Next Article in Journal
Assessment of Soil Contamination by Gas Cloud Generated from Chemical Fire Using Metabolic Profiling and Associated Bacterial Communities
Previous Article in Journal
REE Minerals as Geochemical Proxies of Late-Tertiary Alkalic Silicate ± Carbonatite Intrusions Beneath Carpathian Back-Arc Basin
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Finding of Ca. 1.6 Ga Detrital Zircons from the Mesoproterozoic Dagushi Group, Northern Margin of the Yangtze Block

1
School of Earth Sciences, China University of Geosciences Wuhan, Wuhan 430074, China
2
Geological Party 103, Guizhou Bureau of Geology & Mineral Exploration and Development, Tongren 554300, China
3
Hebei Key Laboratory of Strategic Critical Mineral Resources, Hebei GEO University, Shijiazhuang 050031, China
4
College of Earth Sciences, Hebei GEO University, Shijiazhuang 050031, China
5
The Second Geo-Exploration Institute of Mineral Prospecting and Development Bureau of Henan Province, Zhengzhou 450000, China
6
School of the Environment, University of Windsor, Windsor, ON N9B 3P4, Canada
7
Center for Global Tectonics, Faculty of Earth Sciences, China University of Geosciences Wuhan, Wuhan 430074, China
*
Author to whom correspondence should be addressed.
Minerals 2021, 11(4), 371; https://doi.org/10.3390/min11040371
Submission received: 5 February 2021 / Revised: 27 March 2021 / Accepted: 29 March 2021 / Published: 31 March 2021
(This article belongs to the Section Mineral Geochemistry and Geochronology)

Abstract

:
The middle Mesoproterozoic is a crucial time period for understanding the Precambrian tectonic evolutionary history of the northern Yangtze Block and its relationship with the supercontinent Columbia. The Dagushi Group (Gp) is one of the Mesoproterozoic strata rarely found at the northern margin of the Yangtze Block. U–Pb geochronology and Lu–Hf isotopic analyses of detrital zircons were analyzed for three metamorphic quartz sandstone samples collected from the Luohanling and Dangpuling formations of the Dagushi Gp. These metasandstones yielded major zircon populations at ~2.65 Ga and ~1.60 Ga, respectively. The ~1.60 Ga ages first discovered yield a narrow range of ɛHf(t) values from −1.8 to +1.8, which lie above the old crust evolutionary line of the Yangtze Block, suggesting the addition of mantle material. Trace element data indicate that ~1.60 Ga detrital zircons share a basic provenance, whereby they have low Hf/Th and high Nb/Yb ratios. Zircon discrimination diagrams suggest that the ~1.60 Ga detrital zircon source rocks formed in an intra-plate rifting environment. Dagushi Gp provenance studies indicate that the ~1.60 Ga detrital zircon was most likely sourced from the interior Yangtze Block. Thus, we suggest that the late Paleoproterozoic to early Mesoproterozoic continental break-up occurred at the northern margin of the Yangtze Block.

1. Introduction

When compared with the supercontinents Pangea and Rodinia, the architecture of the supercontinent Columbia is ambiguous due to the lack of sufficient and reliable geological and paleomagnetic data [1,2,3,4,5]. There is a broad agreement that the fragmentation of Columbia commenced at ca. 1.60 Ga and formed a number of continental rift zones along the western margin of Laurentia [6,7], as marked by widespread ~1.60–1.20 Ga continental rifting, anorogenic magmatism, and emplacement of mafic dyke swarms in almost all cratonic building blocks [1,4,8]. The scarcity of ~1.60–1.50 Ga zircon sources worldwide [9] makes detrital zircons within this age range particularly useful for constraining the tectonic affinity between different continents.
Many ~1.75–1.50 Ga magmatic events in the southwestern Yangtze Block margin were reported in recent studies [8,10,11,12], and the contemporaneous rift strata were formed, including the Dongchuan, Hekou, and Dahongshan groups [13,14,15,16], which were interpreted to be linked to the break-up of the Columbia supercontinent. However, this geological event has been rarely identified at the northern margin of the Yangtze Block. Previous studies have shown that the Shennongjia and Dagushi groups have undergone similar crustal evolution, and they are coeval successions deposited in similar environments [17,18,19,20]. Detrital zircon U–Pb ages and Lu–Hf isotopic compositions of the Shennongjia Gp were analyzed recently [18,21,22,23]. Xiao [18] first identified ~1.6 Ga detrital zircon from the Shennongjia Gp and contended that this time period corresponded to the breakup of the Yangtze Block from the Columbia supercontinent.
In this study, we report a new set of zircon U–Pb ages and Hf isotopic data for three meta-quartz sandstones from the Dagushi Gp. Combined with previous studies, our results shed new light on the regional tectonic evolution of the northern part of the Yangtze Block during the Late Paleo- to Mesoproterozoic, and they constrain a possible kinship between the Yangtze Block and the Columbia supercontinent.

2. Geological Setting

The Yangtze Block is sutured with the North China Craton along the Qinling–Dabie–Sulu orogenic belt to the north in the Triassic, which collided with the Cathaysia Block to the southeast in the early Neoproterozoic along the Sibao (or Jiangnan) orogeny (Figure 1a; [24]). The Kongling terrane is located at the northwestern part of the Yangtze Block (Figure 1a), which is exposed as a small dome of 360 km2 and was intruded by the Paleoproterozoic Quanqitan granite and the huge Neoproterozoic Huangling complex (see [25] and references therein). There are three types of rock associations in this terrane: (1) dioritic, tonalitic, trondhjemitic, and granitic gneisses of intrusive origin (ca. 2.86–2.95 Ga), (2) metasedimentary rocks, and (3) amphibolite and locally preserved mafic granulite (see [25] and references therein). The study area is located in the Dahongshan region in the northern margin of the Yangtze Block, ~200 km east of the Kongling terrane (Figure 1a,b). It is separated from the Tongbai orogen to the north by the Sanligang–Sanyang Fault (Figure 1b) that is part of the east-trending Xiangfan–Guangji Fault.
The Dagushi Gp is the oldest basement exposed in the study area, unconformably overlain by the Huashan Gp, which is in turn overlain by the Nanhua sedimentary units including the Liantuo and Nantuo formations (Figure 1b). Lithologically, the Huashan Gp is divided into the Hongshansi Formation (Fm) at the bottom and the Liufangzui Fm at the top (Figure 1c) [26]. Recently, Du et al. [27] reported a zircon U–Pb age of ~779 ± 12 Ma for a tuff layer from the Liantuo Fm. The five youngest zircons from the coarse-grained feldspathic sandstone in the Liufangzui Fm give a weighted average age of ~816 ± 9 Ma [26], suggesting that initial deposition of the Huashan Gp occurred after ca. 816 Ma.
Figure 1. (a) Distribution of Precambrian rocks in the South China Block and the Qinling–Dabie Belt (modified after [24]); (b) simplified geological map of the Dahongshan area (modified after [28]); (c) 1:50,000 geological map of Guchengfan (modified after [29]; ages of the Luohanling Fm and the Liufangzui Fm are from [19,26], respectively); the red stars show the stratigraphic locations of the three metasandstone samples.
Figure 1. (a) Distribution of Precambrian rocks in the South China Block and the Qinling–Dabie Belt (modified after [24]); (b) simplified geological map of the Dahongshan area (modified after [28]); (c) 1:50,000 geological map of Guchengfan (modified after [29]; ages of the Luohanling Fm and the Liufangzui Fm are from [19,26], respectively); the red stars show the stratigraphic locations of the three metasandstone samples.
Minerals 11 00371 g001
The sedimentary sequences of the Dagushi Gp include, from the bottom up, the Taiyangsi, Hanjiawa, Luohanling, Chenjiachong, Lijiazui, and Dangpuling formations [29]. The Taiyangsi Fm consists of metaconglomerate, meta-pebbly sandstone, medium-coarse- to fine-grained metasandstone intercalated with banded slate in the lower part, and meta-siltstone and clay slate in the upper section with visible lenticular bedding of sand and gravel [29], pointing to a subaqueous alluvial fan depositional system. Sedimentary characteristics suggest that the water depth increased gradually from the lower to the upper part of the Taiyangsi Fm. The lithological combinations of the Hanjiawa Fm, similar to the Taiyangsi Fm, are mainly slate with a subordinate amount of metasandstone and metaconglomerate. The Luohanling Fm, the most widespread strata of the Dagushi Gp, is composed of siliceous dolomite (Figure 2a), silicolites (Figure 2b), meta-quartz sandstone (Figure 2c), silty-muddy slate (Figure 2d), dolomite (Figure 2e), and various stromatolites. Subhorizontal beddings in this formation are formed in a tidal flat, shallow sea shelf environment. The Chenjiachong Fm contains micro- to fine-crystalline dolomite and stromatolitic dolomite with horizontal bedding. The Lijiazui Fm has silty-muddy slate with limestone lenses. The Dangpuling Fm consists of meta-quartz and meta-feldspar quartz sandstone (Figure 2f,g), with horizontal bedding and cross bedding, which is interpreted to have formed on a littoral shallow-water setting [29].
Tuff layers from the Luohanling Fm give two zircon U–Pb ages of ~1.23 Ga and ~1.24 Ga [19]. The two youngest zircons from the Taiyangsi Fm yield concordant dates of ~919 ± 10 Ma and ~912 ± 11 Ma (unpublished data). The youngest zircon date of ~1.12 Ga for the Taiyangsi Fm was provided by [30]. Thus, the depositional ages of the Taiyangsi Fm and the Hanjiawa Fm are constrained to the Neoproterozoic or the latest Mesoproterozoic.
The two medium-coarse-grained meta-quartz sandstone samples (JS14-1 and JS14-2) (Figure 2c), collected from the middle part of Luohanling Fm, are dominated by >95% quartz (Figure 2h). The coarse-grained meta-quartz sandstone sample (JS26), collected from the lower part of Dangpuling Fm (Figure 2f), is composed of 95% quartz and <3% lithic clasts (Figure 2i).

3. Analytical Methods

3.1. Zircon U–Pb Dating

Zircons were separated by conventional magnetic and heavy liquid methods and then were selected, according to sizes, colors, shapes, and turbidity under a binocular microscope. The grains were then mounted on double-sided tape, cast in epoxy resin, and polished to expose even and intermediate surfaces. Zircon U–Pb dating was conducted by LA-ICP-MS at the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences Wuhan (SKLGPMR-CUG). Laser sampling was performed using a GeoLas 2005 excimer ArF laser-ablation system. An Agilent 7500a ICP-MS instrument was used to acquire ion signal intensities. Standard zircon 91,500 [31] (Table A1, Appendix A) was employed as an external reference material to calibrate isotope fractionation, which was analyzed twice for every five analyses. Standard zircons GJ-1 were analyzed as unknowns [32] (Table A1, Appendix A). Detailed operating conditions for the laser ablation system and the ICP-MS instrument and data processing are the same as described by [33]. The data were analyzed in the ISOPLOT program of Ludwig [34]. Due to lower intensity of the 207Pb signal, 206Pb/238U ages are usually more precise than 207Pb/235U and 207Pb/206Pb ages especially for zircons younger than 1.0 Ga [35]. However, 207Pb/206Pb ages are less sensitive to Pb loss, which is more common in order zircons [36]. Therefore, in most cases, 207Pb/206Pb ages are employed for zircons of age ≥1.0 Ga and 206Pb/238U ages are employed for zircons of age <1.0 Ga.

3.2. Zircon Trace Element Analysis

The trace element analysis was performed simultaneously with the U–Pb analysis. Quantitative results for trace elements reported here were obtained through calibration of relative element sensitivities using the NIST-610 standard glass as the external calibration standard [37]. The precision and accuracy of the NIST-610 analyses is presented in Table A2 (Appendix A). Nb concentrations of 91,500 obtained in this study fall within the published variation ranges [38].

3.3. Zircon Lu–Hf Isotope Analysis

In situ Hf isotope analysis was carried out on a Neptune Plus MC-ICP-MS (Thermo Fisher Scientific, Germany), in combination with the GeoLas 2005 in the SKLGPMR-CUG. Detailed operating conditions for the laser ablation system and the MC-ICP-MS instrument and data calibrating and processing were reported in [39]. We applied the directly obtained βYb value from the zircon sample itself in real time [40]. The 179Hf/177Hf and 173Yb/171Yb ratios were used to calculate the mass bias of Hf (βHf) and Yb (βYb), which were normalized to 179Hf/177Hf = 0.7325 [41] and 173Yb/171Yb = 1.132685 [42] using an exponential correction for mass bias. Interference of 176Yb on 176Hf was corrected by measuring the interference-free 173Yb isotope and using 176Yb/173Yb = 0.79639 to calculate 176Yb/177Hf [43]. Similarly, the relatively minor interference of 176Lu on 176Hf was corrected by measuring the intensity of the interference-free 175Lu isotope and using the recommended 176Lu/175Lu = 0.02656 [44] to calculate 176Lu/177Hf. Time-drift correction was performed using standard zircon 91,500. The interference and mass fractionation-corrected 176Hf/177Hf ratios of the samples were then calibrated against the standard using the recommended 176Hf/177Hf ratio of 0.282308 ± 6 (2σ) [45] (Table A3, Appendix A). Offline selection and integration of analytic signals, as well as mass bias calibrations, were performed using ICPMSDataCal [40]. To calculate the initial 176Hf/177Hf ratios, the decay constant of 1.867 × 10−5 Ma−1 was used for 176Lu [46]. The εHf(t) values were calculated with reference to a chondritic uniform reservoir (CHUR). The 176Lu/177Hf and 176Hf/177Hf ratios used for the CHUR were 0.0332 and 0.282772, respectively [44]. The single-stage model age (TDM1) was calculated relative to a depleted mantle with present-day 176Lu/177Hf and 176Hf/177Hf ratios of 0.0384 and 0.28325, respectively [47]. The two-stage Hf model age (TDM2), also interpreted as crust formation age, was calculated by projecting the zircon 176Hf/177Hf(t) back to the depleted-mantle model growth curve, assuming a mean crustal value for Lu/Hf (176Lu/177Hf = 0.015) [48].

4. Results

4.1. Zircon Ages and Hf Isotopes

4.1.1. Dangpuling Fm

Sixty zircons were separated from sample JS26 of the Dangpuling Fm (Table A4, Appendix A) and were colorless, transparent, and mostly anhedral, suggesting a long-distance transport. They were 80–150 µm long with length/width ratios of 1.2:1 to 3:1. The majority of zircons showed clear oscillatory or broad zoning (Figure 3). Concentrations of U and Th were 50–843 ppm and 11–364 ppm, respectively. Th/U ratios ranged from 0.2 to 1.5. A major zircon population occurred in the range of ~2.59–2.69 Ga defining a strong peak at ca. 2.65 Ga with two small age populations of ~1.90 Ga and ~2.80 Ga (Figure 4). The oldest detrital zircon was dated at ~3.00 Ga.

4.1.2. Luohanling Fm

JS14-1: Seventy-three zircon grains were separated from sample JS14-1 of the Luohanling Fm and were analyzed for U–Pb ages (Table A4, Appendix A). Thirty-three representative dated zircons were selected for the Hf isotope analysis (Table A5, Appendix A). Zircons were colorless, khaki, and anhedral to subhedral. They were 100–200 µm long with length/width ratios of 1.1:1 to 2.5:1. Most zircons showed oscillatory zoning (Figure 3). Concentrations of U and Th were 155–1436 ppm and 78–2674 ppm, respectively. Th/U ratios ranged from 0.2 to 2.2. The significant U–Pb age population was at ~1.45–1.68 Ga with two small age populations of ~1.85–2.23 Ga and ~2.62–2.86 Ga, and the dominant peak appeared at ca. 1.60 Ga (Figure 4).
Zircon grains for ca. 1.60 Ga had chiefly positive εHf(t) values and showed a range from −1.8 to +1.8 (Table A5, Appendix A). Paleoproterozoic zircons (ca. 2.65 Ga) mostly had εHf(t) values ranging from −1.1 to +1.4. Three older zircons (ca. 2.85 Ga) showed variable εHf(t) values from −0.8 to +0.1.
JS14-2: Thirty zircon grains were separated from sample JS14-2 from the Luohanling Fm and were analyzed for U–Pb ages (Table A4, Appendix A). The morphological features of detrital zircons were similar to those of sample JS14-1. The major age population was ~1.55–1.68 Ga with two small age populations of ~1.78–2.32 Ga and ~2.62–2.79 Ga, and the major peak was at ca. 1.60 Ga (Figure 4).

5. Discussion

5.1. Provenance of the Dagushi Gp

The detrital zircon ages from the Dagushi Gp in our study yielded two major peaks at ~2.65 Ga and ~1.60 Ga (Figure 4 and Figure 5a). The Luohanling Fm had two age peaks (~1.60 Ga and ~2.65 Ga), while the Dangpuling Fm had only one (~2.65 Ga), demonstrating significant discrepancy in the age spectrum among different samples. In addition, Kong et al. [49] reported ages from the Lijiazui and Luohanling formations, which are distinctly different from U–Pb ages presented above, reflecting changes in provenance for individual Dagushi Gp samples.
The ~2.65 Ga magmatism is widespread in the northern margin of the Yangtze Block, such as ~2.70–2.60 Ga A-type granitic gneisses [50], ~2.66 Ga biotite granites, and ~2.70–2.64 Ga two-mica granites [51] in the Kongling terrane with ~2.65 Ga A-type granites [52,53] in the Huji area, northern Hubei Province. The oldest rocks exposed in the Kongling terrane are tonalite–trondhjemite–granodiorite (TTG) gneisses that formed in two time intervals: ~3.40–3.20 Ga and ~2.90–2.80 Ga [54,55,56,57,58], which may offer materials for ~2.80–3.00 Ga detrital zircons.
A number of ~2.20–1.80 Ga metamorphic and magmatic events have been identified in the Kongling terrane and its surrounding areas in the northern part of the Yangtze Block [25,59,60,61,62,63,64]. Two major phases of juvenile crustal growth, ~2.20–2.10 Ga in the Kongling terrane and the Tongbai–Dabie orogeny [65,66] and ~1.85 Ga in the Dabie–Sulu orogeny [65], were also documented. Yang et al. [26] reported abundant ~2.00 Ga detrital zircon around the Yangtze Block. Thus, we prefer an interpretation that the ~1.80–2.30 Ga detrital zircons in the Dagushi Gp were predominantly derived from the interior of the Yangtze Block.
Magmatism and metamorphism at ca. 1.60 Ga have not been documented in the northern margin of the Yangtze Block except for the detrital zircon ages obtained from the Shennongjia Gp (Figure 5c) [18]. This episode of magmatism and contemporaneous detrital zircon U–Pb ages have been confirmed in the southwestern [11,14,67,68,69] and southeastern margins of the Yangtze Block (Figure 5b,d). Thus, the major contributor to these ~1.60 Ga detrital zircons may lie in the Yangtze Block itself rather than an external continent. At ca. 1.60 Ga the Qinling Belt was part of the South China Craton, and the proto-Yangtze Block may have been located in the position at the nexus of north Laurentia, southwest Siberia, and north Austria [70]. Thus, they could also have served as sources for ~1.60 Ga detrital zircons. Li et al. [19] proposed that the Dagushi Gp correlates well with the Shennongjia Gp in terms of sedimentology and geochronology. The newly acquired ~1.60 Ga detrital zircon ages and corresponding εHf(t) values reported in this study (Figure 6a) further corroborate this correlation. Both groups are interpreted to have formed in a continental rift setting [17], as suggested by the occurrence of intra-plate alkali and tholeiitic basalts in the Shennongjia Gp [71]. Wang et al. [72] suggested that the Shennongjia Gp was deposited during a transgressive system tract in a carbonate ramp steepening toward the west. The clastic rocks are widely distributed in the Shennongjia strata, suggesting continued terrestrial material input mainly from the ancient Yangtze land to the south. These lines of evidence suggest that the ~1.60 Ga detrital zircons of the Dagushi Gp may have also been derived from the interior of the Yangtze Block. In addition, the narrow age spectrum and εHf(t) values of these zircons favor a single source.
Figure 5. Age probability diagrams of detrital zircons from Precambrian metasedimentary rocks in the South China Block [18,21,68,73,74,75,76,77,78,79,80]. (a) age probability diagrams of detrital zircons from the Dagushi Gp; (b) age probability diagrams of detrital zircons from the Kunyang Gp; (c) age probability diagrams of detrital zircons from the Shennongjia Gp; (d) age probability diagrams of detrital zircons from the Sibao Gp and Danzhou Gp.
Figure 5. Age probability diagrams of detrital zircons from Precambrian metasedimentary rocks in the South China Block [18,21,68,73,74,75,76,77,78,79,80]. (a) age probability diagrams of detrital zircons from the Dagushi Gp; (b) age probability diagrams of detrital zircons from the Kunyang Gp; (c) age probability diagrams of detrital zircons from the Shennongjia Gp; (d) age probability diagrams of detrital zircons from the Sibao Gp and Danzhou Gp.
Minerals 11 00371 g005

5.2. Tectonic Setting for Sedimentation of the Dagushi Gp

Indications of magmatic events between ~1.75 Ga and ~1.50 Ga are commonly recorded at the southwestern margin of the Yangtze Block. The rock assemblages are dominated by alkaline–subalkaline metamorphosed mafic volcanic rock and gabbro-diabase dikes constituting a bimodal distribution together with minor A-type granites [82]. Most rocks have high Ti and rare earth and trace element patterns similar to those of continental flood basalts (CFB) and ocean island basalts (OIB) [8,10,11,12], while some show enriched mid-ocean ridge basalt (E-MORB) or transitional features between E-MORB and OIB [83,84,85]. All fall into within-plate basalt fields on the Zr/Y–Zr, Ti/100–Zr–Y × 3, Hf/3–Th–Ta, and Nb × 2–Zr/4–Y diagrams [83,84,85].
The ɛHf(t) values of ~1.80–1.35 Ga zircons in the northern and western margin of the Yangtze Block overlap (Figure 6a), indicating the similarity of their sources. The ɛHf(t) values are significantly elevated at ~1.60–1.40 Ga, as illustrated by the evolution curve of ancient rocks in the interior of the Yangtze Block (Figure 6b). Additionally, Xiao [18] reported zircon δ18O values between +5.41 and +5.67, suggesting that mantle-derived materials were added to the crust during this period. Trace element compositions of zircon are useful for delineating its source rock types [86], and those of ~1.60 Ga detrital zircons from the Dagushi Gp are shown in Figure 7 and in Table A6 (Appendix A). According to the classification and regression tree (CART-tree) model (Figure 7a, [86]), the source rocks of detrital zircons from the Dagushi Gp are mainly basic (Figure 7b).
Broadly speaking, trace element characteristics of magmatic zircon could also reflect the compositions of its source magma and the crystalline environment [86,87]. The ca. 1.60 Ga detrital zircons from the Dagushi Gp have a median Nb concentration of 17 ppm, significantly higher than that of continental arcs (1.7 ppm) and MOR (1.6 ppm) [88]. In addition, they have U/Yb ratios (mostly 0.1–1.3) intermediate between those of MOR and typical continental crustal zircons, but higher than Icelandic basalt [89]. On the Hf/Th–Th/Nb and Nb/Hf × 10,000–Th/U discrimination diagrams (Figure 8a,b), zircons from the Dagushi Gp mostly fall in the field of within-plate/anorogenic environments. On the U/Yb–Hf and U/Yb–Nb/Yb × 10,000 discrimination diagrams (Figure 8c,d), they mostly plot in the Hawaii–Iceland field. A subset of zircons with high U/Yb and Hf/Th ratios fall outside the within-plate area (Figure 8a,d), which can be attributed to the fractional crystallization of minerals such as titanite, ilmenite, and zircon. These minerals exert a dominant control on the U, Yb, Nb, and Hf elements of the remaining melt, and they enrich U and Hf in later-formed grains [88]. We interpret the source rocks to have been formed in an intra-plate rifting environment, according to the Hf and O isotope and zircon trace element compositions.
Xiong and Chen [17] argued that the Shennongjia Gp and Dagushi Gp were deposited in the Mesoproterozoic aulacogen at the northern margin of the Yangtze Block. Li et al. [21] believed that the upper subgroup of the Shennongjia Gp and the Dagushi Gp represented a shallow marine environment at the margin of the initial rift basin. Liu et al. [71] reported a set of metabasalt (alkaline basalt series)–tuff (tholeiite basalt series) assemblages from the Shicaohe Fm of the Shennongjia Gp, and they attributed their geochemical characteristics to within-plate rift basalts. These lines of evidence may indicate a long-term rifting history in the northern margin of the Yangtze Block during the Mesoproterozoic.

5.3. Reconstruction of the Supercontinent Columbia

Active continental margin magmatism occurred along the margin of the supercontinent Columbia at ca. 1.80–1.40 Ga, with rift-type magmatic pulses in its interior [93]. Detrital zircons dated at ca. 1.70–1.50 Ga are documented from the western, southwestern, and northern margins of the Yangtze Block, as well as in minor amounts from the southeastern margin of the Yangtze Block; in contrast, these Paleo- to Mesoproterozoic detrital zircons are rare in the interior of the Yangtze Block [20]. As discussed above, ca. 1.60 Ga detrital zircons of the Dagushi Gp and Shennongjia Gp have nearly chondritic Hf isotope composition, mantle-source oxygen isotope composition, and primitive properties of basalts, which are trace element characteristics of intra-plate magma, indicating a derivation from typical intra-plate magmatic events. Thus, we suggest that extensive break-up may have occurred at the periphery of the Yangtze Block, responding to the fragmentation of the supercontinent Columbia. Meanwhile, widespread ~1.60–1.30 Ga Mesoproterozoic post-orogenic and anorogenic magmatism has been identified in many Precambrian cratons, including the ~1.60 Ga Dalma magmatic rocks in northeast India [94], the ~1.59 Ga tholeiitic dyke swarms in South America [95], the ~1.50 Ga mafic dykes in South America [96], and the ca. 1.50 Ga mafic magmatism in South China [8]. The marked contrast with arc magmatism at the margin of the supercontinent Columbia [97,98,99] further suggests that the Yangtze Block may have been located at the center of the supercontinent Columbia (Figure 9).

6. Conclusions

(1)
The detrital zircon spectra of the Dagushi Gp shows two distinct age peaks of ~2.65 Ga and ~1.60 Ga, which are compatible with the magmatism reported from the Yangtze Block. Sedimentological and geochronological comparisons between the Dagushi and the Shennongjia groups indicate that the groups were probably coeval units. Provenance studies suggest the sediments of the Dagushi Gp could be derived from mafic source regions within the Yangtze Block.
(2)
The ~1.60 Ga ages first discovered yield a narrow range of ɛHf(t) values from −1.8 to +1.8, which lie above the old crust evolutionary line of the Yangtze Block, suggesting the addition of mantle material.
(3)
Most ~1.60 Ga detrital zircons are plotted into the within-plate/anorogenic field. The Yangtze Block was likely a fragment of the Paleo- to Mesoproterozoic supercontinent Columbia and may have been located in its center rather than its margin.

Author Contributions

Conceptualization, X.X. and Z.Y.; methodology, X.X.; software, H.Z.; validation, X.X. and Z.Y.; investigation, Y.X. and X.D.; data curation, H.Z.; writing—original draft preparation, X.X. and H.Z.; writing—review and editing, Z.Y. and A.P.; supervision, Z.Y.; funding acquisition, Z.Y. All authors have read and agreed to the published version of the manuscript.

Funding

This study was supported by the Natural Science Foundation of Hebei Province (Grant No. D2020403095), the National Natural Science Foundation of China (Grant Nos. 41172189 and 41472190), and the China Geological Survey Bureau (Grant No. DD20190050).

Data Availability Statement

The data presented in this study are available on request from the corresponding author. The data are not publicly available due to the research process of this project.

Conflicts of Interest

The authors declare no conflict of interest.

Appendix A

Table A1. LA-ICP-MS U–Pb isotopic data of standard zircons.
Table A1. LA-ICP-MS U–Pb isotopic data of standard zircons.
AnalysisSamplePbThUIsotopic RatiosAge (Ma)Concordia
No.Name(ppm)(ppm)(ppm)207Pb/206Pb207Pb/235Pb206Pb/238Pb207Pb/206Pb207Pb/235Pb206Pb/238Pb
Standard Zircon 91500 as an External Standard (Reference 206Pb/238U Age = 1062.4 ± 0.8 Ma, 2σ [31])
JS14-1
SEP16A0291500std83802300.07480.00221.85890.05400.18050.002610655610671910701499%
SEP16A0391500std83822330.07490.00221.84150.05430.17780.002611335910601910551499%
SEP16A0791500std83832350.07490.00191.85020.04640.17920.002410655110641710621399%
SEP16A1591500std85822350.07440.00221.82810.05240.17850.002610515910561910591499%
SEP16A1691500std83812310.07540.00231.87230.05580.17980.002610806110712010661499%
SEP16A2391500std84812350.07490.00211.85020.05170.17920.002410655610641810621399%
SEP16A3191500std83802300.07520.00251.85760.06390.17880.002610746710662310601499%
SEP16A3291500std82812330.07460.00251.84280.06010.17960.002610576710612110651499%
SEP16A3991500std83812310.07730.00251.90480.06440.17840.002611296610832310581497%
SEP16A4091500std93912580.07250.00231.79560.05710.17990.00269986410442110661497%
SEP16A4891500std86822340.07380.00231.82240.05950.17910.002710356310542110621599%
SEP16A4991500std84822360.07600.00241.87800.06110.17920.002610946810732210631499%
SEP16A5691500std84822330.07550.00241.87160.05830.17970.002810836210712110661599%
SEP16A5791500std84792310.07420.00241.82880.06040.17860.002810487110562210591599%
SEP16A6491500std83812330.07490.00211.85020.05040.17920.002410655610641810621399%
SEP16A7291500std90852440.07670.00241.89610.05860.17910.002711226210802110621598%
SEP16A7391500std85822380.07310.00231.80430.05680.17930.002710176510472110631598%
SEP16A8091500std82792310.07310.00241.79810.06070.17850.002710176810452210591598%
SEP16A8191500std88862420.07670.00241.90230.06000.17980.002611226410822110661498%
SEP16A9191500std81812320.07410.00231.84020.05830.17970.002810566310602110661699%
SEP16A9291500std86812360.07560.00241.86020.05830.17860.002810876510672110591599%
Average 85822350.07490.00231.85020.05730.17920.0026107062106320106214
N = 21
JS14-2
JUN22F0291500std3131840.0743510.0021711.8190840.0528520.1777260.00210810515910521910551299%
JUN22F0391500std3030810.0754090.0021251.8813160.0554780.1806140.00229710806110752010701399%
JUN22F1491500std3029810.0757240.0021731.8594390.0501150.1785740.00264510875710671810591499%
JUN22F1591500std3130820.0740360.0021781.8409610.0520610.1797660.00225910435910601910661299%
JUN22F2291500std2930820.0731220.0021331.7963330.0546740.1778650.00219910175510442010551298%
JUN22F2391500std3129810.0766380.0022961.9040670.0596510.1804750.00234511226110832110701398%
JUN22F3091500std3130830.0763420.0021411.9000450.0517110.1813320.00225511065210811810741299%
JUN22F3191500std3131850.0734180.0018791.8003550.0480890.1770080.00191110265210461710511099%
JUN22F3891500std3130830.0744260.0020881.8457380.0523960.1799760.00243610545710621910671399%
JUN22F3991500std3131830.0753340.0022641.8546620.0562840.1783640.00221510776010652010581299%
JUN22F4691500std3030820.0735060.0023221.8233390.0589170.1795510.00245710286910542110651398%
JUN22F4791500std2929800.0762540.0023751.8770610.0569030.1787890.00238411026210732010601398%
Average 3030820.07490.00221.85020.05410.17920.0023106659106319106213
N = 12
Standard Zircon GJ-1 as an Unknown (Reference 206Pb/238U age = 599.8 ± 1.7 Ma, 2σ [32])
JS14-1
SEP16A04GJ-177279110.06360.00160.85720.02150.09740.00137285662912599895%
SEP16A05GJ-175269100.06050.00130.82030.01900.09770.00126208160811601798%
SEP16A06GJ-175269180.06030.00120.80660.01670.09660.0012617436019594798%
SEP16A88GJ-175269130.06150.00150.82140.02070.09660.00146554760912595897%
SEP16A89GJ-175269200.06040.00150.81600.02020.09770.00146205460611601899%
SEP16A90GJ-175269200.06060.00150.81740.02090.09770.00146335460712601899%
Average 75269160.06110.00140.82310.01980.09730.00136465661011598898%
N = 6
JS14-2
JUN22F04GJ-12693010.0597880.0014560.8359350.0210020.1010070.0010235945661712620699%
JUN22F05GJ-12693060.0603160.0014490.8274220.0199140.0990930.0009416175261211609699%
Average 2690.06010.00150.83170.02050.10010.00100.060160654615116156
N = 2
Table A2. Trace element data of standard zircons.
Table A2. Trace element data of standard zircons.
Spot No.TiYNbCeNdSmEuGdTbDyHoErTmYbLuHfTaThU
JS14-1
NIST-610437439420444435454461443443426447421423465428375452451.9425.7
NIST-610437439420444435454461443443426447421423465428375452451.9425.7
NIST-610437439420444435454461443443426447421423465428375452451.9425.7
91500std4.61350.772.580.060.40.162.010.8311.04.6424.16.0567.013.057800.528.977
91500std3.51410.752.620.270.40.242.240.9211.64.9124.86.4469.613.458520.630.280
91500std5.11390.802.790.010.00.212.050.8811.34.7924.76.3569.313.557500.530.079
91500std3.01360.772.750.230.30.251.970.8311.44.6623.26.1167.313.356680.529.083
91500std5.31390.702.580.150.50.332.460.8211.24.7024.86.2969.213.357560.629.378
91500std4.01370.732.690.030.40.312.170.8611.14.8824.76.1368.113.157040.528.877
91500std4.41370.702.730.160.40.262.280.9310.64.6024.46.1568.213.157020.628.877
91500std2.91350.662.690.260.60.231.980.8411.54.7823.76.2667.313.257490.529.378
91500std3.51360.642.840.240.30.262.210.9111.34.5524.26.2967.713.257290.528.677
91500std6.21390.702.660.140.30.222.130.9011.14.7824.66.1468.713.357150.529.379
91500std4.91380.702.430.230.50.212.330.8911.94.9325.56.3469.113.558500.629.679
91500std3.51510.672.690.150.50.342.150.9012.35.3827.76.7475.014.758880.633.589
91500std4.11420.702.730.330.50.232.140.9811.44.7525.66.5070.513.759160.630.481
91500std7.21420.792.820.040.60.352.290.8011.34.8625.06.4970.213.858790.530.682
91500std4.81440.702.940.130.50.262.440.9111.85.0125.76.6671.513.859480.630.982
91500std6.91390.722.710.200.30.222.150.8211.54.7425.26.1069.613.558310.629.880
91500std5.71400.722.640.380.60.221.820.9011.54.7724.76.2270.413.759000.630.281
91500std6.51490.752.740.190.50.362.320.9712.25.3326.66.8975.414.663090.631.885
91500std5.81500.652.980.110.50.272.940.9312.35.1726.36.6873.614.460790.632.687
91500std6.71500.792.820.310.40.262.750.9812.15.3626.96.7075.314.662480.631.986
91500std5.41440.712.880.180.60.312.520.9012.05.0226.16.7272.914.461360.630.783
91500std4.51510.622.990.000.30.372.580.8212.75.2727.57.0775.014.861540.633.287
91500std2.21460.712.750.270.60.272.400.9312.14.9926.26.7272.914.462130.631.383
91500std5.91490.772.790.210.30.202.510.9312.05.3427.76.8676.014.863250.632.286
GJ-12.782491.5616.90.731.380.957.12.0720.67.2029.66.5666.812.867790.4610.01317
GJ-12.042481.7316.50.671.530.986.91.9520.46.9729.96.3265.813.167020.499.68312
GJ-13.372511.6216.80.581.770.957.12.0720.37.0430.56.5666.413.268000.459.82320
GJ-14.702701.7518.30.751.630.917.72.1723.47.9433.57.1871.514.374660.4910.63348
GJ-15.492631.6917.80.651.451.137.32.1521.47.6132.27.0771.514.273130.4810.36342
GJ-15.502631.6917.90.651.451.137.32.1521.57.6232.27.0871.614.273230.4810.38343
JS14-2
NIST-610433421419447431450461441442418444410416434425372451433.1430.0
91500std5.01530.822.940.280.50.242.841.0512.65.4728.87.3977.014.659990.634.588
91500std4.81470.822.770.280.50.232.461.0312.65.2526.77.2772.114.158200.532.984
91500std4.71450.772.590.280.50.202.560.9712.95.1426.76.9173.714.159100.631.983
91500std6.01480.862.880.220.50.272.451.0012.55.3626.97.1474.814.559950.633.084
91500std6.01470.752.630.300.60.262.851.0012.65.1527.27.1773.414.359290.632.383
91500std5.51450.872.860.340.40.292.830.9612.55.3526.47.0572.914.259520.632.084
91500std5.71520.862.650.300.60.312.351.0013.15.5627.87.4676.814.760240.633.988
91500std5.81580.772.870.330.50.352.951.0213.85.6529.17.8280.315.062030.634.991
91500std6.41580.863.100.470.60.332.891.1113.35.6528.57.8477.814.960450.634.289
91500std2.91550.802.900.200.70.292.981.0612.45.6827.87.5577.414.960630.635.289
91500std4.71540.792.670.290.60.312.620.9613.35.4628.27.4975.714.761840.633.988
91500std6.61520.912.980.340.70.292.601.0113.05.7027.77.5377.815.264120.633.287
GJ-13.782191.5314.70.401.511.016.71.8618.86.2627.86.4460.611.461090.498.67284
GJ-12.912331.6015.30.681.401.027.41.9719.57.0328.76.6264.212.565790.469.22304
Table A3. LA-ICP-MS Lu–Hf isotopic data of standard zircons.
Table A3. LA-ICP-MS Lu–Hf isotopic data of standard zircons.
AnalysisSample176Hf/177Hf176Lu/177Hf176Yb/177HfHfYbLuεHf(0)
No.NameRatioRatioRatio(ppm)(ppm)(ppm)
Standard Zircon 91500 as an External Standard (Reference 176Hf/177Hf Value = 0.282308 ± 6, 2σ [45])
JAN14A19915000.2824190.0000340.0002930.0000010.0068890.00002262937714−12.51.3
JAN14A20915000.2821880.0000270.0002940.0000010.0069990.00003962347614−20.61.1
JAN14A28915000.2824080.0000180.0002880.0000010.0066830.000022871410319−12.90.8
JAN14A29915000.2823680.0000230.0002860.0000010.0066350.000034861910118−14.31.0
JAN14A37915000.2824090.0000310.0002990.0000010.0070990.00003058327213−12.81.2
JAN14A38915000.2824210.0000420.0002940.0000010.0069120.00003563537814−12.41.6
JAN14A46915000.2824900.0000420.0002970.0000010.0069490.00003960567413−10.01.6
JAN14A47915000.2825940.0000300.0002860.0000010.0067200.00004158517012−6.31.2
JAN14A55915000.2823620.0000330.0002970.0000010.0068900.00002864707914−14.51.3
JAN14A56915000.2825910.0000420.0002900.0000010.0067050.0000404288519−6.41.6
JAN14A66915000.2824790.0000320.0002800.0000020.0063550.00006653546211−10.41.3
JAN14A67915000.2825600.0000240.0002850.0000010.0066490.00003862527313−7.51.0
Average 0.2824410.0000320.0002910.0000010.0067900.00003676,314.7914.5442164.9912−11.71.2
N = 6
Standard Zircon GJ-1 as Unknown (Reference 176Hf/177Hf Value = 0.282000 ± 23, 2SD [101])
JAN14A64GJ-10.2820450.0000270.0002590.0000010.0059450.00003563696612−25.71.1
JAN14A65GJ-10.2821500.0000210.0002600.0000000.0059620.00001992399618−22.00.9
Average 0.2820970.0000240.0002590.0000000.0059530.00002778048115−23.91.0
N = 2
Table A4. LA-ICP-MS zircon U–Pb isotope dating results for samples JS26, JS14-1, and JS14-2 from the Dagushi Gp.
Table A4. LA-ICP-MS zircon U–Pb isotope dating results for samples JS26, JS14-1, and JS14-2 from the Dagushi Gp.
Spot No.ThUTh/UIsotopic RatiosAge (Ma)
ppmppm207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238U
JS26 (Coarse-grained Meta-Quartz Sandstone)
JS26-011765770.30.17840.002312.93160.17660.52300.0062263921267513271226
JS26-021343220.40.17930.002712.97450.20600.52210.0065264625267815270827
JS26-032196650.30.17930.002612.49930.18580.50270.0061264718264314262626
JS26-043647980.50.17950.002911.82790.19080.47430.0054265027259115250224
JS26-052678430.30.17930.003212.82530.22690.51540.0064264729266717268027
JS26-061364110.30.18250.003713.06760.26320.51680.0069267633268519268529
JS26-072917210.40.17670.003512.50000.25720.50850.0068262232264319265029
JS26-0884.82390.40.19750.004014.07210.29820.51300.0069280533275520267029
JS26-092065790.40.18030.003313.30690.25500.53210.0074265531270218275031
JS26-1079.22120.40.18250.003713.09140.26710.51780.0070267633268619269030
JS26-1111693.91.20.20990.004916.39230.38440.56550.0081290538290022288933
JS26-121524500.30.17880.003712.94670.26660.52220.0066264334267619270828
JS26-131633640.40.18330.003813.39610.28500.52650.0069268234270820272729
JS26-141732860.60.16100.003310.77730.22550.48240.0063246634250419253828
JS26-1558.11260.50.18760.004114.04610.31820.54050.0075272136275321278631
JS26-162206330.30.19260.003414.53330.26360.54280.0068276430278517279528
JS26-173036540.50.18020.003413.15000.24960.52500.0067265532269018272128
JS26-1820.754.70.40.21360.006016.65890.46840.56540.0096300051291527288939
JS26-192824780.60.12670.00276.70700.14300.38120.0051205443207419208224
JS26-201274010.30.17740.003512.90680.25900.52380.0069262932267319271529
JS26-212225200.40.17740.003212.34630.22070.50150.0060262930263117262026
JS26-2298.92340.40.20390.004015.59340.32160.55190.0075285832285220283331
JS26-232395040.50.17500.003212.20540.23690.50300.0064260630262018262727
JS26-241635310.30.17640.003512.75150.26280.52180.0068261933266119270729
JS26-251063300.30.17880.003713.08640.27820.52960.0071264334268620274030
JS26-263325520.60.12440.00266.56170.13950.38220.0052202037205419208624
JS26-272457660.30.17470.003012.82680.23030.53060.0066260329266717274428
JS26-281311630.80.18020.003712.89290.27920.51780.0070265434267220269030
JS26-292457700.30.17790.003113.11510.24020.53240.0066263528268817275228
JS26-301244580.30.17630.003312.56210.24290.51520.0066262031264718267928
JS26-311574640.30.17510.003512.62650.26440.52090.0068260633265220270329
JS26-321494310.30.17720.003412.80770.24740.52290.0067262732266618271128
JS26-332097050.30.17590.003012.71580.23080.52230.0066261528265917270928
JS26-3471.31490.50.15810.003610.36410.24660.47500.0067243539246822250529
JS26-351631061.50.14090.00387.91530.21710.40790.0060223947222125220527
JS26-361201930.60.19190.004313.67990.31370.51610.0068275837272822268229
JS26-3728.873.10.40.18410.005113.06710.36890.51540.0083269045268527268035
JS26-383055110.60.18190.003413.50330.26010.53540.0068267032271618276428
JS26-3992.92460.40.17820.003513.46230.27680.54520.0077263733271319280532
JS26-401841441.30.11770.00316.11960.16560.37500.0055192148199324205326
JS26-411404430.30.17390.003412.67800.25580.52370.0069259532265619271529
JS26-421132340.50.17330.003912.33810.27390.51260.0071259037263021266830
JS26-431142910.40.17340.003712.58390.26770.52260.0072259037264920271031
JS26-442154590.50.20630.003917.57160.34610.61170.0081287731296719307733
JS26-451694660.40.17780.003313.05060.24630.52830.0069263232268318273429
JS26-462567400.30.17370.003112.48750.23000.51730.0067259429264217268828
JS26-4711.850.30.20.20490.006015.31180.45070.54580.0095286648283528280840
JS26-481674900.30.17390.003512.50550.25740.51840.0068259533264319269229
JS26-491283450.40.17700.003712.80910.27220.52270.0071262535266620271130
JS26-501301690.80.18030.003912.38900.26030.49790.0068265736263420260529
JS26-512683480.80.21740.003717.97690.32000.59660.00772961−6298917301631
JS26-522914930.60.19050.003012.88170.23970.48760.0075274726267118256032
JS26-531914780.40.14880.00229.26440.14270.44910.0054233226236414239124
JS26-542255770.40.18130.002412.98050.18330.51610.0064266522267813268327
JS26-551624350.40.17900.002412.63780.18180.50880.0063264423265314265127
JS26-563287470.40.17880.002211.18390.14340.45000.0050264220253912239522
JS26-5792.11290.70.11470.00315.24140.14440.33170.0047187649185924184623
JS26-581032450.40.20500.002915.49390.22210.54470.0064286628284614280327
JS26-591823680.50.19980.002814.96070.23020.53950.0069282423281315278129
JS26-6086.21840.50.17880.002812.33450.20470.49720.0065264225263016260228
JS14-1 (Medium-coarse-grained Meta-quartz Sandstone)
JS14-1-015672712.10.15080.00238.84590.13860.42430.0055235526232214228025
JS14-1-021121880.60.09570.00223.82230.08820.28890.0038154343159719163619
JS14-1-033174470.70.09750.00173.51980.06260.26060.0032157733153214149316
JS14-1-044257870.50.09490.00163.62760.06350.27560.0034152832155614156917
JS14-1-051703300.50.17640.003112.34650.22240.50460.0064262030263117263427
JS14-1-061283300.40.17730.003412.43060.24400.50570.0066262732263718263828
JS14-1-072583130.80.09500.00213.65450.08550.27760.0039152943156119157920
JS14-1-081864560.40.13540.00237.73270.13670.41200.0054216930220016222425
JS14-1-092783940.70.09850.00183.76810.07050.27680.0036159534158615157518
JS14-1-103299220.40.17880.002412.44900.17880.50180.0061264322263913262126
JS14-1-112015010.40.20360.002615.52420.21310.55010.0066285521284813282627
JS14-1-123975770.70.09870.00153.77870.05880.27650.0034160028158813157417
JS14-1-131346610.20.11330.00165.22470.08170.33240.0040185426185713185019
JS14-1-141652810.60.10260.00213.89710.08150.27450.0035167238161317156317
JS14-1-151642870.60.10000.00223.89730.08800.28150.0037162541161318159919
JS14-1-161462180.70.25330.004422.28430.41010.63450.0081320528319618316732
JS14-1-171472890.50.10030.00233.86940.08890.27950.0038163143160719158919
JS14-1-183336530.50.10010.00223.94400.08800.28470.0038162840162318161519
JS14-1-193694890.80.09120.00213.09930.07350.24500.0032145144143318141317
JS14-1-201142670.40.18620.003613.38600.27050.51950.0069270832270719269729
JS14-1-211973760.50.13860.00287.66300.16290.39950.0053221040219219216724
JS14-1-221001780.60.09920.00253.81950.10100.27920.0039161048159721158720
JS14-1-236166111.00.20050.003613.60120.25200.48990.00602831−4272218257026
JS14-1-242752531.10.10040.00243.99440.09590.28850.0040163144163320163420
JS14-1-254394501.00.10120.00233.79540.08950.27160.0038165642159219154919
JS14-1-261261910.70.10290.00284.01770.11470.28340.0042167751163823160821
JS14-1-271873630.50.20240.003615.83060.30490.56530.0076284630286718288831
JS14-1-281762190.80.09910.00223.96770.09380.28980.0041160942162819164020
JS14-1-291412050.70.20330.003815.68610.31370.55910.0079285331285819286333
JS14-1-303014780.60.09680.00203.81430.08060.28530.00371563238159617161819
JS14-1-3178.21840.40.10080.00263.98190.11010.28580.0042163948163122162021
JS14-1-324196070.70.09700.00193.71220.07550.27700.0037156637157416157618
JS14-1-3393.11600.60.10160.00273.88680.10610.27790.0040165450161122158120
JS14-1-346626201.10.09960.00193.66830.07250.26630.0035161737156416152218
JS14-1-352546090.40.16230.002910.37630.19530.46170.0059247930246917244726
JS14-1-375808580.70.14000.00277.45750.15850.38370.0054222733216819209425
JS14-1-382123650.60.09960.00213.85660.08200.27960.0037161739160517158919
JS14-1-391784530.40.19140.003013.31650.21710.50160.0061275426270215262126
JS14-1-401954320.50.19190.002813.76230.20930.51710.0063275825273314268727
JS14-1-413618150.40.17980.002212.67750.17730.50820.0066265220265613264928
JS14-1-424785740.80.09710.00143.80710.06400.28200.0035156928159414160217
JS14-1-4386.01550.60.10180.00254.03890.10330.28720.0041165846164221162820
JS14-1-442312750.80.09920.00193.81680.07730.27770.0037161041159616158019
JS14-1-451102840.40.10060.00193.92480.07720.28190.0037163536161916160118
JS14-1-461242320.50.10000.00243.92050.09580.28320.0039163344161820160720
JS14-1-471873310.60.10300.00223.93150.08640.27620.0037168039162018157219
JS14-1-482215370.40.18130.003512.62610.25200.50190.0066266533265219262228
JS14-1-491243090.40.13590.00297.38820.16190.39220.0051217637216020213324
JS14-1-504177970.50.10080.00193.82090.07560.27340.0035163935159716155817
JS14-1-515418210.70.12370.00225.95270.12170.34640.0048201033196918191723
JS14-1-52197613051.50.13800.00246.29570.11760.32920.0046220330201816183422
JS14-1-532823990.70.09970.00223.76460.08330.27330.0038162042158518155819
JS14-1-541273690.30.18270.003712.91910.26730.51010.0067268033267420265728
JS14-1-5677914360.50.09910.00193.73190.07470.27140.0034160936157816154817
JS14-1-574715620.80.09950.00203.82340.07980.27710.0036161738159817157718
JS14-1-58267411982.20.09770.00193.05630.06490.22560.0033158136142216131117
JS14-1-591603240.50.13500.00267.20390.14380.38520.0053216533213718210025
JS14-1-603884990.80.09920.00193.87320.08050.28130.0037160942160817159819
JS14-1-612422461.00.12160.00286.17670.14590.36580.0049198141200121201023
JS14-1-622173830.60.09870.00243.92990.09500.28730.0038200051162020162819
JS14-1-632893780.80.10130.00263.91470.09940.27830.0039164848161721158319
JS14-1-6470.31060.70.18930.004913.75140.35600.52260.0076273748273325271032
JS14-1-654994821.00.09970.00233.83760.08940.27620.0036161843160119157218
JS14-1-661161950.60.09950.00274.07190.11090.29500.0044161750164922166622
JS14-1-673584220.860.09870.00233.86280.08930.28090.0036200038160619159618
JS14-1-683964820.860.10070.00243.98290.09260.28440.0037163943163119161419
JS14-1-691644610.40.18510.004213.44590.31490.52150.0073270038271122270531
JS14-1-701132720.40.21590.005216.97000.40430.56520.0077295039293323288832
JS14-1-712144100.50.09810.00243.86890.09530.28330.0038158845160720160819
JS14-1-7211938581.40.09820.00213.89540.08490.28470.0038159141161318161519
JS14-1-731644240.40.18520.003813.48940.27540.52290.0065270233271519271128
JS14-1-742396010.40.18070.003512.89310.26170.51240.0070265931267219266730
JS14-1-751112050.50.09850.00293.83680.11070.28200.0039159556160123160120
JS14-2 (Medium-coarse-grained Meta-quartz Sandstone)
JS14-2-11524840.30.13160.00176.62510.11020.36170.0041212022206315199020
JS14-2-2137672.10.10060.00213.96750.08120.28560.0034163537162817162017
JS14-2-318720.20.14790.00279.01980.17450.43880.0046232131234018234521
JS14-2-484980.90.09950.00193.92100.07350.28410.0029161735161815161215
JS14-2-5891480.60.09780.00183.86190.07280.28430.0030158335160615161315
JS14-2-646810.60.18810.003413.94500.25810.53360.0063272530274618275626
JS14-2-71841901.00.14120.00248.14660.14480.41510.0050224330224716223823
JS14-2-82361651.40.19530.002913.51670.20640.49690.0042278724271615260018
JS14-2-948860.60.10180.00203.92920.08180.27850.0030165737162017158415
JS14-2-101682250.70.13520.00207.41240.13190.39420.0045216925216216214221
JS14-2-111302240.60.17760.002612.06540.19060.49000.0044263125261015257119
JS14-2-12801020.80.09940.00213.92780.08610.28590.0031161339161918162115
JS14-2-131141310.90.09760.00203.88020.08360.28780.0030158938161017163115
JS14-2-143045150.60.09590.00143.46700.05430.26100.0019154628152012149510
JS14-2-1545810.60.10290.00214.18440.09340.29400.0032167638167118166216
JS14-2-1657930.60.10890.00224.30120.09410.28510.0029178336169418161715
JS14-2-17981080.90.09710.00193.85850.07860.28740.0029157036160516162915
JS14-2-185743131.80.11870.00184.84430.07900.29460.0027193728179314166513
JS14-2-192473220.80.13190.00207.13900.11820.39050.0036212426212915212517
JS14-2-202471711.40.09870.00173.85980.06850.28210.0026160031160514160213
JS14-2-211721930.90.13940.00207.95780.12020.41200.0036222025222614222417
JS14-2-228503502.40.14290.00198.39870.11650.42380.0034226223227513227816
JS14-2-2333830.40.18100.002913.25590.23380.52790.0056266227269817273324
JS14-2-24691460.50.18700.003113.67700.24310.52690.0054271627272817272823
JS14-2-251833690.50.09790.00163.84150.06630.28290.0029158430160114160615
JS14-2-261021480.70.09720.00183.73380.06800.27750.0026157234157915157913
JS14-2-271462210.70.19420.002714.63110.21450.54250.0048278956279214279420
JS14-2-281352090.60.17680.002611.93830.17470.48680.0040262324260014255717
JS14-2-2920440.40.09910.00283.99890.11820.29310.0043160954163424165721
JS14-2-3011825532.10.12240.00214.44430.10040.26140.0043199236172119149722
Note: Concordance (conc.) = (206Pb/238U age)/(207Pb/235U age) × 100%.
Table A5. LA-ICP-MS zircon Hf isotope analyses for sample JS14-1 from the Dagushi Gp.
Table A5. LA-ICP-MS zircon Hf isotope analyses for sample JS14-1 from the Dagushi Gp.
Spot Position176Hf/177Hf176Lu/177Hf176Yb/177HfεHf(0)Age (Ma)(176Hf/177Hf)iεHf(t) (a)TDM1 (Ma) (b)fLu/Hf (d)TDM2 (Ma) (c)
JS14-1-80.281370.0000090.0006090.0000020.0152130.000047−49.621690.281345−20.33260125−0.98277836
JS14-1-90.2818310.0000130.0011550.0000170.0302120.000526−33.315950.28179610.44200335−0.97216248
JS14-1-100.2811180.0000120.0006140.0000010.0151430.000036−58.526430.281087−0.20.41293931−0.98306144
JS14-1-110.2809880.0000090.0009740.0000110.0262650.000438−63.128550.280935−0.70.33314325−0.97325735
JS14-1-120.2818410.0000120.0016180.0000060.0415460.000163−32.916000.28179210.42201333−0.95216645
JS14-1-150.2818310.0000140.0011610.0000060.0292190.000109−33.316250.2817961.60.48200238−0.97214952
JS14-1-200.2811420.0000150.0010090.0000260.0258920.000684−57.627080.281091.40.53293840−0.97302856
JS14-1-210.2813850.000010.0009020.0000290.0229930.000791−49.122100.281347−0.90.35260027−0.97275638
JS14-1-220.2817210.000010.0003870.0000010.0103480.000015−37.216100.281709−1.80.36211227−0.99232239
JS14-1-270.2809680.000010.0005750.0000030.0138910.000072−63.828460.280937−0.80.36313727−0.98325738
JS14-1-290.2809790.0000130.0003830.0000020.0090720.000056−63.428530.2809580.10.45310734−0.99321348
JS14-1-300.281770.0000090.0003490.0000030.0086110.000068−35.415630.281759−1.10.33204425−0.99224636
JS14-1-310.2817580.0000110.0008260.0000190.0219090.000497−35.916390.281732−0.30.38208629−0.98226541
JS14-1-330.2817880.0000110.0008310.0000030.0216560.000042−34.816540.2817621.10.39204530−0.97220242
JS14-1-380.2818520.0000120.0015480.0000120.0414350.000384−32.516170.2818041.80.42199534−0.95213646
JS14-1-410.281090.000010.0006420.0000020.0159340.000062−59.526520.281057−1.10.34298026−0.98311436
JS14-1-420.2818270.0000120.0010580.0000040.0282370.00013−33.415690.2817960.40.43200333−0.97217447
JS14-1-430.2817770.0000140.0007020.0000190.0182930.000519−35.216580.2817550.90.5205339−0.98221455
JS14-1-440.2818110.0000120.0016510.0000180.0424050.000551−3416100.2817610.10.41205732−0.95222344
JS14-1-450.2817760.0000110.0003890.0000010.0100640.000012−35.216350.2817640.80.37203728−0.99220540
JS14-1-460.2818020.0000120.0011230.0000080.0290110.000225−34.316330.2817670.80.44204234−0.97220147
JS14-1-480.2811130.000010.0006650.0000020.016750.000044−58.726650.28107900.34295126−0.98306736
JS14-1-490.2813490.000010.000550.0000050.0135410.000137−50.321760.281326−2.50.36262527−0.98281038
JS14-1-530.2817990.0000130.0013670.0000120.0373720.000319−34.416200.2817570.20.45205935−0.96222648
JS14-1-540.281090.000010.0006860.0000060.017320.000181−59.526800.281054−0.50.36298427−0.98310738
JS14-1-560.2817740.000010.0012140.0000280.0339270.000826−35.316090.281737−0.80.37208529−0.96226940
JS14-1-570.2818420.000010.0012790.0000490.0336010.001362−32.916170.2818031.70.36199428−0.96213939
JS14-1-650.2818310.0000110.0012480.0000020.0312920.000082−33.316180.2817931.40.41200832−0.96215844
JS14-1-690.2810970.000010.000540.0000030.0135270.000095−59.227000.2810690.50.35296226−0.98307037
JS14-1-720.2818530.0000110.0024980.0000510.0659160.001474−32.515910.2817780.20.38204531−0.92219942
JS14-1-730.2810730.000010.0005740.0000090.0145280.000254−60.127020.281043−0.40.37299828−0.98311939
JS14-1-740.2810970.000010.0006660.0000010.0164860.000027−59.226590.281063−0.70.37297228−0.98310039
JS14-1-750.2817650.0000110.0007140.0000040.0184490.000085−35.615950.281744−0.90.38207029−0.98226241
λLu-Hf = 1.867 × 10−11 year−1; (a) εHf(t) = [(176Hf/177Hf)SampleT/(176Hf/177Hf)CHURT − 1] × 104; (b) TDM1 = 1/λ × ln {1 + [((176Hf/177Hf)Sample0 − (176Hf/177Hf)DM0)/((176Lu/177Hf)Sample0 − (176Lu/177Hf)DM0)]}; (c) TDM2 = TDM1 − (TDM1 − t) × [(fCC − fS)/(fCC − fDM)]; (d) fLu/Hf = [(176Lu/177Hf)Source/(176Lu/177Hf)CHUR,0 ] − 1; (176Lu/177Hf)CHUR,0 = 0.0332 ± 2, (176Hf/177Hf)CHUR,0 = 0.282772 ± 29; (176Lu/177Hf)DM = 0.0384, (176Hf/177Hf)DM = 0.28325, (176Lu/177Hf)mean crust = 0.015, fCC = (0.015/0.0332)−1 = −0.55, fDM = (0.0384/0.0332) − 1 = 0.16.5.
Table A6. Trace element analyses of the ~1.60 Ga detrital zircons for samples JS14-1 and JS14-2 from the Dagushi Gp (ppm).
Table A6. Trace element analyses of the ~1.60 Ga detrital zircons for samples JS14-1 and JS14-2 from the Dagushi Gp (ppm).
Spot No.TiYNbCeNdSmEuGdTbDyHoErTmYbLuHfTaThU
JS14-1-214112837111575715140431562824643614313657
JS14-1-3812471323692421314047186363135665924111145
JS14-1-4126836182301866524102212003793313147253
JS14-1-7917032910247335131525926354504936034691101
JS14-1-91015612060712553161695723044386686663590117
JS14-1-1262463368891356622253893697263611172877146198
JS14-1-14131064611377431421313421153421422521637819035690
JS14-1-15610272890352259103381573127548639365894
JS14-1-17139941951462279101361523027350721975497
JS14-1-18878412252301767127123262574910,5655120219
JS14-1-19825311329142349527289963716959010068014138169
JS14-1-2224561593612176722841614324822633660
JS14-1-241019221376712353192077229558522917791410588
JS14-1-2510116929103473341112243173332945065967158152
JS14-1-2618815177323114668281292826449689344665
JS14-1-28812221812119922810113431904036266707256676
JS14-1-3019466319130114431669151432698012112166
JS14-1-31136437104632677524941715127799722964
JS14-1-327130914249102451414850193352914880244154209
JS14-1-3318109627111475414135431542824143706813455
JS14-1-34111723447372685914932119664249473966768939244214
JS14-1-38111123247047331101154116834306557682782130
JS14-1-429123436114363311112145187373255769588180201
JS14-1-431210393791465213129401472723441751913455
JS14-1-45658411183411966422871715026904244199
JS14-1-46674892346125882281132219836654634681
JS14-1-471615927101117773201946223242364647591373120
JS14-1-5071001154710612389236159343266212,0926166295
JS14-1-53610031725372371211739152292584576255111144
JS14-1-56420842689550811421473126782308574787995979308532
JS14-1-5712135935117583351213850207413626380138189207
JS14-1-5851481616485412250437102756187612105851139714931029439
JS14-1-60715794528856144401415557243484287675089164187
JS14-1-6321200518709145592122780319645128873426113136
JS14-1-6511127430134362281012147208474207978007196174
JS14-1-66211072396834012124431693528753865414772
JS14-1-68613623819935134411314554215443596474449158176
JS14-1-71313961741724755384181725822243354647272588153
JS14-1-721221255022849449172047933973629118724112479315
JS14-1-75669192636127882291102218935720934678
JS14-2-2105227989630877238316127215349314667
JS14-2-4710012088241207873516336327627996591100
JS14-2-5899381647136111163915229236429450399154
JS14-2-9111540511101789729229622073829851856625389
JS14-2-128116925952422281024218843385737475688106
JS14-2-13278313175713088930121262204094801127136
JS14-2-1463069141712243113343491194558767311210,3505346552
JS14-2-15501078817131455314136421573024544794435084
JS14-2-177100420942412178736161363286281135108112
JS14-2-201117633325944154471517164274585069169127268176
JS14-2-25511451916370331112444179362985010,2506206396
JS14-2-2612236510182232121303431597341634978581894119161
JS14-2-29273946187311444615591310819861422248

References

  1. Rogers, J.J.W.; Santosh, M. Configuration of Columbia, a Mesoproterozoic Supercontinent. Gondwana Res. 2002, 5, 5–22. [Google Scholar] [CrossRef]
  2. Zhao, G.; Cawood, P.A.; Wilde, S.A.; Sun, M. Review of global 2.1–1.8 Ga orogens: Implications for a pre-Rodinia supercontinent. Earth Sci. Rev. 2002, 59, 125–162. [Google Scholar] [CrossRef]
  3. Evans, D.A.D.; Mitchell, R.N. Assembly and breakup of the core of Paleoproterozoic-Mesoproterozoic supercontinent Nuna. Geology 2011, 39, 443–446. [Google Scholar] [CrossRef] [Green Version]
  4. Zhao, G.C.; Cawood, P.A. Precambrian geology of China. Precambrian Res. 2012, 222, 13–54. [Google Scholar] [CrossRef]
  5. Meert, J.G.; Santosh, M. The Columbia supercontinent revisited. Gondwana Res. 2017, 50, 67–83. [Google Scholar] [CrossRef] [Green Version]
  6. Zhao, G.C.; Sun, M.; Wilde, S.A.; Li, S.Z. A Paleo-Mesoproterozoic supercontinent: Assembly, growth and breakup. Earth Sci. Rev. 2004, 67, 91–123. [Google Scholar] [CrossRef] [Green Version]
  7. Pisarevsky, S.A.; Elming, S.Å.; Pesonen, L.J.; Li, Z.X. Mesoproterozoic paleogeography: Supercontinent and beyond. Precambrian Res. 2014, 244, 207–225. [Google Scholar] [CrossRef]
  8. Fan, H.P.; Zhu, W.G.; Li, Z.X.; Zhong, H.; Bai, Z.J.; He, D.F.; Chen, C.J.; Cao, C.Y. Ca. 1.5 Ga mafic magmatism in South China during the break-up of the supercontinent Nuna/Columbia: The Zhuqing Fe-Ti-V oxide ore-bearing mafic intrusions in western Yangtze Block. Lithos 2013, 168–169, 85–98. [Google Scholar] [CrossRef]
  9. Condie, K.C.; Belousova, E.; Griffin, W.L.; Sircombe, K.N. Granitoid events in space and time: Constraints from igneous and detrital zircon age spectra. Gondwana Res. 2009, 15, 228–242. [Google Scholar] [CrossRef]
  10. Guan, J.L.; Zheng, L.L.; Liu, J.H.; Sun, Z.M.; Cheng, W.H. Zircons SHRIMP U-Pb Dating of Diabase from Hekou, Sichuan Province, China and Its Geological Significance. Acta Geol. Sin. 2011, 85, 482–490. [Google Scholar]
  11. Chen, W.T.; Zhou, M.F.; Zhao, X.F. Late Paleoproterozoic sedimentary and mafic rocks in the Hekou area, SW China: Implication for the reconstruction of the Yangtze Block in Columbia. Precambrian Res. 2013, 231, 61–77. [Google Scholar] [CrossRef]
  12. Hou, L.; Ding, J.; Deng, J.; Peng, H.J. Geology, geochronology, and geochemistry of the Yinachang Fe-Cu-Au-REE deposit of the Kangdian region of SW China: Evidence for a Paleo–Mesoproterozoic tectono-magmatic event and associated IOCG systems in the western Yangtze Block. J. Asian Earth Sci. 2015, 103, 129–149. [Google Scholar] [CrossRef]
  13. Greentree, M.R.; Li, Z.X. The oldest known rocks in south-western China: SHRIMP U-Pb magmatic crystallisation age and detrital provenance analysis of the Paleoproterozoic Dahongshan Group. J. Asian Earth Sci. 2008, 33, 289–302. [Google Scholar] [CrossRef]
  14. Zhao, X.F.; Zhou, M.F.; Li, J.W.; Sun, M.; Gao, J.F.; Sun, W.H.; Yang, J.H. Late Paleoproterozoic to early Mesoproterozoic Dongchuan Group in Yunnan, SW China: Implications for tectonic evolution of the Yangtze Block. Precambrian Res. 2010, 182, 57–69. [Google Scholar] [CrossRef]
  15. Wang, W.; Zhou, M.F. Provenance and tectonic setting of the Paleo-to Mesoproterozoic Dongchuan Group in the southwestern Yangtze Block, South China: Implication for the breakup of the supercontinent Columbia. Tectonophysics 2014, 610, 110–127. [Google Scholar] [CrossRef]
  16. Wang, W.; Zhou, M.F.; Zhao, X.F.; Chen, W.T.; Yan, D.P. Late Paleoproterozoic to Mesoproterozoic rift successions in SW China: Implication for the Yangtze Block–North Australia–Northwest Laurentia connection in the Columbia supercontinent. Sediment. Geol. 2014, 309, 33–47. [Google Scholar] [CrossRef]
  17. Xiong, X.W.; Chen, Y.Y. Sedimentary features and its significance of tectono-paleogeography of Dagushi Group, Jingshan, Hubei province. Earth Sci. J. China Univ. Geosci. 1991, 16, 489–495. (In Chinese) [Google Scholar]
  18. Xiao, Z.B. Research of the Detrital Zircon from Mesoproterozoic Sedimentary Strata in the North Margin of Yangtze Craton, China. Master’s Thesis, Northwest University, Xi’an, China, 2012. [Google Scholar]
  19. Li, H.K.; Tian, H.; Zhou, H.Y.; Zhang, J.; Liu, H.; Geng, J.Z.; Ye, L.J.; Xiang, Z.Q.; Qu, Y.S. Correlation between the Dagushi Group in the Dahongshan Area and the Shennongjia Group in the Shennongjia Area on the northern margin of the Yangtze Craton: Constraints from zircon U-Pb ages and Lu-Hf isotopic systematics. Earth Sci. Front. 2016, 23, 186–201. [Google Scholar]
  20. Yang, Z.N. The Paleoproterozoic to Middle Neoproterozoic Tectonic Evolution of the Suizhou-Yingshan Terrain and Its Surrounding Area in the Northern Yangtze Block. Ph.D. Thesis, Chinese University of Geosciences, Wuhan, China, 2018. [Google Scholar]
  21. Li, H.K.; Zhang, C.L.; Xiang, Z.Q.; Lu, S.N.; Zhang, J.; Geng, J.Z.; Qu, L.S.; Wang, Z.X. Zircon and baddeleyite U-Pb geochronology of the Shennongjia Group in the Yangtze Craton and its tectonic significance. Acta Petrol. Sin. 2013, 29, 673–697. [Google Scholar]
  22. Du, Q.D.; Wang, Z.J.; Wang, J.; Deng, Q.; Yang, F. Geochronology and geochemistry of tuff beds from the Shicaohe Formation of Shennongjia Group and tectonic evolution in the northern Yangtze Block, South China. Int. J. Earth Sci. 2016, 105, 521–535. [Google Scholar] [CrossRef]
  23. Qiu, X.F.; Yang, H.M.; Lu, S.S.; Ling, W.L.; Zhang, L.G.; Tan, J.J.; Wang, Z.X. Geochronology and geochemistry of Grenville-aged (1063 ± 16 Ma) metabasalts in the Shennongjia district, Yangtze block: Implications for tectonic evolution of the South China Craton. Int. Geol. Rev. 2015, 57, 76–96. [Google Scholar] [CrossRef]
  24. Wang, L.J.; Griffin, W.L.; Yu, J.H.; O’Reilly, S.Y. U-Pb and Lu-Hf isotopes in detrital zircon from Neoproterozoic sedimentary rocks in the northern Yangtze Block: Implications for Precambrian crustal evolution. Gondwana Res. 2013, 23, 1261–1272. [Google Scholar] [CrossRef]
  25. Wu, Y.B.; Gao, S.; Gong, H.J.; Xiang, H.; Jiao, W.F.; Yang, S.H.; Liu, Y.S.; Yuan, H.L. Zircon U-Pb age, trace element and Hf isotope composition of Kongling terrane in the Yangtze Craton: Refining the timing of Palaeoproterozoic high-grade metamorphism. J. Metamorph. Geol. 2009, 27, 461–477. [Google Scholar] [CrossRef]
  26. Yang, Z.N.; Yang, K.G.; Polat, A.; Xu, Y. Early crustal evolution of the eastern Yangtze Block: Evidence from detrital zircon U-Pb ages and Hf isotopic composition of the Neoproterozoic Huashan Group in the Dahongshan Area. Precambrian Res. 2018, 309, 248–270. [Google Scholar] [CrossRef]
  27. Du, Q.D.; Wang, Z.J.; Wang, J.; Qiu, Y.S.; Jiang, X.S.; Deng, Q.; Yang, F. Geochronology and paleoenvironment of the pre-Sturtian glacial strata: Evidence from the Liantuo Formation in the Nanhua rift basin of the Yangtze Block, South China. Precambrian Res. 2013, 233, 118–131. [Google Scholar] [CrossRef]
  28. Hu, Z.X.; Liu, C.; Mao, X.W.; Deng, Q.Z.; Yang, J.X.; Li, L.J.; Kong, L.Y. Documentation of Jingningian island-arc volcanic rocks and accretionary complexes in the Dahongshan Region, northern Hubei and its tectonic significance. Resour. Environ. Eng. 2015, 29, 757–766. [Google Scholar]
  29. BGMRHB. Regional Geological Survey Report (Kedianpo, Guchengfan and Sanyangdian Areas, 1:50,000); BGMRHB: Hubei, China, 1986. (In Chinese)
  30. Liu, H.; Xu, D.L.; Wei, Y.X.; Deng, X.; Peng, L.H. Depositional age of the Dagushi Group in the Dahong Mountain, Hubei Province: Evidence from U-Pb ages of detrital zircons. Geol. Bull. China 2017, 36, 715–725. [Google Scholar]
  31. Wiedenbeck, M.; Allé, P.; Corfu, F.; Griffin, W.L.; Meier, M.; Oberli, F.; Quadt, A.V.; Roddick, J.C.; Spiegel, W. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand. Newslet. 1995, 19, 1–23. [Google Scholar] [CrossRef]
  32. Jackson, S.E.; Pearson, N.J.; Griffin, W.L.; Belousova, E.A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem. Geol. 2004, 211, 47–69. [Google Scholar] [CrossRef]
  33. Liu, Y.S.; Hu, Z.C.; Gao, S.; Günther, D.; Xu, J.; Gao, C.G.; Chen, H.H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
  34. Ludwig, K.R. User’s Manual for Isoplot 3.00: A Geochronological Toolkit for Excel; Berkeley Geochronology Center Special Publication: Berkeley, CA, USA, 2003; Volume 4, 67p. [Google Scholar]
  35. Black, L.P.; Kamo, S.L.; Allen, C.M.; Aleinikoff, J.N.; Davis, D.W.; Korsch, R.J.; Foudoulis, C. TEMORA 1: A new zircon standard for U–Pb geochronology. Chem. Geol. 2003, 200, 155–170. [Google Scholar] [CrossRef]
  36. He, Z.Y.; Klemd, R.; Zhang, Z.M.; Zong, K.Q.; Sun, L.X.; Tian, Z.L.; Huang, B.T. Mesoproterozoic continental arc magmatism and crustal growth in the eastern Central Tianshan Arc Terrane of the southern Central Asian Orogenic Belt: Geochronological and geochemical evidence. Lithos 2015, 236–237, 74–89. [Google Scholar] [CrossRef]
  37. Jochum, K.P.; Weis, U.; Stoll, B.; Kuzmin, D.; Yang, Q.; Raczek, I.; Jacob, D.E.; Stracke, A.; Birbaum, K.; Frick, D.A.; et al. Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostand. Geoanal. Res. 2011, 35, 397–429. [Google Scholar] [CrossRef]
  38. Yuan, H.L.; Gao, S.; Liu, X.M.; Li, H.M.; Günther, D.; Wu, F.Y. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostand. Geoanal. Res. 2004, 11, 353–370. [Google Scholar] [CrossRef]
  39. Hu, Z.C.; Liu, Y.S.; Gao, S.; Liu, W.G.; Zhang, W.; Tong, X.R.; Lin, L.; Zong, K.Q.; Li, M.; Chen, H.H. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. J. Anal. At. Spectrom. 2012, 27, 1391–1399. [Google Scholar] [CrossRef]
  40. Liu, Y.S.; Gao, S.; Hu, Z.C.; Gao, C.G.; Zong, K.Q.; Wang, D.B. Continental and Oceanic Crust Recycling-induced Melt-peridotite Interactions in the Trans-north China Orogen: U-Pb dating, Hf isotopes and trace elements in Zircons from Mantle Xenoliths. J. Pet. Sci. Eng. 2010, 51, 537–571. [Google Scholar] [CrossRef]
  41. Patchett, J.; Kouvo, O. Origin of continental crust of 1.9–1.7 Ga age: Nd isotopes and U-Pb zircon ages in the Svecokarelian terrain of South Finland. Contrib. Min. Pet. 1986, 92, 1–12. [Google Scholar] [CrossRef]
  42. Segal, I.; Halica, L.; Platzner, I.T. Accurate isotope ratio measurements of ytterbium by multiple collection inductively coupled plasma mass spectrometry applying erbium and hafnium in an improved double external normalization procedure. J. Anal. At. Spectrom. 2003, 18, 1217–1223. [Google Scholar] [CrossRef]
  43. Fisher, C.M.; Vervoort, J.D.; Hanchar, J.M. Guidelines for reporting zircon Hf isotopic data by LA-MC-ICPMS and potential pitfalls in the interpretation of these data. Chem. Geol. 2014, 363, 125–133. [Google Scholar] [CrossRef]
  44. Blichert-Toft, J.; Albarède, F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet. Sci. Lett. 1997, 148, 243–258. [Google Scholar] [CrossRef]
  45. Blichert-Toft, J. The Hf isotopic composition of zircon reference material 91500. Chem. Geol. 2008, 253, 252–257. [Google Scholar] [CrossRef]
  46. Söderlund, U.; Patchett, P.J.; Vervoort, J.D.; Isachsen, C.E. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet. Sci. Lett. 2004, 219, 311–324. [Google Scholar] [CrossRef]
  47. Griffin, W.L.; Pearson, N.J.; Belousova, E.; Jackson, S.E.; Van Achterbergh, E.; O’Reilly, S.Y.; Shee, S.R. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta 2000, 64, 133–147. [Google Scholar] [CrossRef]
  48. Griffin, W.L.; Wang, X.; Jackson, S.E.; Pearson, N.J.; O’Reilly, S.Y.; Xu, X.; Zhou, X. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 2002, 61, 237–269. [Google Scholar] [CrossRef]
  49. Kong, L.Y.; Mao, X.W.; Chen, C.; Deng, Q.Z.; Zhang, H.J.; Yang, Q.X.; Li, L.J.; Li, Q.W. Chronological study on detrital zircons and its geological significance from Mesoproterozoic Dagushi Group in the Dahongshan Area, north margin of the Yangtze Block. Earth Sci. 2017, 42, 485–501. [Google Scholar]
  50. Chen, K.; Gao, S.; Wu, Y.B.; Guo, J.L.; Hu, Z.C.; Liu, Y.S.; Zong, K.Q.; Liang, Z.W.; Geng, X.L. 2.6–2.7 Ga crustal growth in Yangtze craton, South China. Precambrian Res. 2013, 224, 472–490. [Google Scholar] [CrossRef]
  51. Guo, J.L.; Wu, Y.B.; Gao, S.; Jin, Z.M.; Zong, K.Q.; Hu, Z.C.; Chen, K.; Chen, H.H.; Liu, Y.S. Episodic Paleoarche-an-Paleoproterozoic (3.3–2.0 Ga) granitoid magmatism in Yangtze Craton, South China: Implications for late Archean tec-tonics. Precambrian Res. 2015, 270, 246–266. [Google Scholar] [CrossRef]
  52. Wang, Z.J.; Wang, J.; Du, Q.D.; Deng, Q.; Yang, F. The evolution of the Central Yangtze Block during early Neoarchean time: Evidence from geochronology and geochemistry. J. Asian Earth Sci. 2013, 77, 31–44. [Google Scholar] [CrossRef]
  53. Zhou, G.Y.; Wu, Y.B.; Gao, S.; Yang, J.Z.; Zheng, J.P.; Qin, Z.W.; Wang, H.; Yang, S.H. The 2.65 Ga A-type granite in the northeastern Yangtze craton: Petrogenesis and geological implications. Precambrian Res. 2015, 258, 247–259. [Google Scholar] [CrossRef]
  54. Qiu, Y.M.; Gao, S.; McNaughton, N.J.; Groves, D.I.; Ling, W.L. First evidence of >3.2 Ga continental crust in the Yangtze craton of south China and its implications for Archean crustal evolution and Phanerozoic tectonics. Geology 2000, 28, 11–14. [Google Scholar] [CrossRef]
  55. Zhang, S.B.; Zheng, Y.F.; Wu, Y.B.; Zhao, Z.F.; Gao, S.; Wu, F.Y. Zircon isotope evidence for ≥3.5 Ga continental crust in the Yangtze craton of China. Precambrian Res. 2006, 146, 16–34. [Google Scholar] [CrossRef]
  56. Jiao, W.F.; Wu, Y.B.; Yang, S.H.; Peng, M.; Wang, J. The oldest basement rock in the Yangtze Craton revealed by zircon U-Pb age and Hf isotope composition. Sci. China Ser. D Earth Sci. 2009, 52, 1393–1399. [Google Scholar] [CrossRef]
  57. Gao, S.; Yang, J.; Zhou, L.; Li, M.; Hu, Z.C.; Guo, J.L.; Yuan, H.L.; Gong, H.J.; Xiao, G.Q.; Wei, J.Q. Age and growth of the Archean Kongling terrain, South China, with emphasis on 3.3 ga granitoid gneisses. Am. J. Sci. 2011, 311, 153–182. [Google Scholar] [CrossRef]
  58. Guo, J.L.; Gao, S.; Wu, Y.B.; Li, M.; Chen, K.; Hu, Z.C.; Liang, Z.W.; Liu, Y.S.; Zhou, L.; Zong, K.Q. 3.45 Ga granitic gneisses from the Yangtze Craton, South China: Implications for Early Archean crustal growth. Precambrian Res. 2014, 242, 82–95. [Google Scholar] [CrossRef]
  59. Zhang, S.B.; Zheng, Y.F.; Wu, Y.B.; Zhao, Z.F.; Gao, S.; Wu, F.Y. Zircon U-Pb age and Hf-O isotope evidence for Paleoproterozoic metamorphic event in South China. Precambrian Res. 2006, 151, 265–288. [Google Scholar] [CrossRef]
  60. Xiong, Q.; Zheng, J.P.; Yu, C.M.; Su, Y.P.; Tang, H.Y.; Zhang, Z.H. Zircon U-Pb age and Hf isotope of Quanyishang A-type granite in Yichang: Signification for the Yangtze continental cratonization in Paleoproterozoic. Chin. Sci. Bull. 2009, 54, 436–446. [Google Scholar] [CrossRef] [Green Version]
  61. Wang, Z.J.; Wang, J.; Deng, Q.; Du, Q.D.; Zhou, X.L.; Yang, F.; Liu, H. Paleoproterozoic I-type granites and their im-plications for the Yangtze block position in the Columbia supercontinent: Evidence from the Lengshui Complex, South China. Precambrian Res. 2015, 263, 157–173. [Google Scholar] [CrossRef]
  62. Han, Q.S.; Peng, S.B.; Kusky, T.; Polat, A.; Jiang, X.F.; Cen, Y.; Liu, S.F.; Deng, H. A Paleoproterozoic ophiolitic mélange, Yangtze craton, South China: Evidence for Paleoproterozoic suturing and microcontinent amalgamation. Precambrian Res. 2017, 293, 13–38. [Google Scholar] [CrossRef]
  63. Zhou, G.Y.; Wu, Y.B.; Wang, H.; Qin, Z.W.; Zhang, W.X.; Zheng, J.P.; Yang, S.H. Petrogenesis of the Huashanguan A-type granite complex and its implications for the early evolution of the Yangtze Block. Precambrian Res. 2017, 292, 57–74. [Google Scholar] [CrossRef]
  64. Han, Q.S.; Peng, S.B.; Polat, A.; Kusky, T.; Deng, H.; Wu, T.Y. A ca.2.1 Ga Andean-type margin built on metasomatized lithosphere in the northern Yangtze craton, China: Evidence from high-Mg basalts and andesites. Precambrian Res. 2018, 309, 309–324. [Google Scholar] [CrossRef]
  65. Zheng, Y.F.; Zhao, Z.F.; Wu, Y.B.; Zhang, S.B.; Liu, X.M.; Wu, F.Y. Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen. Chem. Geol. 2006, 231, 135–158. [Google Scholar] [CrossRef]
  66. Li, Y.H.; Zheng, J.P.; Xiong, Q.; Wang, W.; Ping, X.Q.; Li, X.Y.; Tang, H.Y. Petrogenesis and tectonic implications of Paleoproterozoic metapelitic rocks in the Archean Kongling Complex from the northern Yangtze Craton, South China. Precambrian Res. 2016, 276, 158–177. [Google Scholar] [CrossRef]
  67. Geng, Y.S.; Liu, Y.Q.; Gao, L.Z.; Peng, N.; Jiang, X.J. Geochronology of the Mesoproterozoic Tong’an Formation in Southwestern Margin of Yangtze Craton: New Evidence from Zircon LA-ICP-MS U-Pb Ages. Acta Geol. Sin. 2012, 86, 1479–1490, (In Chinese with English abstract). [Google Scholar]
  68. Li, H.K.; Zhang, C.L.; Yao, C.Y.; Xiang, Z.Q. U-Pb zircon age and Hf isotope compositions of Mesoproterozoic sedimentary strata on the western margin of the Yangtze massif. Sci. China Earth Sci. 2013, 56, 628–639. [Google Scholar] [CrossRef]
  69. Pang, W.H.; Ren, G.M.; Sun, Z.M.; Yin, F.G. Division and correlation of Paleo-Mesoproterozoic strata on the western margin of Yangtze Block: Evidence from the U-Pb age of tuff zircon in the Tongan Formation. Geol. China 2015, 42, 921–936. [Google Scholar]
  70. Cawood, P.A.; Wang, W.; Zhao, T.Y.; Xu, Y.J.; Mulder, J.A.; Pisarevsky, S.A.; Zhang, L.M.; Gan, C.S.; He, H.Y.; Liu, H.C.; et al. Deconstructing South China and consequences for reconstructing Nuna and Rodinia. Earth Sci. Rev. 2020, 204, 1–24. [Google Scholar] [CrossRef]
  71. Liu, L.; Pan, L.K.; Du, Y.C.; Gong, Z.Y.; Luo, F. Geochemical characteristics and geological significance of Shicaohe volcanic rocks of Shennongjia Group in western Hubei Province. Resour. Environ. Eng. 2015, 29, 370–376. [Google Scholar]
  72. Wang, N.S. Sedimentary Facies of the Middle Part of Shennongjia Group—An Example from Shennongjia Section, Shennongjia Region; Chinese Academy of Geological Science: Beijing, China, 2016. [Google Scholar]
  73. Lu, S.N.; Chen, Z.H.; Xiang, Z.Q.; Li, H.K.; Li, H.M. U-Pb ages of detrital zircons from the para-metamorphic rocks of the Qinling Group and their geological significance. Earth Sci. Front. 2006, 13, 303–310. [Google Scholar]
  74. Li, X.H.; Chen, F.K.; Guo, J.H.; Li, Q.L.; Xie, L.W.; Siebel, W. South China provenance of the lower-grade Penglai Group north of the Sulu UHP orogenic belt, eastern China: Evidence from detrital zircon ages and Nd-Hf isotopic composition. Geochem. J. 2007, 41, 29–45. [Google Scholar] [CrossRef] [Green Version]
  75. Yang, L.; Chen, F.K.; Yang, Y.Z.; Li, S.Q.; Zhu, X.Y. Zircon U-Pb ages of the Qinling Group in Danfeng area: Recording Mesoproterozoic and Neoproterozoic magmatism and Early Paleozoic metamorphism in the North Qinling terrain. Acta Petrol. Sin. 2010, 26, 1589–1603, (In Chinese with English abstract). [Google Scholar]
  76. Chu, H.; Lu, S.N.; Wang, H.C.; Xiang, Z.Q.; Liu, H. U-Pb age spectrum of detrital zircons from the Fuzikuang Formation, Penglai Group in Changdao, Shandong Province. Acta Petrol. Sin. 2011, 27, 1017–1028, (In Chinese with English abstract). [Google Scholar]
  77. Diwu, C.; Sun, Y.; Zhang, H.; Wang, Q.; Guo, A.L.; Fan, L.G. Episodic tectonothermal events of the western North China Craton and North Qinling Orogenic Belt in central China: Constraints from detrital zircon U-Pb ages. J. Asian Earth Sci. 2012, 47, 107–122. [Google Scholar] [CrossRef]
  78. Wang, W.; Zhou, M.F.; Yan, D.P.; Li, J.W. Depositional age, provenance, and tectonic setting of the Neoproterozoic Sibao Group, southeastern Yangtze Block, South China. Precambrian Res. 2012, 192–195, 107–124. [Google Scholar] [CrossRef]
  79. Yang, C.; Li, X.H.; Wang, X.C.; Lan, Z.W. Mid-Neoproterozoic angular unconformity in the Yangtze Block revisited: Insights from detrital zircon U-Pb age and Hf-O isotopes. Precambrian Res. 2015, 266, 165–178. [Google Scholar] [CrossRef]
  80. Ma, X.; Yang, K.G.; Li, X.G.; Dai, C.G.; Zhang, H.; Zhou, Q.; McFarlane, C. Neoproterozoic Jiangnan Orogeny in Southeast Guizhou, South China: Evidence from U-Pb ages for Detrital Zircons from the Sibao Group and Xiajiang Group. Can. J. Earth Sci. 2016, 53, 219–230. [Google Scholar] [CrossRef]
  81. Wang, H.; Wu, Y.B.; Gao, S.; Liu, X.C.; Gong, H.J.; Li, Q.L.; Li, X.H.; Yuan, H.L. Eclogite origin and timings in the North Qinling terrane, and their bearing on the amalgamation of the South and North China Blocks. J. Metamorph. Geol. 2011, 29, 1019–1031. [Google Scholar] [CrossRef]
  82. Wang, Z.Z.; Guo, Y.; Yang, B.; Wang, S.W.; Sun, X.M.; Hou, L.; Zhou, B.G.; Liao, Z.W. Discovery of the 1.73 Ga Haizi Anorogenic Type Granite in the Western Margin of Yangtze Craton, and Its Geological Significance. Acta Geol. Sin. 2013, 87, 931–942. [Google Scholar]
  83. Wang, D.B.; Yin, F.G.; Sun, Z.M.; Wang, L.Q.; Wang, B.D.; Liao, S.Y.; Tang, Y.; Ren, G.M. Zircon U-Pb age and Hf isotope of Paleoproterozoic mafic intrusion on the western margin of the Yangtze Block and their implications. Geol. Geol. Bull. China 2013, 32, 617–630. [Google Scholar]
  84. Wang, S.W.; Liao, Z.W.; Sun, X.M.; Jiang, X.F.; Zhou, B.G.; Guo, Y.; Luo, M.J.; Zhu, H.P.; Ma, D. Geochemistry of Paleoproterozoic Diabases in the Dongchuan Copper deposit, Yunnan, SW China: Response to Breakup of the Columbia Supercontinent in the Southwestern Margin of Yangtze Block. Acta Geol. Sin. 2013, 87, 1834–1852. [Google Scholar]
  85. Yang, H.; Liu, P.H.; Meng, E.; Wang, F.; Xiao, L.L.; Liu, C.H. Geochemistry and its tectonic implications of metabasite in the Dahongshan Group in Southwestern Yangtze block. Acta Petrol. Sin. 2014, 30, 3021–3033. [Google Scholar]
  86. Belousova, E.; Griffin, W.L.; O’Reilly, S.Y.; Fisher, N. Igneous zircon: Trace element composition as an indicator of source rock type. Contrib. Min. Pet. 2002, 143, 602–622. [Google Scholar] [CrossRef]
  87. Maas, R.; Kinny, P.D.; Williams, I.S.; Froude, D.O.; Compston, W. The Earth’s oldest known crust: A geochronological and geochemical study of 3900–4200 Ma old detrital zircons from Mt. Narryer and Jack Hills, Western Australia. Geochim. Cosmochim. Acta 1992, 56, 1281–1300. [Google Scholar] [CrossRef]
  88. Carley, T.L.; Miller, C.F.; Wooden, J.L.; Padilla, A.J.; Schmitt, A.K.; Economos, R.C.; Bindeman, L.N.; Jordan, B.T. Iceland is not a magmatic analog for the Hadean: Evidence from the zircon record. Earth Planet. Sci. Lett. 2014, 405, 85–97. [Google Scholar] [CrossRef]
  89. Grimes, C.B.; Wooden, J.L.; Cheadle, M.J.; John, B.E. “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon. Contrib. Min. Pet. 2015, 170, 46. [Google Scholar] [CrossRef]
  90. Hawkesworth, C.J.; Kemp, A.I.S. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chem. Geol. 2006, 226, 144–162. [Google Scholar] [CrossRef]
  91. Yang, J.H.; Cawood, P.A.; Du, Y.S.; Huang, H.; Huang, H.W.; Tao, P. Large Igneous Province and magmatic arc sourced Permian-Triassic volcanogenic sediments in China. Sediment. Geol. 2012, 261–262, 120–131. [Google Scholar] [CrossRef]
  92. Zhao, J.H.; Zhou, M.F.; Wu, Y.B.; Zheng, J.P.; Wang, W. Coupled evolution of Neoproterozoic arc mafic magmatism and mantle wedge in the western margin of the South China Craton. Contrib. Min. Pet. 2019, 174, 1–36. [Google Scholar] [CrossRef]
  93. Roberts, N.M.W.; Slagstad, T. Continental growth and reworking on the edge of the Columbia and Rodinia super-continents: 1.86-0.9 Ga accretionary orogeny in southwest Fennoscandia. Int. Geol. Rev. 2015, 57, 1582–1606. [Google Scholar] [CrossRef]
  94. Roy, A.; Sarkar, A.; Jeyakumar, S.; Aggrawal, S.K.; Ebihara, M. Mid-Proterozoic plume related thermal event in eastern Indian craton: Evidence from trace elements, REE geochemistry and Sr-Nd isotope systematics of basic-ultrabasic intrusives from Dalma volcanic belt. Gondwana Res. 2002, 5, 133–146. [Google Scholar] [CrossRef]
  95. Teixeira, W.; DAgrella-Filho, M.S.; Ernst, R.E.; Hamilton, M.A.; Girardi, V.A.V.; Mazzucchelli, M.; Bettencourt, J.S. U-Pb (ID-TIMS) baddeleyite ages and paleomagnetism of 1.79 and 1.59 Ga tholeiitic dyke swarms, and position of the Rio de la Plata Craton within the Columbia supercontinent. Lithos 2013, 174, 157–174. [Google Scholar] [CrossRef]
  96. Silveira, E.M.; Söderlund, U.; Oliveira, E.P.; Ernst, R.E.; Menezes Leal, A.B. First precise U-Pb baddeleyite ages of 1500 Ma mafic dykes from the São Francisco Craton, Brazil, and tectonic implications. Lithos 2013, 174, 144–156. [Google Scholar] [CrossRef]
  97. Rao, C.V.D.; Santosh, M. Continental arc magmatism in a Mesoproterozoic convergent margin: Petrological and geochemical constraints from the magmatic suite of Kondapalle along the eastern margin of the Indian plate. Tectonophysics 2011, 510, 151–171. [Google Scholar] [CrossRef]
  98. Rao, C.V.D.; Santosh, M.; Zhang, Z.M.; Tsunogae, T. Mesoproterozoic arc magmatism in SE India: Petrology, zircon U–Pb geochronology and Hf isotopes of the Bopudi felsic suite from Eastern Ghats Belt. J. Asian Earth Sci. 2013, 75, 183–201. [Google Scholar]
  99. Subramanyam, K.S.V.; Santosh, M.; Yang, Q.Y.; Zhang, Z.M.; Balaram, V.; Reddy, U.V.B. Mesoproterozoic island arc magmatism along the south-eastern margin of the Indian Plate: Evidence from geochemistry and zircon U-Pb ages of mafic plutonic complexes. J. Asian Earth Sci. 2016, 30, 116–138. [Google Scholar] [CrossRef]
  100. Furlanetto, F.; Thorkelson, D.J.; Rainbird, R.H.; Davis, W.J.; Gibson, H.D.; Marshall, D.D. The Paleoproterozoic Wernecke Supergroup of Yukon, Canada: Relationships to orogeny in northwestern Laurentia and basins in North America, East Australia, and China. Gondwana Res. 2016, 39, 14–40. [Google Scholar] [CrossRef]
  101. Morel, M.L.A.; Nebel, O.; Nebel-Jacobsen, Y.J.; Miller, J.S.; Vroon, P.Z. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. Chem. Geol. 2008, 255, 231–235. [Google Scholar] [CrossRef]
Figure 2. Field photographs (ag) and photomicrographs (h,i) of the Dagushi Gp. (a) Siliceous dolomite; (b) siliceous-calcite; (c) meta-quartz sandstone; (d) silty-muddy slate; (e) dolomite; (f) meta-quartz sandstone; (g) meta-quartz sandstone; (h) sample JS14-1; and (i) sample JS26; Q: quartz.
Figure 2. Field photographs (ag) and photomicrographs (h,i) of the Dagushi Gp. (a) Siliceous dolomite; (b) siliceous-calcite; (c) meta-quartz sandstone; (d) silty-muddy slate; (e) dolomite; (f) meta-quartz sandstone; (g) meta-quartz sandstone; (h) sample JS14-1; and (i) sample JS26; Q: quartz.
Minerals 11 00371 g002
Figure 3. Cathodoluminescence images of zircon grains from three metasandstone samples JS26, JS14-1, and JS14-2. The smaller yellow circles denote the LA-ICP-MS dating spots, whereas the larger white circles the locations of Lu–Hf isotope analysis. Zircon U–Pb ages and εHf(t) values together with 1σ uncertainties are shown for individual spots.
Figure 3. Cathodoluminescence images of zircon grains from three metasandstone samples JS26, JS14-1, and JS14-2. The smaller yellow circles denote the LA-ICP-MS dating spots, whereas the larger white circles the locations of Lu–Hf isotope analysis. Zircon U–Pb ages and εHf(t) values together with 1σ uncertainties are shown for individual spots.
Minerals 11 00371 g003
Figure 4. U–Pb concordia plots of detrital zircons (left panel) and corresponding relative probability density diagrams of zircon ages (right panel) from the Dagushi Gp.
Figure 4. U–Pb concordia plots of detrital zircons (left panel) and corresponding relative probability density diagrams of zircon ages (right panel) from the Dagushi Gp.
Minerals 11 00371 g004
Figure 6. (a) A comparison of ɛHf(t) values of 1800–1350 Ma zircons from the Mesoproterozoic strata in the northern and western margins of the Yangtze Block [18,70,81]; (b) plots of εHf(t) values versus crystallization ages for detrital zircons from the eastern Yangtze Block (data are from Yang et al. [26] and references therein, as well as this study).
Figure 6. (a) A comparison of ɛHf(t) values of 1800–1350 Ma zircons from the Mesoproterozoic strata in the northern and western margins of the Yangtze Block [18,70,81]; (b) plots of εHf(t) values versus crystallization ages for detrital zircons from the eastern Yangtze Block (data are from Yang et al. [26] and references therein, as well as this study).
Minerals 11 00371 g006
Figure 7. (a) Classification and regression tree (CART-tree) for classification of zircons by rock types [86]; (b) source rock types of ~1.60 Ga zircons from the Dagushi Gp.
Figure 7. (a) Classification and regression tree (CART-tree) for classification of zircons by rock types [86]; (b) source rock types of ~1.60 Ga zircons from the Dagushi Gp.
Minerals 11 00371 g007
Figure 8. (a) Plot of Hf/Th vs. Th/Nb; (b) plot of Nb/Hf × 10,000 vs. Th/U; (c) plot of U/Yb vs. Hf; (d) plot of U/Yb vs. Nb/Yb × 10,000 [88,90,91,92].
Figure 8. (a) Plot of Hf/Th vs. Th/Nb; (b) plot of Nb/Hf × 10,000 vs. Th/U; (c) plot of U/Yb vs. Hf; (d) plot of U/Yb vs. Nb/Yb × 10,000 [88,90,91,92].
Minerals 11 00371 g008
Figure 9. The position of the Yangtze Block in the reconstruction of the supercontinent Columbia (modified after [7,100]).
Figure 9. The position of the Yangtze Block in the reconstruction of the supercontinent Columbia (modified after [7,100]).
Minerals 11 00371 g009
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Xie, X.; Yang, Z.; Zhang, H.; Polat, A.; Xu, Y.; Deng, X. Finding of Ca. 1.6 Ga Detrital Zircons from the Mesoproterozoic Dagushi Group, Northern Margin of the Yangtze Block. Minerals 2021, 11, 371. https://doi.org/10.3390/min11040371

AMA Style

Xie X, Yang Z, Zhang H, Polat A, Xu Y, Deng X. Finding of Ca. 1.6 Ga Detrital Zircons from the Mesoproterozoic Dagushi Group, Northern Margin of the Yangtze Block. Minerals. 2021; 11(4):371. https://doi.org/10.3390/min11040371

Chicago/Turabian Style

Xie, Xiaofeng, Zhenning Yang, Huan Zhang, Ali Polat, Yang Xu, and Xin Deng. 2021. "Finding of Ca. 1.6 Ga Detrital Zircons from the Mesoproterozoic Dagushi Group, Northern Margin of the Yangtze Block" Minerals 11, no. 4: 371. https://doi.org/10.3390/min11040371

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop