Ore-Bearing Magmatic Systems with Complex Sn–Au–Ag Mineralization in the North-Eastern Verkhoyansk–Kolyma Orogenic Belt, Russia
Abstract
:1. Introduction
2. Methods
3. Geological Setting
3.1. Tectonics of the Study Area
3.2. Kuranakh, Elikchan, and Istekh Ore Fields
3.3. Geochronology of Magmatic Rocks
4. Petrography and Mineralogy of Magmatic Rocks
5. Geochemistry of Magmatic Rocks
6. Discussion
7. Conclusions
- 1
- The relationships established between igneous rocks of varying compositions and the available geological data enabled the recognition of five stages in the magmatic and metallogenic evolution of the Kuranakh, Elikchan, and Istekh ore fields in the north-eastern Verkhoyansk–Kolyma orogenic belt, Eastern Russia. The first stage (Berriasian–Barremian) was marked by the generation of arc-related volcanic rocks and the emplacement of granodiorites in an active continental margin geodynamic setting. The Au–Ag occurrences of the Istekh ore field were formed during this stage. The second to fourth stages occurred in a rifting environment. During the second stage (Aptian–early Albian), granites containing cassiterite, wolframite, and molybdenite were emplaced. Granites and pegmatites of the Kuranakh massif exhibit Ag, Sn, Au, As, Pb, and Sb mineralization, while granites of the Istekh ore field have associated Sn and W occurrences. The third stage (Albian) was characterized by the accumulation of felsic volcanic rocks and intrusion of rhyolite- and granite-porphyry dykes. These magmatic rocks are accompanied by Au–Ag and Sn–W mineralization. The fourth stage (Turonian–Campanian) featured the production of subalkaline basaltoids and the intrusion of trachydolerite dykes rich in volatiles and ore elements. During the fifth (post-magmatic) stage, magmatic rocks located along the fault zones were propylitized with the formation of Sn–S–Ag–Sb ores and the Altinsky Pb–Ag deposit;
- 2
- The studied granitoid massifs are polygenetic. Parental melts for the granodiorites were derived from amphibolite substrata, whereas those for the granites were derived from dacites–rhyolites or metagreywacke substrata. The rhyolite and granite porphyries were most likely derived from melt that originated from post-orogenic re-melting of lower-crustal substrata with the continued input of additional heat from a deep-seated source. The trachydolerites crystallized from melts of metasomatized mantle. The rhyolite porphyries and trachydolerites exhibit evidence of syntexis of basaltic and rhyolitic melts;
- 3
- Compositions of the rock-forming and accessory minerals of the studied magmatic rocks, the high calculated temperatures of magma generation, the geochemically anomalous characteristics of pegmatites, and the common geochemical characteristics of the magmatic rocks reflect their location in a long-lived and highly permeable zone of the lithosphere, which allowed additional heat, volatiles, and ore elements to be supplied from subcrustal sources to magma-generation levels during the magmatic evolution of the study area.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parfenov, L.M.; Kuz’min, M.I. (Eds.) Tectonics, Geodynamics and Metallogeny of the Sakha Republic (Yakutia); MAIK Nauka/Inteperiodica: Moscow, Russia, 2001. (In Russian) [Google Scholar]
- Prokopiev, A.V.; Borisenko, A.S.; Gamyanin, G.N.; Pavlova, G.G.; Fridovsky, V.Y.; Kondrat’eva, L.A.; Anisimova, G.S.; Trunilina, V.A.; Ivanov, A.I.; Travin, A.V.; et al. Age constraints and tectonic settings of metallogenic and magmatic events in the Verkhoyansk-Kolyma folded area. Russ. Geol. Geophys. 2018, 59, 1237–1253. [Google Scholar] [CrossRef]
- Thompson, J.F.H.; Sillitoe, R.H.; Baker, T.; Laug, J.R.; Mortenson, J.K. Intrusion-related gold deposits associated with tungsten-tin provinces. Mineral. Depos. 1999, 34, 323–324. [Google Scholar] [CrossRef]
- Flerov, B.L. Tin Deposits of the Yana-Kolyma Fold Region; Nauka: Novosibirsk, Russia, 1976. (In Russian) [Google Scholar]
- Mitrofanov, N.P. Geodynamic Conditions for the Formation of Tin Deposits in the North-Western Sector of the Pacific Ore Belt; VIMS: Moscow, Russia, 2013; Volume 29. (In Russian) [Google Scholar]
- Fershtater, G.B. Petrology of Major Intrusive Associations; Nauka: Moscow, Russia, 1987. (In Russian) [Google Scholar]
- Tischendorf, G.; Palchen, W. Zur klassification von Granitoides. Z. Geol. Wiss. Berlin. 1985, 13, 615–627. (In German) [Google Scholar]
- Frost, B.R.; Arculus, R.J. A geochemical classification for granitic rocks. J. Petrol. 2001, 42, 2033–2048. [Google Scholar] [CrossRef]
- Barbarin, B.A. Review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 1999, 46, 605–626. [Google Scholar] [CrossRef]
- Zhou, X.M.; Li, W.X. Origin of Late Mesozoic rocks in southeastern China: Implications for lithospheric subduction and underplating of mafic magmas. Tectonophysics 2000, 326, 269–287. [Google Scholar] [CrossRef]
- Chen, G.N.; Grapes, R. Granite Genesis: In Situ Melting and Crustal Evolution; Springer: Berlin, Germany, 2007. [Google Scholar]
- Shcheglov, A.D.; Govorov, I.N. Nonlinear Metallogeny; Nedra: Leningrad, Russia, 1987. (In Russan) [Google Scholar]
- Gonevchuk, G.A.; Gonevchuk, V.G. The heterogeneous and polychronous Chalba granite pluton in the Komsomolsk ore district in the Far East of Russia with regard to new conceptions of the geological structure of the region. Russ. J. Pac. Geol. 2013, 7, 369–383. [Google Scholar] [CrossRef]
- Nekrasov, I.Y. Tin in Magmatic and Postmagmatic Processes; Nauka: Moscow, Russia, 1984. (In Russian) [Google Scholar]
- Trunilina, V.A.; Orlov, Y.S.; Roev, S.P. Geology and Ore Content of Magmatites of the Polousnyi Ridge; YSC SB RAS publishing house: Yakutsk, Russia, 1996. (In Russian) [Google Scholar]
- Kamber, B.S.; Ewart, A.; Collerson, K.D.; Bruce, M.C.; Mc Donald, G.D. Fluid–mobile trace element constraints on the role of slab melting and implications for Archaean crustal growth models. Contrib. Mineral. Petrol. 2002, 144, 38–56. [Google Scholar] [CrossRef]
- Lenharo, S.L.R.; Pollard, P.J.; Born, H. Petrology and textural evolution of granites associated with tin and rare-metals mineralization at the Pitinga mine, Amazonas, Brazil. Lithos 2003, 66, 37–64. [Google Scholar] [CrossRef]
- Kozlov, V.D. Trace-element composition and origin of granitoids from the Shakhtama complex and Kukul’bei rare-metal complex (Aga zone, Transbaikalia). Russ. Geol. Geophys. 2011, 5, 526–536. [Google Scholar] [CrossRef]
- Efremov, S.V. Rare-Metal Granitoids of Chukotka: Geochemistry, Sources of Matter, and Model of Formation; Synopsis of Doctoral Thesis in Geology and Mineralogy: Irkutsk, Russia, 2012. (In Russian) [Google Scholar]
- Schuiling, R.D. Tin belts on the continents around the Atlantic ocean. Econ. Geol. 1967, 62, 540–551. [Google Scholar] [CrossRef]
- Shcheglov, A.D. Tin deposits and the mantle. Glob. Tecton. Metallog. 1991, 4, 69–74. [Google Scholar] [CrossRef]
- Dias, G.; Simões, P.P.; Ferreira, N.; Leterrierc, J. Mantle and Crustal Sources in the Genesis of Late-Hercynian Granitoids (NW Portugal). Geochemical and Sr-Nd Isotopic Constraints. Gondwana Res. 2002, 5, 287–305. [Google Scholar] [CrossRef]
- Safonov, Y.G. Gold and gold-bearing deposits of the World: Genesis and metallogenic potential. Geol. Ore Depos. 2003, 45, 265–278. [Google Scholar]
- Groves, D.I.; Condie, K.C.; Goldfarb, R.J.; Hronsky, J.M.A.; Vielreicher, R. Secular changes in global tectonic processes and their influence on the temporal distribution of gold-bearing mineral deposits. Econ. Geol. 2005, 100, 203–224. [Google Scholar] [CrossRef]
- Goldfarb, R.; Taylor, R.D.; Collins, G.S.; Goryachev, N.A.; Orlandini, O.F. Phanerozoic continental growth and gold metallogeny of Asia. Gondwana Res. 2014, 25, 49–102. [Google Scholar] [CrossRef]
- Goryachev, N.A.; Pirajno, F. Gold deposits and gold metallogeny of Far East Russia. Ore Geol. Rev. 2014, 59, 123–151. [Google Scholar] [CrossRef]
- Goryachev, N.A. Gold deposits in the Earth’s history. Geol. Ore Depos. 2019, 61, 495–511. [Google Scholar] [CrossRef]
- Khanchuk, A.I. Geodynamics, Magmatism, and Metallogeny of Eastern Russia; Dal’nauka: Vladivostok, Russia, 2006. (In Russian) [Google Scholar]
- Gamyanin, G.N.; Goryachev, N.A.; Bakharev, A.G.; Kolesnichenko, P.P.; Zaitsev, A.I.; Diman, E.N.; Berdnikov, N.V. Conditions of Initiation and Evolution of Granitoid Gold-Ore-Magmatic Systems in Mesozoides of Northeast Asia; SVKNII DVO RAN: Magadan, Russia, 2003; ISBN 5-94729-048-0. (In Russian) [Google Scholar]
- Borisenko, A.S.; Zhmodik, S.M.; Naumov, E.A.; Spiridonov, A.M.; Berzina, A.N. Age limits of formation of gold mineralization in Eastern Transbaikalia. In Materials of the Conference Native Gold: Typomorphism of Mineral Associations, Conditions for the Formation of Deposits, Problems of Applied Research; IGEM RAS: Moscow, Russia, 2010; pp. 82–83. (In Russian) [Google Scholar]
- Dril, S.I.; Gerasimov, N.S.; Sasim, S.A.; Vladimirova, T.A.; Spiridonov, A.M.; Il’ina, N.N.; Chukanova, V.S. Pb isotope evolution of some model gold-ore and polymetallic deposits of the Mongol-Okhotsk foldbelt. In Modern Problems of Geochemistry. Transactions of the 33rd All-Russian Meeting Devoted to 95th Anniversary of Academician, L.V. Tauson; Institute of Geography, SB RAS: Irkutsk, Russia, 2012; Volume 2, pp. 218–220. (In Russian) [Google Scholar]
- Abramov, B.N. Sources for ore-bearing fluids at Au, Mo, W, and Pb-Zn deposits in eastern Transbaikalia (from rare and REE distribution data). Izv. Tomsk Polytech. Univ. Engeneering Georesources 2019, 330, 71–83. (In Russian) [Google Scholar] [CrossRef] [Green Version]
- Borisenko, A.S.; Spiridonov, A.M.; Isokh, A.E.; Prokopiev, A.V.; Lebedev, V.I.; Gas’kov, I.V.; Zorina, L.D.; Kostin, A.V.; Naumov, E.A.; Tretyakova, I.G. Highly productive stages of mafic and granitoid magmatism in North Asia, assessment of their potential resources, scientific substantiation of criteria for prediction and search for large deposits (Cu-Ni-Pt, Co, Au, Ag, and rare-metal). Probl. Mirageny Russ. Spec. Issue Electron. J. Vestnic ONZ RAS 2012, 237–252. (In Russian) [Google Scholar] [CrossRef]
- Janoušek, V.; Farrow, C.M.; Erban, V. Interpretation of whole-rock geochemical data in igneous geochemistry: Introducing Geochemical Data Toolkit (GCDkit). J. Petrol. 2006, 47, 1255–1259. [Google Scholar] [CrossRef]
- Carr, M.J. Igpet for Windows; Terra Softa Inc.: Somerset, NJ, USA, 2010. [Google Scholar]
- Korinevsky, E.V. PetroExplorer-a new computer program for storing and calculating chemical analyses of minerals and rocks. In Abstracts of the VI International School of Earth Sciences Named after L. L. Perchuk; Institute of mineralogy UB RAS: Odessa, Ukraina, 2010; pp. 63–66. (In Russian) [Google Scholar]
- Kile, D.E.; The Universal Stage: The Past, Present, and Future of a Mineralogical Research Instrument. Geochem. News. 2009, 140. Available online: http://www.geochemsoc.org/publications/geochemicalnews/gn140jul09/theuniversalstage.htm (accessed on 10 June 2009).
- Saranchina, G.M.; Kozhevnikova, V.N. Fedorovsky Method: Determination of Minerals, Microstructural Analysis; Nedra: Leningrad, Russia, 1985. (In Russian) [Google Scholar]
- Baraz, V.R.; Levchenko, V.P.; Povzner, A.A. Structure and Physical Properties of Crystals; Ural State University: Yekaterinburg, Russia, 2009. (In Russian) [Google Scholar]
- Lindsley, D.H. Pyroxene thermometry. Am. Mineral. 1963, 68, 477–493. [Google Scholar]
- Yavuz, F. Win Pyrox: A Windows program for pyroxene calculation classification and thermobarometry. Am. Mineral. 2013, 98, 1338–1359. [Google Scholar] [CrossRef]
- Rudolfi, R.; Renzolli, A. Calcic amphiboles in calc-alkaline and alkaline magmas: Thermobarometric and chemometric empirical equations valid up to 1130 °C and 2.2 Gpa. Contrib. Mineral. Petrol. 2012, 163, 877–895. [Google Scholar] [CrossRef]
- Hammerstrom, J.M.; Zen, E. Aluminium in Hbl an empirical igneous. Am. Mineral. 1986, 71, 1297–1313. [Google Scholar]
- Uchida, E.; Endo, S.; Makino, M. Relationship between solidification depth of granitic rocks anf formation of hydrothermal ore deposits. Resour. Geol. 2007, 57, 47–56. [Google Scholar] [CrossRef]
- Henry, D.J.; Guidotti, C.V.; Thompson, J. The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implication for geothermometry and Ti-substitution mechanismus. Am. Mineral. 2005, 90, 316–328. [Google Scholar] [CrossRef]
- Troshin, Y.P.; Grebenschikova, V.I.; Antonov, А.Y. Volatile components in biotites and metallogenic specialization of intrusions. In Mineralogical Criteria for Ore Content Assessment; Nauka: Leningrad, Russia, 1981; pp. 73–83. (In Russian) [Google Scholar]
- Wones, D.R.; Eugster, H.P. Stability of biotite: Experiment, theory and application. Am. Mineral. 1965, 9, 1228–1272. [Google Scholar]
- Tindle, A.G.; Webb, P.C. Estimation of lithium contents in trioctahedral micas using microprobe data: Application to micas from granitic rocks. Eur. J. Mineral. 1990, 2, 595–610. [Google Scholar] [CrossRef]
- Jung, S.; Pfander, J.A. Source composition and melting temperatures of orogenic granitoids–constrains from CaO/Na2O, Al2O3/TiO2 and accessory mineral saturation thermometry. Eur. J. Mineral. 2007, 1, 5–40. [Google Scholar] [CrossRef]
- French, W.J.; Cameron, E.P. Calculation on the temperature of crystallization of silicates from basaltic melts. Mineral. Mag. 1981, 44, 19–26. [Google Scholar] [CrossRef]
- Irber, W. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminious granite suites. Geochem. Cosmochem. Acta 1999, 63, 489–508. [Google Scholar] [CrossRef]
- Ovchinnikov, L.N. Applied Geochemistry; Nedra: Moscow, Russia, 1990. (In Russian) [Google Scholar]
- Nokleberg, W.J.; Parfenov, L.M.; Monger, J.W.H.; Norton, I.O.; Khanchuk, A.I.; Stone, D.B.; Scotese, C.R.; Scholl, D.W.; Fujita, K. Phanerozoic Tectonic Evolution of the Circum-North Pacific. Professional Paper 1626; U.S. Geological Survey: Reston, VA, USA, 2000. [Google Scholar]
- Nokleberg, W.J. (Ed.) Metallogenesis and Tectonics of Northeast Asia. Professional Paper 1765; U.S. Geological Survey: Reston, VA, USA, 2010. [Google Scholar]
- Toro, J.; Miller, E.; Prokopiev, A.V.; Zhang, X.; Veselovskiy, R.V. Mesozoic orogens of the Arctic from Novaya Zemlya to Alaska. J. Geol. Soc. 2016, 173, 989–1006. [Google Scholar] [CrossRef]
- Akinin, V.V.; Miller, E.L.; Toro, J.; Prokopiev, A.V.; Gottlieb, E.S.; Pearcey, S.; Polzunenkov, G.O.; Trunilina, V.A. Episodicity and the dance of late Mesozoic magmatism and deformation along the northern circum-Pacific margin: North-eastern Russia to the Cordillera. Earth Sci. Rev. 2020, 208, 103272. [Google Scholar] [CrossRef]
- Trunilina, V.A.; Parfenov, L.M. Indigirka belt of extension Earth crust. In Tectonics, Geodynamics, and Metallogeny of the Sakha Republic (Yakutia); Parfenov, L.M., Kuzmin, M.I., Eds.; Nauka/Interperiodika: Moscow, Russia, 2001; pp. 277–290. (In Russian) [Google Scholar]
- Layer, P.W.; Newberry, R.; Fujita, K.; Parfenov, L.M.; Trunilina, V.A.; Bakharev, A.G. Tectonic setting of the plutonic belts of Yakutia, Northeast Russia, based on 40Ar/39Ar and trace element geochemistry. Geology 2001, 29, 167–170. [Google Scholar] [CrossRef]
- Oxman, V.S.; Prokopiev, A.V. Terrigenous tectonic melanges of the Polousnyi synclinorium. Otechestvennaya Geol. 2000, 5, 47–50. (In Russian) [Google Scholar]
- Musalitin, L.A. Geologic Map of the Russia Scale 1:200 000, Sheet R-54-XXI, XXII. Explanatory Note; Nedra: Moscow, Russia, 1967. (In Russian) [Google Scholar]
- Boyarshinov, V.V. Geological Map of the Russia, Scale 1: 200 000, Sheet R-54-XXIII, XXIV. Explanatory Note; Nedra: Moscow, Russia, 1968. (In Russian) [Google Scholar]
- Trunilina, V.А.; Roev, S.P.; Orlov, Y.S. Volcanic-Plutonic Belts of North-East Yakutia; Sakhapoligrafizdat: Yakutsk, Russia, 2007; 152p. (In Russian) [Google Scholar]
- Nenashev, N.I.; Zaitsev, A.I. Evolution of Mesozoic Granitoid Magmatism of the Yana-Kolyma Fold Area; YaF SO AN SSSR: Yakutsk, Russia, 1985. (In Russian) [Google Scholar]
- Trunilina, V.A.; Roev, S.P.; Orlov, Y.A. Granitoids of the Batholitic Belts in the Northeastern Verkhoyansk-Kolyma Mesozoides; Media-Holding “Yakutia”: Yakutsk, Russia, 2013. (In Russian) [Google Scholar]
- Gertseva, M.V.; Sysoev, I.V. Stages of formation of Main Kolyma plutonic belt. In Fundamental Problems of Tectonics and Geodynamics. V.1; GEOS: Moscow, Russia, 2020; pp. 165–170. (In Russian) [Google Scholar]
- Rock, N.M.S. The International Mineralogical Association (IMA/CNMMN) pyroxene nomenclature scheme: Computerization and its consequences. Mineral. Petrol. 1990, 43, 99–119. [Google Scholar] [CrossRef]
- Ryabov, V.V.; Zolotukhin, V.V. Minerals of Differentiated Traps; Nauka: Novosibirsk, Russia, 1977. (In Russian) [Google Scholar]
- Hollister, L.S.; Grissom, G.C.; Peters, E.K.; Stowell, H.H.; Sisson, V.B. Confirmation of the empirical correlation on the Al in hornblende with pressure of solidification of calc-alkaline plutons. Am. Mineral. 1987, 72, 231–239. [Google Scholar]
- Brimhall, G.H.; Crerar, D.A. Ore fluids: Magmatic to supergene. In Termodynamic Modeling of Geological Materials. Minerals, Fluids and Melts; De Gruyter: Berlin, Germany, 1987; Volume 17, pp. 235–321. [Google Scholar]
- Brown, G.G. A comment on the role of water in the partial fusions of crystal rocks. Earth Planet. Sci. Lett. 1970, 9, 355–358. [Google Scholar] [CrossRef]
- Förster, H.J. Halogen Fugicities (HF, HCl) in Melts and Fluids. A. Surv. of Published Data. Z. Geol. Wiss. 1990, 18, 255–266. [Google Scholar]
- Rub, M.G.; Ashikhmina, N.A.; Gladkov, N.I. Typomorphic features of accessory minerals and their significance for identification of genesis and ore content of granitoids. In Granitoids of Folded and Activated Regions and Their Ore Content; Nauka: Moscow, Russia, 1977; pp. 197–235. (In Russian) [Google Scholar]
- Ermolov, P.V.; Izoh, A.E.; Vladimirov, A.G. Garnet as an indicator of the conditions of granite formation in the crust. DAN Russia 1979, 246, 208–211. (In Russian) [Google Scholar]
- Pupin, J.P. Zircon and Granite Petrology. Contrib. Mineral. Petrol. 1980, 73, 207–220. [Google Scholar] [CrossRef]
- Lyakhovich, V.V. Accessory Minerals of Rocks; Nedra: Moscow, Russia, 1979. (In Russian) [Google Scholar]
- Trunilina, V.A.; Orlov, Y.S.; Roev, S.P. Composition and genetic aspects of the formation of granitoids of the latite series of the Polousnyi ridge (north batholith zone of the Verkhoyansk-Kolyma mesozoides. Pacif. Geol. 2002, 5, 15–27. (In Russian) [Google Scholar]
- Wilson, M. Igneous Petrogenesis; Unwin Hayman: London, UK, 1989. [Google Scholar]
- Maniar, P.D.; Piccoli, P.M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Datsenko, V.М. Petrogeochemical typification of granitoids of the south-western framing of the Siberian platform. In Materials of the Second All-Russian Petrographic Meeting; Komi SC UB RAS: Syktyvkar, Russia, 2000; Volume 2, pp. 270–274. (In Russian) [Google Scholar]
- Hofmann, A.W. Mantle geochemistry: The message from oceanic volcanism. Nature 1997, 385, 219–228. [Google Scholar] [CrossRef]
- Kawabe, I. Tetrad effects and fine structures of REE abundance patterns of granitic and rhyolitic rocks. Geochem. J. 1995, 29, 213–230. [Google Scholar] [CrossRef]
- Zhenhua, Z.; Xiaolin, X.; Xiaodong, H.; Yixian, W.; Qiang, W.; Zhiwei, B.; Jahn, B. Controls on the REE tetrad effect in granites:Evidence from the Qianlishan and Baerzhe Granites, China. Geochem. J. 2002, 36, 527–543. [Google Scholar]
- Gusev, А.I.; Gusev, А.А. Tetrad effect of fractionation of rare earth elements and its use in solving problems of granitoids petrology. Achiev. Mod. Nat. Sci. 2011, 5, 45–49. (In Russian) [Google Scholar]
- Nakamura, K.; Morishita, T.; Chang, Q.; Neo, N.; Kumagai, H. Discovery of lanthanide tetrad effect in an oceanic plagiogranite from an Ocean Core Complex at the Central Indian Ridge 25°S. Geochem. J. 2007, 41, 135–140. [Google Scholar] [CrossRef]
- Gerdes, A.; Worner, G.; Henk, A. Post-collisional granite generation and HT-LP metamorphism by radiogenic heating: The Variscan South Bohemian Batholith. Geol. Soc. 2000, 157, 577–587. [Google Scholar] [CrossRef]
- Rainer, V. The Abschatzung der Bildungs temperature magmatischer Schmeltzen. Z. Geol. Wissen. 1998, 18, 5–14. [Google Scholar]
- Piskunov, B.М.; Abdurakhmanova, А.I.; Kim, C.U. Composition-depth ratio for volcanoes of the Kuril island arc and its petrological significance. Volcanol. Seismol. 1979, 4, 57–67. (In Russian) [Google Scholar]
- Belyaev, G.М.; Rudnik, V.А. Formational-Genetic Types of Granitoids; Nedra: Leningrad, Russia, 1978. (In Russian) [Google Scholar]
- Eby, N. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology 1992, 20, 641–644. [Google Scholar] [CrossRef]
- Perchuk, L.L.; Aranovich, L.A.; Kosyakova, N.A. A. Thermodynamic models of the origin and evolution of basalt magmas. Vestn. MSU Ser. Geol. 1982, 4, 3–26. (In Russian) [Google Scholar]
- Towson, L.V.; Gundobin, G.M.; Zorina, L.D. Geochemical Fields of Ore-Magmatic Systems; Nauka: Novosibirsk, Russia, 1987. (In Russian) [Google Scholar]
- Turner, S.; Arnaud, N.; Liu, J.; Rogers, N.; Hawkesworth, C.; Harris, N.; Kelley, S.; Van Calsteren, P.; Deng, W. Post-collision, shoshonitic volcanism on the Tibetan Plateau: Implications for Convective Thinning of the Lithosphere and the Source of Ocean Island Basalts. J. Petrol. 1996, 37, 45–71. [Google Scholar] [CrossRef]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace element discrimination diagrams for the tectonic interpretation of the granitic rocks. J.Petrol. 1984, 25, 956–963. [Google Scholar] [CrossRef] [Green Version]
- Kozlov, V.D. Geochemistry and Ore Content of Granitoids of Rare Metal Provinces; Nauka: Novosibirsk, Russia, 1985. (In Russian) [Google Scholar]
- Bogatikov, O.A.; Tsvetkov, A.A. Magmatic Evolution of Island Arcs; Nauka: Moscow, Russia, 1988. (In Russian) [Google Scholar]
- Ryabchikov, I.V. Physical and chemical conditions of the processes of generation and differentiation of acid and medium magmas. In Igneous Rocks. Acid and Medium Rocks; Nauka: Moscow, Russia, 1987; pp. 348–358. (In Russian) [Google Scholar]
- Pohl, W.L.; Birubarema, M.; Lehman, B. Neoproterozoic rare metal (Sn, Ta, W) and gold metallogeny of the Central Africa Region. Appl. Earth Sci. Trans. Inst. Min. Metall. B 2013, 122, 66–82. [Google Scholar] [CrossRef]
- Hu, R.-Z.; Bi, X.-W.; Jiang, G.-H.; Chen, H.-W.; Peng, J.-T.; Qi, Y.-Q.; Wu, L.-Y.; Wei, W.-F. Mantle-derived noble gases in ore-forming fluids of the granite-related Yaogangxian tungsten deposit, Southeastern China. Mineral. Depos. 2012, 47, 623–632. [Google Scholar] [CrossRef]
- Antipin, V.S. Geochemical Evolution of Calc-Alkaline and Subalkaline Magmatism; Nauka: Novosibirsk, Russia, 1992. (In Russian) [Google Scholar]
- Volynets, A.O.; Churikova, T.G.; Wörner, G.; Gordeychik, G.N.; Layer, P. Quaternary volcanic rocks in the Kamchatka back arc region: Implications for subduction geometry and slab history at the Pacific–Aleutian junction. Contrib. Mineral. Petrol. 2010, 159, 659–687. [Google Scholar] [CrossRef] [Green Version]
- Sasim, S.A.; Dril, S.I.; Travin, A.V.; Vladimirova, T.A.; Gerasimov, N.S.; Noskova, Y.V. Shoshonite-latite series of the Eastern Transbaikalia: 40Ar/39Ar age, geochemistry, and Sr-Nd isotope composition of rocks from the Akatui volcano-plutonic association of the Aleksandrovskii Zavod depression. Russ. Geol. Geophys. 2016, 57, 756–772. [Google Scholar] [CrossRef]
- Siebel, W.; Trzebski, R.; Stettner, G.; Hecht, L.; Casten, U.; Hohndorf, H.; Muller, P. Granitoid magmatism of the NW Bohemian massif revealed: Gravity data, composition, age relations and phase concept. Geol. Rundsch. 1997, 86, 45–63. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Jiang, S.Y.; Zhao, K.D.; Ling, H.F. Petrogenesis of Late Jurassic Qianlishan granites and mafic dykes, Southeast China: Implications for a back-arc extension setting. Geol. Mag. 2006, 143, 457–474. [Google Scholar] [CrossRef] [Green Version]
- McCoy, D.T.; Newberry, R.J.; Layer, P.W.; Di Marchi, J.J.; Bakke, A.A.; Masterman, J.S.; Minehane, D.L. Plutonic-related gold deposits of interior Alaska. Econ. Geol. Monogr. 1997, 9, 191–241. [Google Scholar]
- Diman, E.N.; Nekrasov, I.Y. High-temperature solubility of gold in water and genesis of gold-ore deposits. Izv. Vuzov Geol. Razved. 1987, 11, 66–74. (In Russian) [Google Scholar]
- Borisenko, А.S.; Gas’kov, I.N.; Dashkevich, Е.G.; Okrugin, А.M.; Ponomarchuk, А.V.; Travin, А.V. Geochronology of magmatic processes and ore-formation in the Central Aldan gold-ore region. In Abstracts of the Intern. Symp. Large Igneous Provinces of Asia; Institute of Earth Crust SB RAS: Irkutsk, Russia, 2011; pp. 38–39. [Google Scholar]
- Webster, J.D.; Goldoff, B.; Vetere, F.; Botcharnikov, R.E.; McBirney, A.; Doherty, A. Experimental and modeled chlorine solubilities in aluminosilicate melts at 1 to 7000 bars and 700 to 1250 °C: Applications to magmas of Augustine Volcano, Alaska. Am. Mineral. 2015, 100, 522–535. [Google Scholar] [CrossRef]
- Chevychelov, V.Y. Partitioning of Volatile Components (Cl, F, and CO2) in water-Saturated Fluid–Magma Systems of Various Composition. Petrology 2019, 6, 585–605. [Google Scholar] [CrossRef]
- Trunilina, V.A.; Orlov, Y.S.; Babushkina, S.A. Latite ore-bearing magmatic systems of the North-east of the Verkhoyansk-Kolyma mesozoids. In Ore Deposits of the Continental Margins; Gonevchuk, G.A., Fatyanov, I.I., Eds.; Dalnauka: Vladivostok, Russia, 2001; Volume 2, pp. 22–38. (In Russian) [Google Scholar]
- Maeda, J. Opening of the Kuril Basin deduced from the magmatic history of Central Hokkaido, northern Japan. Tectonophysics 1990, 174, 235–255. [Google Scholar] [CrossRef]
- Zaraisky, G.P.; Aksyuk, A.M.; Devyatova, V.N.; Udoratina, О.V.; Chevychelov, V.Y. Zr/Hf ratio as an indicator of fractionation of rare-metal granites by the example of the Kukulbei complex. Eastern Transbaikalia. Petrology 2008, 16, 710–736. [Google Scholar] [CrossRef]
- Breiter, K.; Müller, A.; Leichmann, J.; Gabašova, A. Textural and chemical evolution of a fractionated granitic system: The Podlesí stock, Czech Republic. Lithos 2005, 80, 323–345. [Google Scholar] [CrossRef]
- Drill, S.I.; Kuzmin, M.I.; Tsipukova, S.S.; Zonenshain, L.P. Geochemistry of basalts from the West Woodlark, Lau and Manus basins: Implication for their petrogenesis and source rock composition. Mar. Geol. 1997, 142, 57–83. [Google Scholar] [CrossRef]
Massif | Qz | Pl | Kfs | Amp | Bt |
---|---|---|---|---|---|
Kuranakh | 19 | 51 | 16 | 6 | 8 |
Elikchan | 20 | 43 | 18 | 7 | 10 |
Istekh | 17 | 49 | 21 | 6 | 7 |
Massif | Qz | Pl | Kfs | Bt | Chl | Ms |
---|---|---|---|---|---|---|
Kuranakh | 30 | 27 | 36 | 5 | 2 | 0 |
Elikchan | 34 | 20 | 40 | 4 | 2 | 0 |
Istekh | 28 | 29 | 37 | 4 | 0 | 2 |
Massif | Qz | Or | Ab | An | Crn | Di | Hyp |
---|---|---|---|---|---|---|---|
Kuranakh | 18.3/30.7 | 22.8/29.2 | 29.7/27.4 | 15.1/9.4 | 0.1/0.3 | 1.8/0.4 | 10.1/5.6 |
Elikchan | 20.6/32 | 23.7/29 | 26.9/27.8 | 14.9/8.1 | 0.2/1.5 | 1.2/0 | 9.8/6.1 |
Istekh | 16.8/29.6 | 22.9/29.3 | 25.8/24 | 15.6/7.7 | 0/1.5 | 2/0 | 14.1/6.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trunilina, V.A.; Prokopiev, A.V. Ore-Bearing Magmatic Systems with Complex Sn–Au–Ag Mineralization in the North-Eastern Verkhoyansk–Kolyma Orogenic Belt, Russia. Minerals 2021, 11, 266. https://doi.org/10.3390/min11030266
Trunilina VA, Prokopiev AV. Ore-Bearing Magmatic Systems with Complex Sn–Au–Ag Mineralization in the North-Eastern Verkhoyansk–Kolyma Orogenic Belt, Russia. Minerals. 2021; 11(3):266. https://doi.org/10.3390/min11030266
Chicago/Turabian StyleTrunilina, Vera A., and Andrei V. Prokopiev. 2021. "Ore-Bearing Magmatic Systems with Complex Sn–Au–Ag Mineralization in the North-Eastern Verkhoyansk–Kolyma Orogenic Belt, Russia" Minerals 11, no. 3: 266. https://doi.org/10.3390/min11030266
APA StyleTrunilina, V. A., & Prokopiev, A. V. (2021). Ore-Bearing Magmatic Systems with Complex Sn–Au–Ag Mineralization in the North-Eastern Verkhoyansk–Kolyma Orogenic Belt, Russia. Minerals, 11(3), 266. https://doi.org/10.3390/min11030266