/kg) | Extraction Efficiency (%) | Extracted Fluorine Concentration (mg/kg) | Extraction Efficiency (%) | |
Water soluble (F1) | 7.19 ± 0.17 | 0.57 | 2.31 ± 0.01 | 0.09 |
Exchangeable (F2) | 0.58 ± 0.04 | 0.05 | 0.34 ± 0.34 | 0.01 |
Bound to Mn and Fe oxides (F3) | 0.09 ± 0.01 | 0.01 | 0.08 ± 0.01 | 0.00 |
Bound to organic matter (F4) | 1.99 ± 0.30 | 0.16 | 1.86 ± 0.12 | 0.07 |
Residual fraction (F5) | 1253 ± 85 | 99.21 | 2647 ± 11.55 | 99.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baek, D.-J.; Kim, Y.-E.; Jung, M.-Y.; Yoon, H.-O.; An, J. Feasibility of a Chemical Washing Method for Treating Soil Enriched with Fluorine Derived from Mica. Minerals 2021, 11, 134. https://doi.org/10.3390/min11020134
Baek D-J, Kim Y-E, Jung M-Y, Yoon H-O, An J. Feasibility of a Chemical Washing Method for Treating Soil Enriched with Fluorine Derived from Mica. Minerals. 2021; 11(2):134. https://doi.org/10.3390/min11020134
Chicago/Turabian StyleBaek, Dong-Jun, Ye-Eun Kim, Moon-Young Jung, Hye-On Yoon, and Jinsung An. 2021. "Feasibility of a Chemical Washing Method for Treating Soil Enriched with Fluorine Derived from Mica" Minerals 11, no. 2: 134. https://doi.org/10.3390/min11020134
APA StyleBaek, D.-J., Kim, Y.-E., Jung, M.-Y., Yoon, H.-O., & An, J. (2021). Feasibility of a Chemical Washing Method for Treating Soil Enriched with Fluorine Derived from Mica. Minerals, 11(2), 134. https://doi.org/10.3390/min11020134