Exploration for Platinum-Group Minerals in Till: A New Approach to the Recovery, Counting, Mineral Identification and Chemical Characterization
Abstract
:1. Introduction
1.1. Platinum-Group Elements (PGE) and Their Distribution
1.2. Exploration for Platinum-Group Minerals
1.3. Conventionnal Analytical Methods: MLA and QEMSCAN
2. Materials and Methods
2.1. Sample Preparation
2.2. Analytical Method
3. Results
3.1. Distribution of Various Platinum-Group Mineral Species in Till
3.2. Chemical Signature of Abundant Platinum-Group Minerals
3.2.1. Sperrylite
3.2.2. Braggite-Cooperite-Vysotskite Series
3.2.3. Isomertieite-Mertieite Series
3.2.4. Laurite-Erlichmanite Series
3.2.5. Potarite
3.3. Gold Association and Polymineralic Occurrence of Platinum-Group Minerals
3.4. PGMs Shape, Grain Size Distribution, and Surface Texture in Till
4. Discussion
4.1. Origin of Platinum-Group Minerals in Till
4.2. Suggestions for PGM Exploration
5. Conclusions
- Fifty-eight different PGM species have been identified. Sperrylite is the most abundant PGM (55.86%; n = 1488;) followed by cooperite (9.01%; n = 240), braggite (8.52%; n = 227), Pt-dominated minerals (3.64%; n = 97), mertieite-II (2.74%; n = 73), laurite-erlichmanite (2.70%; n = 72), potarite (2.14%; n = 57), mertieite-I (1.73%; n = 46), isomertieite (1.58%; n = 42), Os ± Ir ± Ru-dominated alloys (1.54%; n = 41), and irarsite (1.28%; n = 34).
- Our observations indicate an equal chance of PGMs occurrence in different types of till, including basal, melt-out, and reworked. This may suggest lower rates of chemical alteration in glaciated environments resulting in stability and better preservation of different PGM species. This hypothesis can be supported by mainly intact surfaces of recovered PGMs.
- Gold-rich potarite grains and the occurrence of PGMs e.g., mertieite-I, isomertieite, vincentite, and vysotskite in gold-dominated aggregates likely suggest crystallization of at least part of recovered PGMs in Au-rich systems.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goldfarb, R.J.; Marsh, E.E.; Monecke, T. The Challenge of Finding New Mineral Resources: Global Metallogeny, Innovative Exploration, and New Discoveries. Soc. Econ. Geol. 2010, 15. [Google Scholar] [CrossRef]
- Jackson, S.E. Mineral Chemistry: Modern Techniques and Applications to Exploration. In The Association of Applied Geochemists Workshop B: Indicator Mineral Methods in Mineral Exploration; Geological Survey of Canada: Fredericton, NB, Canada, 2009; p. 123. [Google Scholar]
- McClenaghan, M.B. Indicator mineral methods in mineral exploration. Geochem. Explor. Environ. Anal. 2005, 5, 233–245. [Google Scholar] [CrossRef] [Green Version]
- Girard, R.; Tremblay, J.; Néron, A.; Longuépée, H.; Makvandi, S.; Bédard, P. Automated Gold Grain Counting. Part 2: What a Gold Grain Size and Shape Can Tell! Minerals 2020, in press. [Google Scholar]
- McClenaghan, M.B.; Kjarsgaard, B.A. Indicator mineral and geochemical methods for diamond exploration in glaciated terrain in Canada. Geol. Soc. Lond. Spec. Publ. 2001, 185, 83–123. [Google Scholar] [CrossRef]
- McClenaghan, M.B.; Kjarsgaard, B.A. Indicator mineral and surficial geochemical exploration methods for kimberlite in glaciated terrain: Examples from Canada. In Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods; Goodfellow, W.D., Ed.; Special Publication No. 5; Geological Association of Canada, Mineral Deposits Division: St. John’s, NL, Canada, 2007; pp. 983–1006. [Google Scholar]
- Malkovets, V.G.; Rezvukhin, D.I.; Belousova, E.A.; Griffin, W.L.; Sharygin, I.S.; Tretiakova, I.G.; Gibsher, A.A.; O’Reilly, S.Y.; Kuzmin, D.V.; Litasov, K.D.; et al. Cr-rich rutile: A powerful tool for diamond exploration. Lithos 2016, 265, 304–311. [Google Scholar] [CrossRef]
- McClenaghan, M.B.; Cabri, L.J. Review of gold and platinum group element (PGE) indicator minerals methods for surficial sediment sampling. Geochem. Explor. Environ. Anal. 2011, 11, 251–263. [Google Scholar] [CrossRef]
- McClenaghan, M.B.; Peter, J.M. Till geochemical signatures of volcanogenic massive sulphide deposits: An overview of Canadian examples. Geochem. Explor. Environ. Anal. 2016, 16, 27–47. [Google Scholar] [CrossRef]
- McClenaghan, M.; Parkhill, M.; Pronk, A.; Seaman, A.; McCurdy, M.; Leybourne, M. Indicator mineral and geochemical signatures associated with the Sisson W–Mo deposit, New Brunswick, Canada. Geochem. Explor. Environ. Anal. 2017, 17, 297–313. [Google Scholar] [CrossRef]
- Averill, S.A. Viable indicator minerals in surficial sediments for two major base metal deposit types: Ni–Cu-PGE and porphyry Cu. Geochem. Explor. Environ. Anal. 2011, 11, 279–291. [Google Scholar] [CrossRef]
- Lael, R.L.; Killen, K. Pressure of shortage-Platinum policy and the Wilson administration during World War I: The Business. Hist. Rev. 1982, 56, 545–558. [Google Scholar] [CrossRef]
- Zientek, M.L.; Loferski, P.J.; Parks, H.L.; Schulte, R.F.; Seal, R.R. Platinum-Group Elements, Chapter N. In Critical Mineral Resources of the United States—Economic and Environmental Geology and Prospects for Future Supply; Schulz, K.J., DeYoung, J.H., Seal, R.R., Bradley, D.C., Eds.; U.S. Geological Survey (USGS): Reston, VA, USA, 2017; USGS Professional Paper 1802: N1–N91. [Google Scholar]
- Chou, C.L. Fractionation of siderophile elements in the Earth’s upper mantle. In Proceedings of the 9th Lunar and Planetary Science Conference 1978, Houston, TX, USA, 13–17 March 1978; pp. 219–230. [Google Scholar]
- O’Driscoll, B.; González-Jiménez, J.M. Petrogenesis of Platinum Group Minerals. Rev. Miner. Geochem. 2016, 81, 489–578. [Google Scholar] [CrossRef] [Green Version]
- Daltry, V.D.C.; Wilson, A.H. Review of platinum-group mineralogy: Compositions and elemental associations of the PG-minerals and unidentified PGE-phases. Miner. Petrol. 1997, 60, 185–229. [Google Scholar] [CrossRef]
- Barnes, S.-J.; Prichard, H.M.; Cox, R.A.; Fisher, P.C.; Godel, B. The location of the chalcophile and siderophile elements in platinum-group element ore deposits (a textural, microbeam and whole rock geochemical study): Implications for the formation of the deposits. Chem. Geol. 2008, 248, 295–317. [Google Scholar] [CrossRef]
- Barnes, S.-J.; Ripley, E.M. Highly siderophile and strongly chalcophile elements in magmatic ore deposits. Rev. Miner. Geochem. 2016, 81, 725–774. [Google Scholar] [CrossRef]
- Song, X.; Wang, Y.; Chen, L. Magmatic Ni–Cu-(PGE) deposits in magma plumbing systems: Features, formation and exploration. Geosci. Front. 2011, 2, 375–384. [Google Scholar] [CrossRef] [Green Version]
- Sutcliffe, R.H.; Sweeny, J.M.; Edgar, A.D. The Lac des Iles Complex, Ontario: Petrology and platinum-group-elements mineralization in an Archean mafic intrusion. Can. J. Earth Sci. 2011, 26, 1408–1427. [Google Scholar] [CrossRef]
- Lightfoot, P.C.; Naldrett, A.J. Proceedings of the Sudbury-Noril’sk Symposium; Special Publication Issue 5; Ontario Geological Survey: Greater Sudbury, ON, Canada, 1994; p. 457.
- Bédard, J.H.; Pagé, P.; Bécu, V.; Schroetter, J.-M.; Tremblay, A. Overview of the geology and Cr-PGE potential of the Southern Québec Ophiolite Belt. In Mineral Resources of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods; Goodfellow, W.D., Ed.; Special Publication No. 5; Geological Association of Canada, Mineral Deposits Division: St. John’s, NL, Canada, 2007; pp. 433–448. [Google Scholar]
- Yang, S.H.; Su, B.-X.; Huang, X.W.; Tang, D.M.; Qin, K.Z.; Bai, Y.; Sakyi, P.A.; Alemayehu, M. Platinum-Group Mineral Occurrences and Platinum-Group Elemental Geochemistry of the Xiadong Alaskan-Type Complex in the Southern Central Asian Orogenic Belt. Minerals 2018, 8, 494. [Google Scholar] [CrossRef] [Green Version]
- Cabri, L.J.; Harris, D.C.; Weiser, T.W. Mineralogy and distribution of platinum-group minerals (PGM) from placer deposits of the world. Explor. Min. Geol. 1996, 5, 73–167. [Google Scholar]
- Cabri, L.J. (Ed.) The platinum-group minerals. In Platinum-Group Elements: Mineralogy, Geology, Recovery; Canadian Institute of Mining and Metallurgy: Montreal, QC, Canada, 1981; CIM Special Volume 23, pp. 83–150. [Google Scholar]
- Walker, R.J. Highly siderophile elements in the Earth, Moon and Mars: Update and implications for planetary accretion and differentiation. Chem. Erde 2009, 69, 101–125. [Google Scholar] [CrossRef]
- Hanley, J.J. The Aqueous Geochemistry of the Platinum-Group Elements (PGE) in Surficial, Low-T Hydrothermal and High-T Magmatic Hydrothermal Environments. In Exploration for Platinum-Group Element Deposits; Mungall, J.E., Ed.; Mineral Assoc Canada: Quebec, QC, Canada, 2005; pp. 35–56. [Google Scholar]
- Weiser, T.W. Platinum-group minerals (PGM) in placer deposits. Geol. Geochem. Miner. Miner. Benefic. Platin.-Group Elem. 2002, 54, 721–756. [Google Scholar]
- Averill, S.A. The application of heavy indicator mineralogy in mineral exploration with emphasis on base metal indicators in glaciated metamorphic and plutonic terrains. In Drift Exploration in Glaciated Terrain; McClenaghan, M.B., Bobrowsky, P.T., Hall, G.E.M., Cook, S.J., Eds.; Geological Society: London, UK, 2001; Special Publication; Volume 185, pp. 69–81. [Google Scholar]
- Kaminsky, F.V.; Belousova, E.A. Manganoan ilmenite as kimberlite/diamond indicator mineral. Russ. Geol. Geophys. 2009, 50, 1212–1220. [Google Scholar] [CrossRef]
- Dare, S.A.S.; Barnes, S.-J.; Prichard, H.M. The distribution of platinum group elements (PGE) and other chalcophile elements among sulfides from the Creighton Ni–Cu–PGE sulfide deposit, Sudbury, Canada, and the origin of palladium in pentlandite. Miner. Depos. 2010, 45, 765–793. [Google Scholar] [CrossRef]
- Pagé, P.; Barnes, S.-J.; Méric, J.; Houlé, M.G. 2015—Geochemical composition of chromite from Alexo komatiite in the western Abitibi greenstone belt: Implications for mineral exploration. In Targeted Geoscience Initiative 4: Canadian Nickel-Copper-Platinum Group Elements-Chromium Ore Systems—Fertility, Pathfinders, New and Revised Models; Ames, D.E., Houlé, M.G., Eds.; Geological Survey of Canada: Fredericton, NB, Canada, 2015; Open File 7856; pp. 187–195. [Google Scholar]
- Makvandi, S.; Ghasemzadeh-Barvarz, M.; Beaudoin, G.; Grunsky, E.C.; McClenaghan, M.B.; Duchesne, C.; Boutroy, E. Partial least squares-discriminant analysis of trace element compositions of magnetite from various VMS deposit subtypes: Application to mineral exploration. Ore Geol. Rev. 2016, 78, 388–408. [Google Scholar] [CrossRef]
- Rukhlov, A.S.; Plouffe, A.; Ferbey, T.; Mao, M.; Spence, J. 2016. Application of trace-element compositions of detrital apatite to explore for porphyry deposits in central British Columbia. In Geological Fieldwork 2015; British Columbia Geological Survey Paper; British Columbia Ministry of Energy and Mines: Vancouver, BC, Cananda, 2016; pp. 145–179. [Google Scholar]
- Huang, X.-W.; Boutroy, E.; Makvandi, S.; Beaudoin, G.; Corriveau, L.; Franco De Toni, A. Trace element composition of iron oxides from IOCG and IOA deposits: Relationship to hydrothermal alteration and deposit subtypes. Miner. Depos. 2019, 54, 525–552. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.-W.; Sappin, A.A.; Boutroy, E.; Beaudoin, G.; Makvandi, S. Trace element composition of igneous and hydrothermal magnetite from porphyry deposits: Relationship to deposit subtypes and magmatic affinity. Econ. Geol. 2019, 114, 917–952. [Google Scholar] [CrossRef]
- Sciuba, M.; Beaudoin, G.; Grzela, D.; Makvandi, S. Trace element composition of scheelite in orogenic gold deposits. Econ. Geol. 2020, 55, 1149–1172. [Google Scholar] [CrossRef]
- Sciuba, M.; Beaudoin, G.; Makvandi, S. Chemical composition of tourmaline in orogenic gold deposits. Econ. Geol. 2020. [Google Scholar] [CrossRef]
- Makvandi, S.; Huang, X.W.; Beaudoin, G.; Quirt, D.; Ledru, P.; Fayek, M. Trace element signatures in hematite and goethite from Kiggavik-Andrew Lake Structural Trend uranium deposits and prospects (Nunavut, Canada). Miner. Depos. 2020. [Google Scholar] [CrossRef]
- Benn, C. Design of indicator mineral surveys for mineral exploration. In Proceedings of the 24th International Applied Geochemistry Symposium, Workshop B. Indicator Mineral Methods in Mineral Exploration, Fredericton, NB, Canada, 1–4 June 2009; pp. 7–12. [Google Scholar]
- Leake, R.C.; Chapman, R.J.; Bland, D.J.; Stone, P.; Cameron, D.G.; Styles, M.T. The origin of alluvial gold in the Leadhills areas of Scotland: Evidence from interpretation of internal characteristics. J. Geochem. Explor. 1998, 63, 7–36. [Google Scholar] [CrossRef]
- Wierchowiec, J. Morphology and chemistry of placer gold grains–indicators of the origin of the placers: An example from the East Sudetic Foreland, Poland. Acta Geol. Pol. 2002, 52, 563–576. [Google Scholar]
- Miller, P.; Reid, A.; Zuiderwyk, M. QEM* SEM Image Analysis in the Determination of Modal Assays, Mineral Associations and Mineral Liberation. In Proceedings of the XIV International Mineral Processing Congress, Toronto, ON, Canada, 17–23 October 1982; pp. 1–20. [Google Scholar]
- Sandmann, D.; Gutzmer, J. Use of mineral liberation analysis (MLA) in the characterization of lithium-bearing micas. JMMCE 2013, 1, 285–292. [Google Scholar] [CrossRef] [Green Version]
- Sylvester, P. Use of the Mineral Liberation Analyzer (MLA) for Mineralogical Studies of Sediments and Sedimentary Rocks. In Quantitative Mineralogy and Microanalysis of Sediments and Sedimentary Rocks; Sylvester, P., Ed.; Short-Course 42; Mineralogical Association of Canada (MAC): St. John’s, NL, Canada, 2012; pp. 1–16. [Google Scholar]
- Makvandi, S.; Beaudoin, G.; McClenaghan, M.B.; Quirt, D.; Ledru, P. PCA of Fe-oxides MLA data as an advanced tool in provenance discrimination and indicator mineral exploration: Case study from bedrock and till from the Kiggavik U deposits area (Nunavut, Canada). J. Geochem. Explor. 2019, 197, 199–211. [Google Scholar] [CrossRef]
- Lougheed, H.D.; McClenaghan, M.B.; Layton-Matthews, D.; Leybourne, M. Exploration Potential of Fine-Fraction Heavy Mineral Concentrates from Till Using Automated Mineralogy: A Case Study from the Izok Lake Cu–Zn–Pb–Ag VMS Deposit, Nunavut, Canada. Minerals 2020, 10, 310. [Google Scholar] [CrossRef] [Green Version]
- McInnes, M.; Greenough, J.D.; Fryer, B.J.; Wells, R. Trace elements in native gold by solution ICP-MS and their use in mineral exploration: A British Columbia example. J. Appl. Geochem. 2008, 23, 1076–1085. [Google Scholar] [CrossRef]
- Makvandi, S.; Beaudoin, G.; McClenaghan, B.M.; Layton-Matthews, D. The surface texture and morphology of magnetite from the Izok Lake volcanogenic massive sulfide deposit and local glacial sediments, Nunavut, Canada: Application to mineral exploration. J. Geochem. Explor. 2015, 150, 84–103. [Google Scholar] [CrossRef]
- Dilabio, R.N.W. Classification and Interpretation of the Shapes and Surface Textures of Gold Grains from Till; Geological Survey of Canada Contribution N. 32391; Geological Survey of Canada: Fredericton, NB, Canada, 1991; pp. 297–313. [Google Scholar]
- Wheeler, J.O.; Hoffman, P.F.; Card, K.D.; Davidson, A.; Sanford, B.V.; Okulitch, A.V.; Roest, W.R. Geological Map of Canada; Geological Survey of Canada: Fredericton, NB, Canada, 1996; Map 1860A, scale 1:5000000. [Google Scholar]
- Cabri, L.J.; Rudashevsky, N.S.; Rudashevsky, V.N.; Lastra, R. Hydroseparation: A new development in process mineralogy of platinum-bearing ores. CIM Bull. 2006, 99, 1–7. [Google Scholar]
- Plouffe, A.; McClenaghan, M.B.; Paulen, R.C.; McMartin, I.; Campbell, J.E.; Spirito, W.A. Processing of glacial sediments for the recovery of indicator minerals: Protocols used at the Geological Survey of Canada. Geochem. Explor. Environ. Anal. 2013, 13, 301–316. [Google Scholar] [CrossRef]
- Maitre, J.; Bouchard, K.; Bédard, L.P. Mineral grains recognition using computer vision and machine learning. Comput. Geosci. 2019, 130, 84–93. [Google Scholar] [CrossRef]
- Barnes, S.-J.; Naldrett, A.J.; Gorton, M.P. The origin of the fractionation of platinum-group elements in terrestrial magmas. Chem. Geol. 1985, 53, 303–323. [Google Scholar] [CrossRef]
- Crocket, J.H. Platinum-group elements in basalts from Maui, Hawaii: Low abundances in Alkali basalts. Can. Miner. 2002, 40, 595–609. [Google Scholar] [CrossRef]
- Mungall, J.E.; Andrews, D.R.A.; Cabri, L.J.; Sylvester, P.; Tubrett, M. Partitioning of Cu, Ni, Au, and platinum-group elements between monosulfide solid solution and sulfide melt under controlled oxygen and sulfur fugacities. Geochim. Cosmochim. Acta 2005, 69, 4349–4360. [Google Scholar] [CrossRef] [Green Version]
- Cabri, L.J.; Strwant, J.M.; Turner, K.; Skinner, B.J. On cooperite, braggite, vysotskite. Amer. Miner. 1978, 63, 832–839. [Google Scholar]
- Craw, D.; Kerr, G.; Reith, F.; Falconer, D. Pleistocene paleodrainage and placer gold redistribution, western Southland, New Zealand. N. Zeal. J. Geol. Geophys. 2015, 58, 137–153. [Google Scholar] [CrossRef]
- Mahaney, W.C. Atlas of Sand Grain Surface Textures and Applications; Oxford University Press: Oxford, UK, 2002; p. 256. [Google Scholar]
- Van Hoesen, J.G.; Orndorff, R.L. A comparative SEM study on the micromorphology of glacial and nonglacial clasts with varying age and lithology. Can. J. Earth Sci. 2004, 41, 1123–1139. [Google Scholar] [CrossRef]
- Vos, K.; Vandenberghe, N.; Elsen, J. Surface textural analysis of quartz grains by scanning electron microscopy (SEM): From sample preparation to environmental interpretation. Earth-Sci. Rev. 2014, 128, 93–104. [Google Scholar] [CrossRef]
- Craw, D.; Mitchell, M.; McCann, R.; Reay, A. Compositional variations and morphological evolution in platinum beach placers, southern New Zealand. Miner. Depos. 2013, 48, 81–97. [Google Scholar] [CrossRef]
- Brundin, N.H.; Bergstrom, J. Regional prospecting for ores based on heavy minerals in glacial till. J. Geochem. Explor. 1977, 7, 1–19. [Google Scholar] [CrossRef]
- Chapman, R.; Leake, R.; Styles, M. Microchemical characterization of alluvial gold grains as an exploration tool. Gold Bull. 2002, 35, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Averill, S.A. Useful Ni-Cu-PGE versus kimberlite indicator minerals in surficial sediments: Similarities and differences. In Application of Till and Stream Sediment Heavy Mineral and Geochemical Methods to Mineral Exploration in Western and Northern Canada; Paulen, R.C., McMartin, I., Eds.; Short Course Notes; Geological Association of Canada: St. John’s, NL, Canada, 2009; Volume 18, pp. 125–139. [Google Scholar]
- Oberthür, T. The fate of platinum-group minerals in the exogenic environment—from sulfide ores via oxidized ores into placers: Case studies Bushveld Complex, South Africa, and Great Dyke, Zimbabwe. Minerals 2018, 8, 581. [Google Scholar] [CrossRef] [Green Version]
- Shilts, W.W. Principles of geochemical exploration for sulphide deposits using shallow samples of glacial drift. Can. Metall. Bull. 1975, 68, 73–80. [Google Scholar]
- Shilts, W.W.; Kettles, I.M. Geochemical-mineralogical profiles through fresh and weathered till. Chapter 11. In Glacial Indicator Tracing; Balkema: Rotterdam, The Netherlands, 1990; p. 30. [Google Scholar]
- McMartin, I.; McClenaghan, M.B. Till geochemistry and sampling techniques in glaciated shield terrain: A review. Geol. Soc. Lon. Spec. Publ. 2001, 185, 19–43. [Google Scholar] [CrossRef]
- Suárez, S.; Prichard, H.M.; Velasco, F.; Fisher, P.C.; McDonald, I. Alteration of platinum-group minerals and dispersion of platinum-group elements during progressive weathering of the Aguablanca Ni–Cu deposit, SW Spain. Miner. Depos. 2010, 45, 331–350. [Google Scholar] [CrossRef]
- Tolstykh, N.D.; Podlipsky, M.Y. Heavy concentrate halos as prospecting guides for PGE mineralization. Geol. Ore Depos. 2010, 52, 196–214. [Google Scholar] [CrossRef]
- Cabri, L.J. The platinum-group minerals. In The Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum-Group Elements; Cabri, L.J., Ed.; Canadian Institute of Mining, Metallurgy and Petroleum: Montreal, QC, Canada, 2002; Special Volume 54, pp. 13–129. [Google Scholar]
- Zaccarini, F.; Garuti, G.; Pushkarev, E.; Thalhammer, O. Origin of Platinum Group Minerals (PGM) Inclusions in Chromite Deposits of the Urals. Minerals 2018, 8, 379. [Google Scholar] [CrossRef] [Green Version]
- Pagé, P.; Girard, R.; Tremblay, J. Detrital Platinum-group minerals from till samples: Mineralogy, evolution and their use as exploration tool. In Proceedings of the Resources for Future Generations 2018, Vancouver, BC, Canada, 16–21 June 2018. [Google Scholar]
- Prichard, H.M.; Neary, C.R.; Potts, P.J. Platinum group minerals in the Shetland ophiolite. In Proceedings of the Conference Metallogeny of Basic and Ultrabasic Rocks, Edinburgh, Scotland, UK, 9–12 April 1985; pp. 395–414. [Google Scholar]
- Prichard, H.M.; Barnes, S.-J.; Maier, W.D.; Fisher, P.C. Variations in the nature of the platinum-group minerals in a cross-section through the Merensky Reef at Impala Platinum: Implications for the mode of formation of the reef. Can. Miner. 2004, 42, 423–437. [Google Scholar] [CrossRef] [Green Version]
- Prichard, H.M.; Economou-Eliopoulos, M.; Fisher, P.C. Contrasting platinum-group mineral assemblages from two different podiform chromitite localities in the Pindos ophiolite complex, Greece. Can. Miner. 2008, 46, 329–341. [Google Scholar] [CrossRef] [Green Version]
PGM | Formula | n. * | PGM | Formula | n. |
---|---|---|---|---|---|
Vysotskite | (Pd,Ni)S | 11 | Zvyagintsevite | Pd3Pb | 3 |
Atheneite | (Pd,Hg)3As | 11 | Arsenopalladinite | (Pd8(As,Sb)3 | 2 |
Hollingworthite | (Rh,Pt,Pd)AsS | 10 | Chrisstanleyite | Ag2Pd3Se4 | 2 |
Tatyanaite | (Pt,Pd,Cu)9Cu3Sn4 | 10 | Iridarsenite | (Ir,Ru)As2 | 2 |
Vincentite | Pd3As | 10 | Palarstanide | Pd5(Sn,As)2 | 2 |
Anduoite | (Ru,Os)As2 | 7 | Palladseite | Pd17Se15 | 2 |
Mitrofanovite | Pt3Te4 | 7 | Rustenburgite | (Pt,Pd)3Sn | 2 |
Pd-dominated alloys | Pd | 6 | Atokite | [Pd,Pt)3Sn] | 1 |
Weishanite | Pd(±Pt)AuHg | 6 | Kingstonite | [Rh,Ir,Pt)3S4] | 1 |
Osarsite | (Os,Ru)AsS | 6 | Kotulskite | (Pd(Te,Bi) | 1 |
Hongshiite | PtCu | 6 | Merenskyite | (Pd,Pt)(Te,Bi)2 | 1 |
Paolovite | Pd2Sn | 5 | Minakawaite | RhSb | 1 |
Cabriite | Pd2CuSn | 5 | Padmaite | PdBiSe | 1 |
Stannopalladinite | (Pd,Cu)3Sn2 | 4 | Palladobismutharsenide | Pd2(As,Bi) | 1 |
Taimyrite | (Pd,Cu,Pt)3Sn | 4 | Plumbopalladinite | Pd3Pb2 | 1 |
Naldretteite | Pd2Sb | 4 | Sudovikovite | PtSe2 | 1 |
Niggliite | PtSn | 3 | Telargpalite | (Pd,Ag)3Te | 1 |
Omeiite | (Os,Ru)As2 | 3 | Ungavaite | Pd4Sb3 | 1 |
Ruarsite | (Ru,Os)AsS | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makvandi, S.; Pagé, P.; Tremblay, J.; Girard, R. Exploration for Platinum-Group Minerals in Till: A New Approach to the Recovery, Counting, Mineral Identification and Chemical Characterization. Minerals 2021, 11, 264. https://doi.org/10.3390/min11030264
Makvandi S, Pagé P, Tremblay J, Girard R. Exploration for Platinum-Group Minerals in Till: A New Approach to the Recovery, Counting, Mineral Identification and Chemical Characterization. Minerals. 2021; 11(3):264. https://doi.org/10.3390/min11030264
Chicago/Turabian StyleMakvandi, Sheida, Philippe Pagé, Jonathan Tremblay, and Réjean Girard. 2021. "Exploration for Platinum-Group Minerals in Till: A New Approach to the Recovery, Counting, Mineral Identification and Chemical Characterization" Minerals 11, no. 3: 264. https://doi.org/10.3390/min11030264
APA StyleMakvandi, S., Pagé, P., Tremblay, J., & Girard, R. (2021). Exploration for Platinum-Group Minerals in Till: A New Approach to the Recovery, Counting, Mineral Identification and Chemical Characterization. Minerals, 11(3), 264. https://doi.org/10.3390/min11030264