SIMS U-Pb Dating of Uraninite from the Guangshigou Uranium Deposit: Constraints on the Paleozoic Pegmatite-Type Uranium Mineralization in North Qinling Orogen, China
Abstract
:1. Introduction
2. Geological Setting
3. Sampling and Analytical Methods
4. Results
4.1. Petrography of the Uranium Mineralization
4.2. Composition of Uraninite
4.3. In Situ U-Pb Isotopic Dating on Uraninite
5. Discussion
5.1. Magmatic Origin of Uraninite from the Guangshigou Deposit
- Most uraninite grains show well-shaped euhedral to subhedral crystal morphology (Figure 3), which can be considered as a result of high-temperature precipitation [10]. Furthermore, their occurrence as inclusions in major rock-forming minerals (Figure 3a,b), along cracks or interstitial at the grain boundaries between rock-forming minerals (Figure 3c,d), or as intergrowth with magmatic zircon, apatite, monazite, and xenotime (Figure 3a–c) suggest that uraninite is coeval of the main rock-forming and accessory minerals constituting the host pegmatite.
- Non-altered uraninite in the Guangshigou deposit is characterized by low to relatively high Th, REE and Y contents (up to 4.64 wt% ThO2, 0.93 wt% ∑REE2O3 and 0.23 wt% Y2O3; Figure 4), and low U/Th ratios with a mean value of 18.54 (Table 3). The chemical composition and U/Th ratios of uraninite generally have been used to constrain its origin [76]. For instance, uraninite with U/Th ratios greater than 1000 is likely of low-temperature, hydrothermal origin, whereas higher temperature metamorphic or magmatic uraninite typically has U/Th ratios on the order of 10–100 [77]. Hence, U/Th ratios (15 to 26) of uraninite from the Guangshigou deposit suggest a magmatic origin. In addition, their Th, REE, and Y enrichments indicate that they most likely crystallized from a fractionated high-K calc-alkaline pegmatitic magma [19,75,78,79,80]. Indeed, when the high-K calc-alkaline melts become slightly peraluminous and/or when their temperature and Ca content has decreased sufficiently, monazite may become stable and Th-bearing accessory minerals start to fractionate to induce a decrease in Th/U ratios and allow uraninite crystallization [19], which is consistent with cogenetic monazite observed together with uraninite in the Guangshigou deposit (Figure 3c). Moreover, when uraninite crystallizes in equilibrium with Th-rich minerals, it is commonly characterized by high Th contents [81], which is also consistent with the relatively high Th concentrations (mean = 4.64 wt% ThO2, Figure 4a) measured in uraninite by the EPMA. Nevertheless, the proportion of uraninite is generally small in such fractionated igneous rocks [19], hence suggesting that U-rich pegmatites from the Guangshigou deposit have likely resulted from additional magmatic processes possibly involving the anatexis of parts of the metamorphic country rocks in which the pegmatites intruded. In addition, it is also excluded that U-rich pegmatites from the Guangshigou deposit only formed by low degree of partial melting of metamorphic rocks belonging to the Qinling Group. First, because the fraction of U, Th and REE hosted in accessory minerals such as monazite, zircon, and apatite from the country rocks, cannot contribute to the enrichment of the melts because these accessories are only weakly soluble in low-temperature peraluminous silicate melts [19]. Second, because the fractionation of monazite, the main Th- and REE-bearing mineral in peraluminous magmas, depletes melt in Th and REE. Uranium is not depleted because accessories such as monazite, zircon, and apatite incorporate only minor amounts of U. Consequently, the U remaining in the melt continues to be enriched during fractionation until the silicate melt reaches uraninite saturation enabling the crystallization of Th-poor uraninite [82].
- SIMS U-Pb dating on uraninite yielded a crystallization age of 412 ± 3 Ma, which is concomitant (within errors) with the emplacement age (415 ± 2 Ma, [58]) of the granitic biotite pegmatite hosting the U mineralization in the Guangshigou deposit.
5.2. Geochronological Constraint and Comparison with the Previous Ages of Uraninite
5.3. Implications for Paleozoic Pegmatite-Type Uranium Ore Genesis in North Qinling
5.4. Comparison with the World-Class Rössing Deposit
6. Conclusions
- Petrographic evidence for cogenetic crystallization of uraninite and other rock-forming minerals of the host pegmatite, the Th, REE, and Y enrichments in uraninite also characterized by low U/Th ratios (~19), and the concomitant ages between the emplacement of the host pegmatite (415 ± 2 Ma) and the crystallization of uraninite (412 ± 3 Ma), indicate that uraninite from the Guangshigou deposit has a magmatic origin and likely originated from fractionated high-K calc-alkaline pegmatitic magma that experienced various degrees of crustal material contamination mostly derived from the local biotite gneiss of the Qinling Group.
- In situ U-Pb isotopic dating by SIMS on uraninite from the Guangshigou deposit yielded a crystallization age of 412 ± 3 Ma, hence constraining the U ore genesis in the Guangshigou deposit to the Early Devonian, which corresponds to the late Caledonian post-collisional extension in the North Qinling area.
- The characteristics of the pegmatite-related Guangshigou deposit exhibiting Th-rich uraninite which was the product of assimilation-fractional crystallization of pegmatitic magma showed important differences with the world-class Rössing deposit characterized by Th-poor uraninite hosted in alaskite dykes formed by low degree of partial melting of U-rich metasediments.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cuney, M. Uranium and Thorium: The Extreme Diversity of the Resources of the World’s Energy Minerals. In Non-Renewable Resource Issues; Springer: Dordrecht, The Netherlands, 2012; pp. 91–129. [Google Scholar]
- Cuney, M.; Kyser, K. Geology and Geochemistry of Uranium and Thorium Deposits; Mineralogical Association of Canada: Québec, QC, Canada, 2015; Volume 46. [Google Scholar]
- OECD-NEA/IAEA. Uranium 2011: Resources, Production and Demand. NEA News 2016, 32, 26. [Google Scholar]
- London, D. Ore-forming processes within granitic pegmatites. Ore Geol. Rev. 2018, 101, 349–383. [Google Scholar] [CrossRef]
- Plant, J.A.; Henney, P.J.; Simpson, P.R. The genesis of tin–uranium granites in the Scottish Caledonides: Implications for metallogenesis. Geol. J. 1990, 25, 431–442. [Google Scholar] [CrossRef]
- Kinnaird, J.A.; Nex, P.A.M. A review of geological controls on uranium mineralisation in sheeted leucogranites within the Damara Orogen, Namibia. Appl. Earth Sci. 2007, 116, 68–85. [Google Scholar] [CrossRef]
- Nex, P.; Herd, D.; Kinnaird, J. Fluid extraction from quartz in sheeted leucogranites as a monitor to styles of uranium mineralization: An example from the Rössing area, Namibia. Geochem. Explor. Environ. Anal. 2002, 2, 83–96. [Google Scholar] [CrossRef]
- Nex, P.A.; Kinnaird, J.A.; Oliver, G.J. Petrology, geochemistry and uranium mineralisation of post-collisional magmatism around Goanikontes, southern Central Zone, Damaran Orogen, Namibia. J. Afr. Earth Sci. 2001, 33, 481–502. [Google Scholar] [CrossRef]
- Berning, J.; Cooke, R.; Hiemstra, S.; Hoffman, U. The Rössing uranium deposit, south west Africa. Econ. Geol. 1976, 71, 351–368. [Google Scholar] [CrossRef]
- Dill, H.G. The Hagendorf-Pleystein Province: The Center of Pegmatites in an Ensialic Orogen; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Bonales, L.; Menor-Salván, C.; Cobos, J. Study of the alteration products of a natural uraninite by Raman spectroscopy. J. Nucl. Mater. 2015, 462, 296–303. [Google Scholar] [CrossRef]
- Lentz, D. Petrogenesis and geochemical composition of biotites in rare-element granitic pegmatites in the southwestern Grenville Province, Canada. Miner. Pet. 1992, 46, 239–256. [Google Scholar] [CrossRef]
- McKeough, M.; Lentz, D. Paleoproterozoic Late-tectonic Granitic Pegmatite-hosted U-Th ± REE-Y-Nb Mineralization, Northern Saskatchewan: Products of Assimilation, Fractional Crystallization, and Hybridization Processes. Summ. Investig. 2011, 2, 2011–2014. [Google Scholar]
- McKeough, M.A.; Lentz, D.R.; McFarlane, C.R.; Brown, J. Geology and evolution of pegmatite-hosted U-Th ± REE-Y-Nb Mineralization, Kulyk, Eagle, and Karin Lakes region, Wollaston Domain, northern Saskatchewan, Canada: Examples of the dual role of extreme fractionation and hybridization processes. J. Geosci. 2013, 58, 321–346. [Google Scholar] [CrossRef] [Green Version]
- McKeough, M.; Lentz, D.; Brown, J. Geology and associated pegmatite-and vein-hosted uranium mineralization of the Kulyk, Eagle, and Karin Lakes regions, Wollaston Domain, northern Saskatchewan. Summ. Investig. Sask. Geol. Surv. Misc. Rep. 2010, 4, 1–23. [Google Scholar]
- Lal, N.; Nagpaul, K.K.; Sharma, K.K. Fission-track ages and uranium concentration in garnets from Rajasthan, India. GSA Bull. 1976, 87, 687–690. [Google Scholar] [CrossRef]
- Dahlkamp, F.J. Uranium Ore Deposits; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Basson, I.; Greenway, G. The Rössing Uranium Deposit: A product of late-kinematic localization of uraniferous granites in the Central Zone of the Damara Orogen, Namibia. J. Afr. Earth Sci. 2004, 38, 413–435. [Google Scholar] [CrossRef]
- Cuney, M. Felsic magmatism and uranium deposits. BSGF-Earth Sci. Bull. 2014, 185, 75–92. [Google Scholar] [CrossRef]
- Oliver, G. The Central Zone of the Damara Orogen, Namibia, as a deep metamorphic core complex. Commun. Geol. Surv. Namib. 1995, 10, 33–41. [Google Scholar]
- Zhong, J.; Wang, S.-Y.; Gu, D.-Z.; Cai, Y.-Q.; Fan, H.-H.; Shi, C.-H.; Hu, C.-N. Geology and fluid geochemistry of the Na-metasomatism U deposits in the Longshoushan uranium metallogenic belt, NW China: Constraints on the ore-forming process. Ore Geol. Rev. 2020, 116, 103214. [Google Scholar] [CrossRef]
- Yuan, F.; Liu, J.; Carranza, E.J.M.; Zhai, D.; Wang, Y.; Zhang, S.; Sha, Y.; Liu, G.; Wu, J. The Guangshigou uranium deposit, northern Qinling Orogen, China: A product of assimilation-fractional crystallization of pegmatitic magma. Ore Geol. Rev. 2018, 99, 17–41. [Google Scholar] [CrossRef]
- Feng, M.Y.; Rong, J.S.; Sun, Z.F.; Xu, Z.Y.; Xie, H.J. Pegmatitic Uranium Deposit in the North Qinling; Atomic Energy Press: Beijing, China, 1996. [Google Scholar]
- Dahlkamp, F.J. Uranium Deposits of the World: Asia; Springer: Berlin/Heidelberg, Germany, 2009; Chapter 7; pp. 191–267. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, R.; Bi, X.; Luo, J. Genesis of the Guangshigou pegmatite-type uranium deposit in the North Qinling Orogenic Belt, China. Ore Geol. Rev. 2019, 115, 103165. [Google Scholar] [CrossRef]
- Liu, B.-X.; Qi, Y.; Wang, W.; Siebel, W.; Zhu, X.-Y.; Nie, H.; He, J.-F.; Chen, F. Zircon U–Pb ages and O–Nd isotopic composition of basement rocks in the North Qinling Terrain, central China: Evidence for provenance and evolution. Int. J. Earth Sci. 2013, 102, 2153–2173. [Google Scholar] [CrossRef]
- Zuo, W.Q.; Sha, Y.Z.; Chen, B.; Luo, Z.S.; Zhang, Z.S. U-Pb istopic dating of zircon from Damaogou granite stock of Guangshigou uranium deposit in Danfeng area and it’s significance. Uranium Geol. 2010, 26, 222–227. [Google Scholar]
- Guo, G.L.; Zhang, Z.S.; Liu, X.D.; Feng, Z.S.; Lai, D.R. EPMA chemical U-Th-Pb dating of uraninite in guangshigou uranium deposit. J. East China Univ. Technol. 2012, 35, 309–314. [Google Scholar]
- Zong, K.; Chen, J.; Hu, Z.; Liu, Y.; Li, M.; Fan, H.; Meng, Y. In-situ U-Pb dating of uraninite by fs-LA-ICP-MS. Sci. China Earth Sci. 2015, 58, 1731–1740. [Google Scholar] [CrossRef]
- Tu, J.-R.; Xiao, Z.-B.; Zhou, H.-Y.; An, S.-Q.; Li, G.-Z.; Cui, Y.-R.; Liu, W.-G.; Li, H.-M. U–Pb dating of single-grain uraninite by isotope dilution thermal ionization mass spectrometry. Ore Geol. Rev. 2019, 109, 407–412. [Google Scholar] [CrossRef]
- Bowles, J.F. Age dating of individual grains of uraninite in rocks from electron microprobe analyses. Chem. Geol. 1990, 83, 47–53. [Google Scholar] [CrossRef]
- Guo, G.L.; Pan, J.Y.; Liu, C.D.; Guo, F.S. Chemical Dating Technique on the Electron-Probe Microanalysis and its Application on Earth Science. J. East China Inst. Technol. 2005, 28, 39–42. [Google Scholar]
- Martz, P.; Mercadier, J.; Perret, J.; Villeneuve, J.; Deloule, E.; Cathelineau, M.; Quirt, D.; Doney, A.; Ledru, P. Post-crystallization alteration of natural uraninites: Implications for dating, tracing, and nuclear forensics. Geochim. Cosmochim. Acta 2019, 249, 138–159. [Google Scholar] [CrossRef]
- Förster, H.-J.; Rhede, D.; Stein, H.J.; Romer, R.L.; Tischendorf, G. Paired uraninite and molybdenite dating of the Königshain granite: Implications for the onset of late-Variscan magmatism in the Lausitz Block. Int. J. Earth Sci. 2012, 101, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Chipley, D.; Polito, P.A.; Kyser, T.K. Measurement of U-Pb ages of uraninite and davidite by laser ablation-HR-ICP-MS. Am. Miner. 2007, 92, 1925–1935. [Google Scholar] [CrossRef]
- Decrée, S.; Deloule, É.; De Putter, T.; Dewaele, S.; Mees, F.; Yans, J.; Marignac, C. SIMS U–Pb dating of uranium mineralization in the Katanga Copperbelt: Constraints for the geodynamic context. Ore Geol. Rev. 2011, 40, 81–89. [Google Scholar] [CrossRef]
- Fayek, M.; Kyser, T.K.; Riciputi, L.R. U and Pb isotope analysis of uranium minerals by ion microprobe and the geochronology of the mcarthur river and sue zone uranium deposits, Saskatchewan, Canada. Can. Miner. 2002, 40, 1553–1570. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.-C.; Hu, R.-Z.; Fayek, M.; Li, C.-S.; Bi, X.-W.; Abdu, Y.; Chen, Y.-W. In-situ SIMS uraninite U–Pb dating and genesis of the Xianshi granite-hosted uranium deposit, South China. Ore Geol. Rev. 2015, 65, 968–978. [Google Scholar] [CrossRef]
- Sharpe, R.; Fayek, M. Mass bias corrections for U-Pb isotopic analysis by secondary ion mass spectrometry: Implications for U-Pb dating of uraninite. Rapid Commun. Mass Spectrom. 2016, 30, 1601–1611. [Google Scholar] [CrossRef] [PubMed]
- Sharpe, R.; Fayek, M. The World’s Oldest Observed Primary Uraninite. Can. Mineral. 2012, 49, 1199–1210. [Google Scholar] [CrossRef]
- Luo, J.-C.; Hu, R.-Z.; Fayek, M.; Bi, X.-W.; Shi, S.-H.; Chen, Y.-W. Newly discovered uranium mineralization at ~2.0 Ma in the Menggongjie granite-hosted uranium deposit, South China. J. Asian Earth Sci. 2017, 137, 241–249. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, R.; Luo, J.; Dong, S. In-situ mineral chemistry and chronology analyses of the pitchblende in the Shazijiang uranium deposit and their implications for mineralization. Acta Petrol. Sin. 2019, 35, 2679–2694. [Google Scholar]
- Wu, Y.; Qin, M.K.; Guo, D.F.; Fan, G.; Liu, Z.Y.; Guo, G.L. The latest in-situ uraninite U-Pb age of the Guangshigou uranium deposit, Northern Qinling orogen, China: Constraint on the metallogenic mechanism. Acta Geol. Sin. Engl. Ed. 2018, 92, 2445–2447. [Google Scholar]
- Dong, Y.; Zhang, G.; Neubauer, F.; Liu, X.; Genser, J.; Hauzenberger, C. Tectonic evolution of the Qinling orogen, China: Review and synthesis. J. Asian Earth Sci. 2011, 41, 213–237. [Google Scholar] [CrossRef]
- Duan, Y.; Yang, X.; Zhang, Z. Geochemical Constraints on the Alkaline Igneous Rocks in East Qingling: Significance to Au Mineralization. Acta Geol. Sin. 2014, 2, 714–715. [Google Scholar] [CrossRef]
- Meng, Q.-R.; Zhang, G.-W. Geologic framework and tectonic evolution of the Qinling orogen, central China. Tectonophysics 2000, 323, 183–196. [Google Scholar] [CrossRef]
- Qiu, H.-N.; Wijbrans, J. The Paleozoic metamorphic history of the Central Orogenic Belt of China from 40Ar/39Ar geochronology of eclogite garnet fluid inclusions. Earth Planet. Sci. Lett. 2008, 268, 501–514. [Google Scholar] [CrossRef]
- Dong, Y.-P.; Zhou, M.-F.; Zhang, G.-W.; Zhou, D.-W.; Liu, L.; Zhang, Q. The Grenvillian Songshugou ophiolite in the Qinling Mountains, Central China: Implications for the tectonic evolution of the Qinling orogenic belt. J. Asian Earth Sci. 2008, 32, 325–335. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, B.; Yuan, X.C.; Xiao, Q. Qinling Orogenic Belt and Continental Dynamics; Science Press: Beijing, China, 2001; pp. 1–855. [Google Scholar]
- Tang, Z.L.; Qian, Z.Z.; Ren, B.C.; Zeng, Z.R.; Wu, J.R.; Xue, C.J.; Liu, J.Q. Paleozoic Mineralization in China; Geological Publishing House: Beijing, China, 2005. [Google Scholar]
- Ratschbacher, L.; Hacker, B.R.; Calvert, A.; Webb, L.E.; Grimmer, J.C.; McWilliams, M.O.; Ireland, T.; Dong, S.; Hu, J. Tectonics of the Qinling (Central China): Tectonostratigraphy, geochronology, and deformation history. Tectonophysics 2003, 366, 1–53. [Google Scholar] [CrossRef]
- Wang, T.; Wang, X.; Tian, W.; Zhang, C.; Li, W.; Li, S. North Qinling Paleozoic granite associations and their variation in space and time: Implications for orogenic processes in the orogens of central China. Sci. China Ser. Earth Sci. 2009, 52, 1359–1384. [Google Scholar] [CrossRef]
- Wang, T.; Wang, X.; Zhang, G.; Pei, X.; Zhang, C. Remnants of a Neoproterozoic collisional orogenic belt in the core of the Phanerozoic Qinling orogenic belt (China). Gondwana Res. 2003, 6, 699–710. [Google Scholar]
- Zhang, G.; Meng, Q.; Yu, Z.; Sun, Y.; Zhou, D.; Guo, A. Orogenesis and dynamics of the Qinling orogen. Sci. China Ser. D Earth Sci. 1996, 39, 225–234. [Google Scholar]
- Dong, Y.; Zhang, G.; Hauzenberger, C.; Neubauer, F.; Yang, Z.; Liu, X. Palaeozoic tectonics and evolutionary history of the Qinling orogen: Evidence from geochemistry and geochronology of ophiolite and related volcanic rocks. Lithos 2011, 122, 39–56. [Google Scholar] [CrossRef]
- Zhai, X.; Day, H.W.; Hacker, B.R.; You, Z. Paleozoic metamorphism in the Qinling orogen, Tongbai Mountains, central China. Geology 1998, 26, 371–374. [Google Scholar] [CrossRef] [Green Version]
- Feng, Z.S.; Zhang, X.T.; JIao, J.L.; Wang, Z.Q.; Wang, Q.; Wang, J.C. Characteristics and prospecting direction of granitic pegmatite-type Uranium in Danfeng area, Shaanxi Provence. Northewestern Geol. 2013, 46, 159–166. [Google Scholar]
- Yuan, F.; Liu, J.-J.; Carranza, E.J.M.; Zhang, S.; Zhai, D.-G.; Liu, G.; Wang, G.-W.; Zhang, H.-Y.; Sha, Y.-Z.; Yang, S.-S. Zircon trace element and isotopic (Sr, Nd, Hf, Pb) effects of assimilation-fractional crystallization of pegmatite magma: A case study of the Guangshigou biotite pegmatites from the North Qinling Orogen, central China. Lithos 2018, 302–303, 20–36. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, L.; Wang, T.; Wang, X.; Li, L.; Gong, Q.; Li, X. Granitic magmatism related to early Paleozoic continental collision in North Qinling. Chin. Sci. Bull. 2013, 58, 4405–4410. [Google Scholar] [CrossRef] [Green Version]
- Kröner, A.; Zhang, G.W.; Sun, Y. Granulites in the Tongbai Area, Qinling Belt, China: Geochemistry, petrology, single zircon geochronology, and implications for the tectonic evolution of eastern Asia. Tectonics 1993, 12, 245–255. [Google Scholar] [CrossRef]
- You, Z.D.; Suo, S.T.; Han, Y.Q. Metamorphic and Deformational History; Beijing Science and Technology Press: Beijing, China, 1990. [Google Scholar]
- Wang, T.; Wang, X.; Li, W. Evaluation of multiple emplacement mechanisms: The Huichizi granite pluton, Qinling orogenic belt, central China. J. Struct. Geol. 2000, 22, 505–518. [Google Scholar] [CrossRef]
- Zhao, R.; Li, W.; Jiang, C.; Wang, J.; Wang, B.; Xi, Z. The LA-ICP-MS zircon U-Pb Dating, Petro-geochemical characteristics of Huanglongmiao Monzogranite in Danfeng area in eastern Qingling Mts. And their geological significance. Geol. Rev. 2014, 60, 1123–1132. [Google Scholar]
- Tatsumoto, M.; Basu, A.R.; Wankang, H.; Junwen, W.; Guanghong, X. Sr, Nd, and Pb isotopes of ultramafic xenoliths in volcanic rocks of Eastern China: Enriched components EMI and EMII in subcontinental lithosphere. Earth Planet. Sci. Lett. 1992, 113, 107–128. [Google Scholar] [CrossRef]
- Xu, Z. Characteristics and geneses of Rössing type uranium mineralization in Chenjiazhuang granite, Danfeng, Shanxi. Uranium Geol. 1988, 4, 257–265. [Google Scholar]
- Xue, F.; Lerch, M.; Kröner, A.; Reischmann, T. Tectonic evolution of the East Qinling Mountains, China, in the Palaeozoic: A review and new tectonic model. Tectonophysics 1996, 253, 271–284. [Google Scholar] [CrossRef]
- Xue, F.; Kröner, A.; Reischmann, T.; Lerch, F. Palaeozoic pre- and post-collision calc-alkaline magmatism in the Qinling orogenic belt, central China, as documented by zircon ages on granitoid rocks. J. Geol. Soc. 1996, 153, 409–417. [Google Scholar] [CrossRef]
- Lerch, M.F.; Xue, F.; Kröner, A.; Zhang, G.W.; Tod, W. A Middle Silurian-Early Devonian Magmatic Arc in the Qinling Mountains of Central China. J. Geol. 1995, 103, 437–449. [Google Scholar] [CrossRef]
- Chen, Y.W.; Bi, X.W.; Hu, R.Z.; Dong, S.H.; Cheng, D.J.; Feng, Z.S. Mineral chemistry of biotite and its implications for uranium mineralization in Guangshigou pegmatite-type uranium deposit, South Shaanxi province. Bull. Miner. Pet. Geochem. 2013, 33, 17–28. [Google Scholar]
- Qin, Z.; Wu, Y.; Siebel, W.; Gao, S.; Wang, H.; Abdallsamed, M.; Zhang, W.; Yang, S. Genesis of adakitic granitoids by partial melting of thickened lower crust and its implications for early crustal growth: A case study from the Huichizi pluton, Qinling orogen, central China. Lithos 2015, 238, 1–12. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, R.; Hua, R.; Chen, X. Chemical Th-U-total Pb isochron dating of accessory minerals: Principle and application to zircon from the piaotang muscovite granite in the Xihuashan complex, South China. Geol. Rev. 2003, 49, 253–260. [Google Scholar]
- Holliger, P. Ages U-Pb définis in situ sur pechblende à l’analyseur ionique. C. R. Acad. Sci. 1988, 2307, 367–373. [Google Scholar]
- Cathelineau, M.; Boiron, M.C.; Holliger, P.; Poty, B.; Michel, C. Metallogenesis of the French part of the Variscan orogen. Part II: Time-space relationships between U, Au and Sn-W ore deposition and geodynamic events—mineralogical and U-Pb data. Tectonophysics 1990, 177, 59–79. [Google Scholar] [CrossRef]
- Ludwig, K.R. Isoplot/Ex Version 2.00—A Geochronological Toolkit for Microsoft Excel; Special Publication; Berkeley Geochronological Center: Berkeley, CA, USA, 2000. [Google Scholar]
- Cuney, M. Recent and Not-So-Recent Developments in Uranium Deposits and Implications for Exploration; Mineralogical Association of Canada Short Course Series Volume 39; Mineralogical Association of Canada (MAC) and the Society for Geology Applied to Mineral Deposits (SGA): Québec, QC, Canada, 2009. [Google Scholar]
- Bea, F. Residence of REE, Y, Th and U in Granites and Crustal Protoliths; Implications for the Chemistry of Crustal Melts. J. Petrol. 1996, 37, 521–552. [Google Scholar] [CrossRef]
- Frimmel, H.E.; Schedel, S.; Brätz, H. Uraninite chemistry as forensic tool for provenance analysis. Appl. Geochem. 2014, 48, 104–121. [Google Scholar] [CrossRef]
- Bonnetti, C.; Liu, X.; Mercadier, J.; Cuney, M.; Wu, B.; Li, G. Genesis of the volcanic-related Be-U-Mo Baiyanghe deposit, West Junggar (NW China), constrained by mineralogical, trace element and U-Pb isotope signatures of the primary U mineralisation. Ore Geol. Rev. 2021, 128, 103921. [Google Scholar] [CrossRef]
- Bonnetti, C.; Liu, X.; Cuney, M.; Mercadier, J.; Riegler, T.; Yu, C. Evolution of the uranium mineralisation in the Zoujiashan deposit, Xiangshan ore field: Implications for the genesis of volcanic-related hydrothermal U deposits in South China. Ore Geol. Rev. 2020, 122, 103514. [Google Scholar] [CrossRef]
- Bonnetti, C.; Liu, X.; Mercadier, J.; Cuney, M.; Deloule, E.; Villeneuve, J.; Liu, W. The genesis of granite-related hydrothermal uranium deposits in the Xiazhuang and Zhuguang ore fields, North Guangdong Province, SE China: Insights from mineralogical, trace elements and U-Pb isotopes signatures of the U mineralisation. Ore Geol. Rev. 2018, 92, 588–612. [Google Scholar] [CrossRef]
- Pagel, M. The mineralogy and geochemistry of uranium, thorium, and rare-earth elements in two radioactive granites of the Vosges, France. Miner. Mag. 1982, 46, 149–161. [Google Scholar] [CrossRef]
- Cuney, M.; Friedrich, M. Physicochemical and crystal-chemical controls on accessory mineral paragenesis in granitoids: Implications for uranium metallogenesis. Bulletin de Minéralogie 1987, 110, 235–247. [Google Scholar] [CrossRef]
- Yang, L.; Chen, K.F.; Yang, Y.Z.; Li, S.; Zhu, X.Y. Zircon U-Pb ages of the Qinling Group in Danfeng area: Recording Mesoproterozoic and Neoproterozoic magmatism and Early Paleozoic metamorphism in the North Qinling terrain. Acta Petrol. Sin. 2010, 26, 1589–1603. [Google Scholar]
- Williams, I.; Hergt, J. U–Pb dating of Tasmanian dolerites: A cautionary tale of SHRIMP analysis of high-U zircon. Beyond 2000 New Front. Isot. Geosci. 2000, 185–188. [Google Scholar]
- Li, Q.-L.; Li, X.-H.; Liu, Y.; Tang, G.-Q.; Yang, J.-H.; Zhu, W.-G. Precise U–Pb and Pb–Pb dating of Phanerozoic baddeleyite by SIMS with oxygen flooding technique. J. Anal. At. Spectrom. 2010, 25, 1107–1113. [Google Scholar] [CrossRef]
- Li, Q.L. “High U Effect” during SIMS zircon U-Pb dating. Bull. Mineral. Petrol. Geochem. 2016, 35, 405–412. [Google Scholar]
- White, L.; Ireland, T. High-uranium matrix effect in zircon and its implications for SHRIMP U–Pb age determinations. Chem. Geol. 2012, 306–307, 78–91. [Google Scholar] [CrossRef]
- Gao, Y.-Y.; Li, X.-H.; Griffin, W.L.; O’Reilly, S.Y.; Wang, Y.-F. Screening criteria for reliable U–Pb geochronology and oxygen isotope analysis in uranium-rich zircons: A case study from the Suzhou A-type granites, SE China. Lithos 2014, 192–195, 180–191. [Google Scholar] [CrossRef]
- Liu, L.; Liao, X.; Wang, Y.; Wang, C.; Santosh, M.; Yang, M.; Zhang, C.; Chen, D. Early Paleozoic tectonic evolution of the North Qinling Orogenic Belt in Central China: Insights on continental deep subduction and multiphase exhumation. Earth-Sci. Rev. 2016, 159, 58–81. [Google Scholar] [CrossRef]
- Qu, K.; Sima, X.; Zhou, H.; Xiao, Z.; Tu, J.; Yin, Q.; Liu, X.; Li, J. In situ LA-MC-ICP-MS and ID-TIMS U-Pb ages of bastnäsite-(Ce) and zircon from the Taipingzhen hydrothermal REE deposit: New constraints on the later Paleozoic granite-related U-REE mineralization in the North Qinling Orogen, Central China. J. Asian Earth Sci. 2019, 173, 352–363. [Google Scholar] [CrossRef]
- Cuney, M. Processus de Concentration de l’uranium et du Thorium au Cours de la Fusion Partielle et de la Cristallisation des Magmas Granitiques. 1982. Available online: http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCALGEODEBRGM8320239528 (accessed on 10 April 2010).
- Cuney, M. Preliminary results on the petrology and fluid inclusions of the Rossing uraniferous alaskites. S. Afr. J. Geol. 1980, 83, 39–45. [Google Scholar]
No. | Sample | Method | U-Th-Pb Age Ranges on Uraninites | Reference |
---|---|---|---|---|
1 | YD-138 | ID-TIMS U-Pb Dating | 380.40–426.7 Ma, average age of 403.55 Ma | Feng et al. [23] |
2 | 8001G5-6 | Chemical U-Th-Pb dating by EPMA | 382.0–441.4 Ma, average age of 416.9 ± 10 Ma | Guo et al. [28] |
3 | 8001G5-7 | Chemical U-Th-Pb dating by EPMA | 366.2–430.0 Ma, average age of 407.6 ± 8 Ma | Guo et al. [28] |
4 | Group-1 | Chemical U-Th-Pb dating by EPMA | 330–430 Ma, average 410~420 Ma | Yuan et al. [22] |
5 | GSG-1 | LA-ICP-MS U-Pb dating, 206Pb/238U | 401–409 Ma, concordant age 405 ± 3 Ma | Wu et al. [43] |
6 | GSG-25 | LA-ICP-MS U-Pb dating, 206Pb/238U | 396–408 Ma, concordant age 403 ± 3 Ma | Wu et al. [43] |
Sample | Measurement | Measured Ratios a | Calibrated Ratios b | U-Pb and Pb-Pb Ages c (Ma) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
207Pb/206Pb | ± | 204Pb/206Pb(×10−7) | ± (×10−7) | 206Pb/238U | ± | 238UO/238U | ± | 206Pb/238U | ± | 207Pb/235U | ± | Correl. Err. | 206Pb/238U | ± | 207Pb/235U | ± | 207Pb/206Pb | ± | ||
Standard | Zambia1 | 0.05850 | 0.00020 | 2 | 4 | 0.181 | 0.000 | 3.26 | 0.01 | 0.0892 | 0.0081 | 0.720 | 0.009 | 0.890 | 551 | 4 | 550 | 3 | - | - |
Zambia2 | 0.05840 | 0.00010 | 6 | 4 | 0.161 | 0.001 | 3.04 | 0.01 | 0.0883 | 0.0112 | 0.710 | 0.011 | 0.982 | 545 | 6 | 544 | 4 | - | - | |
Zambia3 | 0.05834 | 0.00012 | 0 | 0 | 0.149 | 0.001 | 2.91 | 0.01 | 0.0869 | 0.0118 | 0.699 | 0.012 | 0.984 | 537 | 6 | 538 | 5 | - | - | |
Zambia4 | 0.05831 | 0.00004 | 0 | 0 | 0.150 | 0.001 | 2.93 | 0.01 | 0.0874 | 0.0126 | 0.699 | 0.013 | 0.998 | 537 | 6 | 538 | 5 | - | - | |
Zambia5 | 0.05861 | 0.00012 | 0 | 0 | 0.166 | 0.000 | 3.11 | 0.01 | 0.0901 | 0.0080 | 0.707 | 0.008 | 0.966 | 540 | 4 | 542 | 3 | - | - | |
Zambia6 | 0.05833 | 0.00008 | 0 | 0 | 0.129 | 0.000 | 2.60 | 0.01 | 0.0915 | 0.0087 | 0.724 | 0.009 | 0.985 | 556 | 5 | 553 | 3 | - | - | |
Zambia7 | 0.05843 | 0.00009 | 0 | 0 | 0.126 | 0.001 | 2.54 | 0.01 | 0.0890 | 0.0101 | 0.737 | 0.010 | 0.987 | 564 | 5 | 560 | 4 | - | - | |
Zambia8 | 0.05845 | 0.00006 | 2 | 1 | 0.446 | 0.003 | 6.56 | 0.02 | 0.0901 | 0.0092 | 0.718 | 0.009 | 0.993 | 550 | 5 | 549 | 3 | - | - | |
Zambia9 | 0.05813 | 0.00011 | 5 | 3 | 0.122 | 0.001 | 2.52 | 0.01 | 0.0820 | 0.0161 | 0.722 | 0.016 | 0.992 | 556 | 8 | 552 | 6 | - | - | |
Zambia10 | 0.05825 | 0.00011 | 0 | 0 | 0.320 | 0.003 | 5.33 | 0.01 | 0.0869 | 0.0119 | 0.659 | 0.012 | 0.986 | 508 | 6 | 514 | 4 | - | - | |
Zambia11 | 0.05799 | 0.00006 | 0 | 0 | 0.125 | 0.000 | 2.62 | 0.01 | 0.0854 | 0.0097 | 0.695 | 0.010 | 0.993 | 537 | 5 | 535 | 4 | - | - | |
Zambia12 | 0.05806 | 0.00015 | 0 | 0 | 0.137 | 0.000 | 2.80 | 0.01 | 0.0871 | 0.0062 | 0.684 | 0.007 | 0.918 | 528 | 3 | 529 | 2 | - | - | |
Zambia13 | 0.05793 | 0.00010 | 4 | 2 | 0.121 | 0.001 | 2.56 | 0.01 | 0.0864 | 0.0102 | 0.696 | 0.010 | 0.984 | 538 | 5 | 536 | 4 | - | - | |
Zambia14 | 0.05793 | 0.00010 | 0 | 0 | 0.135 | 0.001 | 2.75 | 0.01 | 0.0884 | 0.0101 | 0.691 | 0.010 | 0.985 | 534 | 5 | 533 | 3 | - | - | |
Zambia15 | 0.05819 | 0.00009 | 6 | 2 | 0.488 | 0.003 | 7.14 | 0.03 | 0.0851 | 0.0090 | 0.709 | 0.009 | 0.983 | 546 | 4 | 544 | 4 | - | - | |
Grain A | A-1 | 0.05511 | 0.00010 | 95 | 23 | 0.085 | 0.001 | 2.40 | 0.02 | 0.0681 | 0.0105 | 0.516 | 0.011 | 0.982 | 425 | 4 | 423 | 4 | 412 | 4 |
A-2 | 0.05561 | 0.00006 | 107 | 24 | 0.091 | 0.000 | 2.51 | 0.01 | 0.0678 | 0.0079 | 0.518 | 0.008 | 0.985 | 423 | 3 | 424 | 3 | 432 | 3 | |
A-3 | 0.05517 | 0.00006 | 125 | 21 | 0.088 | 0.001 | 2.47 | 0.02 | 0.0667 | 0.0096 | 0.505 | 0.010 | 0.991 | 416 | 4 | 415 | 3 | 413 | 2 | |
A-4 | 0.05550 | 0.00009 | 120 | 23 | 0.126 | 0.001 | 3.20 | 0.01 | 0.0641 | 0.0097 | 0.489 | 0.010 | 0.983 | 401 | 4 | 404 | 3 | 427 | 4 | |
A-5 | 0.05556 | 0.00013 | 102 | 5 | 0.300 | 0.001 | 6.16 | 0.03 | 0.0645 | 0.0067 | 0.493 | 0.007 | 0.939 | 403 | 3 | 407 | 2 | 430 | 5 | |
A-6 | 0.05468 | 0.00046 | 130 | 18 | 0.187 | 0.001 | 4.54 | 0.02 | 0.0587 | 0.0087 | 0.441 | 0.012 | 0.711 | 368 | 3 | 371 | 4 | 393 | 19 | |
A-7 | 0.05563 | 0.00032 | 86 | 22 | 0.097 | 0.001 | 2.76 | 0.03 | 0.0617 | 0.0114 | 0.472 | 0.013 | 0.890 | 386 | 4 | 392 | 4 | 434 | 13 | |
A-8 | 0.05544 | 0.00049 | 91 | 12 | 0.109 | 0.001 | 3.09 | 0.03 | 0.0582 | 0.0140 | 0.443 | 0.017 | 0.843 | 364 | 5 | 373 | 5 | 426 | 20 | |
A-9 | 0.05565 | 0.00024 | 76 | 18 | 0.086 | 0.001 | 2.44 | 0.02 | 0.0670 | 0.0135 | 0.513 | 0.014 | 0.948 | 418 | 5 | 420 | 5 | 435 | 10 | |
Grain B | B-1 | 0.05597 | 0.00072 | 44 | 12 | 0.075 | 0.001 | 2.84 | 0.02 | 0.0457 | 0.0193 | 0.352 | 0.023 | 0.831 | 288 | 5 | 306 | 6 | 450 | 28 |
B-2 | 0.05515 | 0.00058 | 59 | 12 | 0.119 | 0.001 | 3.83 | 0.00 | 0.0467 | 0.0129 | 0.355 | 0.017 | 0.770 | 294 | 4 | 308 | 4 | 416 | 24 | |
B-3 | 0.05520 | 0.00009 | 122 | 27 | 0.095 | 0.000 | 3.12 | 0.02 | 0.0499 | 0.0079 | 0.379 | 0.008 | 0.972 | 314 | 2 | 326 | 2 | 414 | 4 | |
B-4 | 0.05526 | 0.00019 | 77 | 22 | 0.050 | 0.000 | 2.05 | 0.01 | 0.0537 | 0.0081 | 0.408 | 0.009 | 0.915 | 337 | 3 | 348 | 3 | 419 | 8 | |
B-5 | 0.05550 | 0.00007 | 94 | 14 | 0.195 | 0.005 | 4.90 | 0.04 | 0.0554 | 0.0239 | 0.423 | 0.024 | 0.998 | 348 | 8 | 358 | 7 | 428 | 3 | |
B-6 | 0.05565 | 0.00025 | 68 | 14 | 0.070 | 0.001 | 2.31 | 0.01 | 0.0599 | 0.0195 | 0.459 | 0.020 | 0.972 | 375 | 7 | 383 | 6 | 436 | 10 | |
B-7 | 0.05540 | 0.00019 | 86 | 21 | 0.094 | 0.002 | 2.92 | 0.02 | 0.0546 | 0.0212 | 0.416 | 0.022 | 0.985 | 343 | 7 | 353 | 6 | 425 | 8 | |
B-8 | 0.05537 | 0.00014 | 72 | 16 | 0.073 | 0.001 | 2.42 | 0.01 | 0.0574 | 0.0169 | 0.437 | 0.017 | 0.988 | 360 | 6 | 368 | 5 | 424 | 6 | |
Grain C | C-1 | 0.05480 | 0.00018 | 88 | 18 | 0.079 | 0.000 | 2.33 | 0.01 | 0.0662 | 0.0082 | 0.499 | 0.009 | 0.921 | 413 | 3 | 411 | 3 | 400 | 8 |
C-2 | 0.05515 | 0.00015 | 124 | 18 | 0.267 | 0.004 | 5.77 | 0.05 | 0.0620 | 0.0178 | 0.470 | 0.018 | 0.987 | 388 | 7 | 391 | 6 | 412 | 6 | |
C-3 | 0.05515 | 0.00013 | 76 | 19 | 0.082 | 0.001 | 2.41 | 0.01 | 0.0654 | 0.0094 | 0.496 | 0.010 | 0.963 | 408 | 4 | 409 | 3 | 415 | 6 | |
C-4 | 0.05451 | 0.00019 | 145 | 33 | 0.081 | 0.001 | 2.44 | 0.01 | 0.0629 | 0.0117 | 0.471 | 0.012 | 0.953 | 393 | 4 | 392 | 4 | 385 | 8 | |
C-5 | 0.05414 | 0.00049 | 76 | 6 | 0.243 | 0.003 | 5.61 | 0.04 | 0.0586 | 0.0143 | 0.436 | 0.017 | 0.844 | 367 | 5 | 368 | 5 | 374 | 20 | |
C-6 | 0.05492 | 0.00070 | 136 | 7 | 0.122 | 0.002 | 3.29 | 0.02 | 0.0592 | 0.0163 | 0.447 | 0.021 | 0.786 | 371 | 6 | 375 | 6 | 402 | 28 | |
C-7 | 0.05483 | 0.00015 | 109 | 22 | 0.072 | 0.001 | 2.32 | 0.01 | 0.0614 | 0.0112 | 0.463 | 0.012 | 0.965 | 384 | 4 | 386 | 4 | 400 | 6 | |
C-8 | 0.05428 | 0.00075 | 51 | 9 | 0.217 | 0.004 | 5.04 | 0.13 | 0.0595 | 0.0189 | 0.445 | 0.023 | 0.806 | 373 | 7 | 374 | 7 | 381 | 31 | |
C-9 | 0.05462 | 0.00040 | 71 | 16 | 0.081 | 0.001 | 2.43 | 0.02 | 0.0635 | 0.0124 | 0.477 | 0.014 | 0.858 | 397 | 5 | 396 | 5 | 394 | 16 | |
C-10 | 0.05448 | 0.00042 | 87 | 21 | 0.087 | 0.001 | 2.51 | 0.01 | 0.0648 | 0.0144 | 0.485 | 0.016 | 0.878 | 404 | 6 | 402 | 5 | 387 | 17 | |
Grain D | D-1 | 0.05583 | 0.00092 | 153 | 20 | 0.066 | 0.001 | 2.26 | 0.03 | 0.0588 | 0.0203 | 0.451 | 0.026 | 0.771 | 368 | 7 | 378 | 8 | 438 | 37 |
D-2 | 0.05464 | 0.00065 | 158 | 19 | 0.062 | 0.001 | 2.06 | 0.02 | 0.0661 | 0.0111 | 0.496 | 0.016 | 0.675 | 413 | 4 | 409 | 5 | 389 | 27 | |
D-3 | 0.05571 | 0.00104 | 172 | 25 | 0.088 | 0.001 | 2.60 | 0.03 | 0.0617 | 0.0154 | 0.472 | 0.024 | 0.629 | 386 | 6 | 392 | 8 | 432 | 41 | |
D-4 | 0.05460 | 0.00053 | 160 | 23 | 0.067 | 0.001 | 2.15 | 0.02 | 0.0651 | 0.0107 | 0.488 | 0.015 | 0.731 | 406 | 4 | 403 | 5 | 387 | 22 | |
D-5 | 0.05537 | 0.00117 | 178 | 32 | 0.070 | 0.001 | 2.20 | 0.02 | 0.0653 | 0.0132 | 0.496 | 0.025 | 0.524 | 408 | 5 | 409 | 8 | 418 | 47 |
No. | UO2 | ThO2 | PbO | SiO2 | CaO | FeO | La2O3 | Y2O3 | Ce2O3 | Pr2O3 | Nd2O3 | Eu2O3 | Gd2O3 | Tb2O3 | Dy2O3 | Ho2O3 | Er2O3 | Tm2O3 | Lu2O3 | Yb2O3 | Total | REE | U/Th | U + Th | U-Th-Pb Ages |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Urn-01 * | 85.53 | 4.58 | 5.17 | 0.02 | 0.30 | 0.27 | <0.01 | 0.19 | 0.20 | <0.01 | <0.01 | <0.01 | 0.11 | <0.01 | 0.18 | 0.11 | 0.01 | <0.01 | <0.01 | 0.11 | 96.77 | 0.70 | 18.3 | 90.11 | 430.4 |
Urn-02 | 85.73 | 4.54 | 5.22 | 0.05 | 0.31 | 0.68 | <0.01 | 0.26 | 0.15 | <0.01 | 0.04 | <0.01 | 0.17 | 0.12 | 0.25 | 0.14 | 0.03 | <0.01 | <0.01 | 0.03 | 97.72 | 0.94 | 18.5 | 90.27 | 433.5 |
Urn-03 | 84.93 | 5.03 | 4.87 | 0.18 | 0.22 | 0.58 | <0.01 | 0.23 | 0.15 | <0.01 | 0.07 | <0.01 | 0.02 | <0.01 | 0.25 | 0.05 | 0.02 | <0.01 | <0.01 | <0.01 | 96.60 | 0.56 | 16.5 | 89.96 | 408.5 |
Urn-04 | 85.63 | 4.91 | 5.21 | 0.03 | 0.54 | 0.39 | <0.01 | 0.20 | 0.13 | <0.01 | 0.05 | <0.01 | 0.33 | 0.12 | 0.43 | <0.01 | 0.05 | 0.01 | 0.13 | <0.01 | 98.16 | 1.24 | 17.1 | 90.54 | 432.7 |
Urn-05 * | 84.91 | 4.74 | 5.09 | 0.04 | 0.30 | 0.27 | 0.04 | 0.35 | 0.07 | 0.04 | <0.01 | 0.01 | <0.01 | <0.01 | 0.06 | 0.01 | 0.01 | <0.01 | 0.03 | 0.20 | 96.17 | 0.48 | 17.5 | 89.65 | 426.8 |
Urn-06 | 86.18 | 4.65 | 5.18 | 0.07 | 0.32 | 0.48 | <0.01 | 0.25 | 0.06 | <0.01 | 0.05 | <0.01 | 0.12 | 0.02 | 0.35 | 0.09 | <0.01 | <0.01 | 0.24 | 0.12 | 98.18 | 1.06 | 18.1 | 90.83 | 428.1 |
Urn-07 | 86.78 | 4.50 | 5.18 | <0.02 | 0.36 | 0.69 | <0.01 | 0.25 | 0.04 | 0.07 | <0.01 | 0.02 | 0.19 | <0.01 | 0.09 | 0.06 | 0.29 | <0.01 | <0.01 | 0.14 | 98.66 | 0.91 | 18.9 | 91.28 | 425.5 |
Urn-08 * | 87.43 | 4.45 | 5.28 | 0.02 | 0.26 | 0.94 | <0.01 | 0.26 | <0.01 | 0.03 | <0.01 | 0.05 | 0.05 | <0.01 | 0.28 | <0.01 | 0.01 | 0.13 | 0.09 | 0.18 | 99.46 | 0.83 | 19.2 | 91.87 | 430.4 |
Urn-09 | 87.51 | 4.49 | 5.14 | 0.03 | 0.29 | 0.90 | <0.01 | 0.26 | 0.07 | <0.01 | <0.01 | <0.01 | 0.19 | <0.01 | 0.28 | 0.05 | 0.03 | <0.01 | 0.12 | 0.13 | 99.49 | 0.86 | 19.1 | 92.00 | 419.0 |
Urn-10 | 87.62 | 4.56 | 5.30 | 0.05 | 0.87 | 0.57 | <0.01 | 0.27 | 0.02 | <0.01 | <0.01 | <0.01 | 0.24 | <0.01 | 0.22 | <0.01 | <0.01 | 0.03 | 0.16 | 0.07 | 99.98 | 0.75 | 18.8 | 92.18 | 430.9 |
Urn-11 | 87.04 | 4.50 | 4.85 | 0.08 | 0.24 | 0.34 | <0.01 | 0.23 | 0.18 | 0.09 | <0.01 | <0.01 | 0.21 | <0.01 | 0.26 | 0.07 | 0.04 | <0.01 | 0.21 | 0.19 | 98.53 | 1.26 | 18.9 | 91.54 | 398.3 |
Urn-12 * | 87.15 | 4.52 | 5.05 | 0.06 | 0.21 | 0.41 | <0.01 | 0.24 | 0.19 | <0.01 | <0.01 | <0.01 | 0.16 | <0.01 | 0.42 | 0.11 | 0.29 | <0.01 | 0.19 | 0.13 | 99.13 | 1.48 | 18.9 | 91.67 | 413.6 |
Urn-13 | 87.64 | 4.46 | 5.36 | 0.03 | 0.45 | 0.45 | <0.01 | 0.24 | 0.16 | 0.01 | <0.01 | <0.01 | 0.08 | <0.01 | 0.39 | 0.17 | <0.01 | 0.08 | <0.01 | 0.05 | 99.57 | 0.95 | 19.2 | 92.10 | 435.7 |
Urn-14 * | 86.66 | 4.55 | 5.03 | 0.10 | 0.53 | 0.66 | <0.01 | 0.24 | 0.04 | 0.10 | <0.01 | <0.01 | 0.13 | <0.01 | 0.43 | 0.16 | 0.21 | 0.10 | 0.14 | 0.12 | 99.20 | 1.43 | 18.6 | 91.20 | 414.1 |
Urn-15 | 87.09 | 4.64 | 5.16 | 0.07 | 0.34 | 0.35 | <0.01 | 0.18 | 0.17 | <0.01 | 0.11 | 0.03 | 0.09 | 0.15 | 0.16 | 0.21 | 0.04 | 0.15 | <0.01 | 0.20 | 99.14 | 1.30 | 18.4 | 91.74 | 422.3 |
Urn-16 | 86.37 | 4.65 | 5.09 | 0.03 | 0.26 | 0.49 | 0.04 | 0.24 | 0.09 | 0.09 | <0.01 | <0.01 | 0.07 | <0.01 | 0.16 | 0.17 | <0.01 | 0.01 | <0.01 | 0.19 | 97.95 | 0.82 | 18.2 | 91.03 | 420.0 |
Urn-17 * | 85.73 | 4.63 | 5.37 | 0.08 | 0.31 | 0.18 | <0.01 | 0.18 | 0.13 | 0.05 | <0.01 | <0.01 | 0.10 | <0.01 | 0.18 | 0.03 | <0.01 | <0.01 | 0.01 | 0.19 | 97.17 | 0.69 | 18.1 | 90.37 | 445.3 |
Urn-18 | 85.07 | 4.67 | 4.83 | 0.08 | 0.63 | 0.11 | 0.01 | 0.21 | 0.08 | <0.01 | 0.16 | <0.01 | 0.27 | <0.01 | 0.32 | 0.05 | <0.01 | <0.01 | <0.01 | 0.04 | 96.52 | 0.92 | 17.8 | 89.75 | 405.2 |
Urn-19 | 85.58 | 4.60 | 4.89 | 0.09 | 0.58 | 0.15 | 0.10 | 0.18 | 0.29 | 0.02 | <0.01 | <0.01 | 0.12 | <0.01 | 0.26 | 0.02 | 0.07 | <0.01 | 0.16 | 0.15 | 97.26 | 1.19 | 18.2 | 90.18 | 407.8 |
Urn-20 | 84.73 | 4.73 | 5.00 | 0.06 | 0.17 | 0.07 | <0.01 | 0.22 | 0.04 | <0.01 | 0.03 | 0.06 | 0.09 | <0.01 | 0.16 | 0.02 | <0.01 | 0.16 | 0.14 | <0.01 | 95.68 | 0.70 | 17.5 | 89.46 | 420.3 |
Urn-21 | 85.38 | 4.64 | 4.85 | 0.16 | 0.48 | 0.09 | <0.01 | 0.18 | 0.02 | 0.07 | 0.08 | 0.08 | 0.09 | <0.01 | 0.21 | 0.16 | 0.07 | 0.21 | 0.13 | 0.11 | 97.01 | 1.23 | 18.0 | 90.02 | 405.4 |
Urn-22 * | 86.07 | 4.77 | 5.01 | 0.08 | 0.31 | 0.13 | <0.01 | 0.18 | 0.09 | 0.01 | <0.01 | <0.01 | 0.24 | <0.01 | 0.15 | 0.14 | 0.14 | 0.24 | 0.02 | 0.03 | 97.61 | 1.07 | 17.6 | 90.84 | 414.9 |
Urn-23 | 85.53 | 4.90 | 5.08 | 0.05 | 0.68 | 0.07 | <0.01 | 0.26 | 0.13 | 0.08 | 0.09 | 0.02 | 0.13 | <0.01 | 0.23 | 0.07 | 0.14 | 0.02 | 0.06 | 0.14 | 97.68 | 1.11 | 17.1 | 90.43 | 422.8 |
Urn-24 * | 85.17 | 4.68 | 4.87 | 0.08 | 0.32 | 0.04 | <0.01 | 0.26 | 0.18 | 0.12 | <0.01 | <0.01 | 0.04 | <0.01 | 0.32 | 0.06 | 0.06 | <0.01 | <0.01 | 0.17 | 96.37 | 0.95 | 17.8 | 89.86 | 407.9 |
Urn-25 | 85.56 | 4.61 | 4.87 | 0.13 | 0.23 | 0.13 | 0.07 | 0.26 | 0.13 | 0.19 | <0.01 | <0.01 | 0.07 | 0.07 | 0.33 | 0.09 | <0.01 | 0.11 | <0.01 | 0.21 | 97.06 | 1.28 | 18.1 | 90.17 | 406.3 |
Urn-26 | 86.45 | 4.70 | 4.89 | 0.09 | 0.26 | 0.12 | <0.01 | 0.23 | 0.08 | 0.05 | 0.01 | 0.05 | 0.14 | <0.01 | 0.35 | 0.07 | <0.01 | 0.06 | <0.01 | <0.01 | 97.55 | 0.81 | 18.0 | 91.15 | 403.8 |
Urn-27 | 86.19 | 4.57 | 5.13 | 0.06 | 0.31 | 0.13 | <0.01 | 0.22 | <0.01 | 0.02 | 0.01 | <0.01 | 0.15 | <0.01 | 0.24 | 0.06 | <0.01 | <0.01 | <0.01 | 0.14 | 97.23 | 0.62 | 18.4 | 90.76 | 424.2 |
Urn-28 * | 85.58 | 4.59 | 5.08 | 0.10 | 0.33 | 0.16 | 0.03 | 0.22 | 0.11 | <0.01 | <0.01 | <0.01 | 0.11 | <0.01 | 0.10 | <0.01 | <0.01 | 0.12 | <0.01 | 0.31 | 96.84 | 0.78 | 18.2 | 90.16 | 423.0 |
Urn-29 | 86.00 | 4.75 | 5.41 | 0.05 | 0.34 | 0.11 | <0.01 | 0.25 | 0.03 | 0.10 | 0.01 | 0.02 | 0.16 | <0.01 | 0.18 | 0.23 | 0.10 | 0.04 | 0.21 | <0.01 | 97.99 | 1.09 | 17.7 | 90.75 | 447.0 |
Urn-30 * | 86.09 | 4.70 | 4.91 | 0.05 | 0.53 | 0.15 | <0.01 | 0.20 | 0.14 | <0.01 | 0.04 | <0.01 | 0.30 | <0.01 | 0.25 | <0.01 | <0.01 | 0.05 | 0.21 | 0.38 | 98.00 | 1.37 | 17.9 | 90.79 | 407.0 |
Urn-31 * | 86.93 | 5.18 | 4.87 | 0.24 | 0.47 | 1.02 | <0.01 | 0.23 | 0.14 | 0.06 | <0.01 | <0.01 | 0.03 | 0.15 | 0.35 | <0.01 | <0.01 | 0.16 | <0.01 | <0.01 | 99.83 | 0.89 | 16.4 | 92.11 | 399.5 |
Urn-32 * | 82.47 | 4.69 | 4.75 | 0.34 | 0.64 | 2.73 | <0.01 | 0.10 | 0.12 | 0.02 | 0.01 | 0.05 | 0.09 | <0.01 | 0.23 | <0.01 | 0.01 | 0.01 | 0.11 | 0.13 | 96.50 | 0.77 | 17.2 | 87.15 | 410.6 |
Urn-33 | 73.65 | 3.40 | 3.90 | 2.94 | 1.21 | <0.02 | 0.10 | 0.95 | 0.27 | 0.18 | 0.27 | 0.01 | 0.22 | <0.01 | 0.26 | 0.08 | 0.09 | <0.01 | 0.02 | 0.23 | 87.78 | 1.73 | 21.2 | 77.05 | 379.9 |
Urn-34 | 73.28 | 2.81 | 4.04 | 2.09 | 0.95 | <0.02 | 0.03 | 1.06 | 0.25 | 0.07 | 0.15 | <0.01 | 0.22 | <0.01 | 0.54 | 0.06 | 0.41 | <0.01 | <0.01 | <0.01 | 85.97 | 1.72 | 25.5 | 76.09 | 395.8 |
Urn-35 | 68.25 | 4.30 | 3.29 | 4.62 | 1.68 | 0.04 | 0.07 | 0.44 | 0.14 | <0.01 | <0.01 | <0.01 | 0.01 | <0.01 | 0.10 | <0.01 | <0.01 | 0.14 | <0.01 | 0.05 | 83.13 | 0.52 | 15.5 | 72.55 | 345.2 |
Urn-36 | 70.49 | 3.38 | 4.08 | 4.69 | 1.71 | <0.02 | <0.01 | 0.52 | 0.13 | <0.01 | 0.04 | 0.10 | 0.07 | <0.01 | 0.25 | 0.03 | 0.14 | 0.06 | 0.10 | <0.01 | 85.79 | 0.90 | 20.4 | 73.87 | 413.6 |
Urn-37 | 71.00 | 3.16 | 4.34 | 5.23 | 0.57 | 0.04 | <0.01 | 0.75 | <0.01 | 0.18 | 0.10 | <0.01 | 0.10 | <0.01 | 0.37 | 0.11 | 0.18 | <0.01 | 0.03 | <0.01 | 86.16 | 1.06 | 22.0 | 74.16 | 436.2 |
Urn-38 | 63.92 | 4.37 | 2.96 | 5.70 | 1.91 | <0.02 | <0.01 | 0.36 | 0.18 | 0.03 | <0.01 | <0.01 | 0.04 | <0.01 | 0.13 | 0.01 | 0.30 | 0.07 | 0.01 | 0.06 | 80.05 | 0.82 | 14.3 | 68.29 | 331.5 |
Urn-39 | 69.60 | 3.30 | 4.40 | 2.54 | 0.88 | 0.08 | <0.01 | 0.67 | 0.15 | <0.01 | <0.01 | <0.01 | 0.22 | <0.01 | 0.29 | <0.01 | 0.10 | 0.02 | 0.06 | 0.15 | 82.46 | 1.00 | 20.6 | 72.89 | 450.1 |
Urn-40 | 68.76 | 2.92 | 4.34 | 2.17 | 0.92 | <0.02 | <0.01 | 0.83 | 0.16 | 0.06 | <0.01 | <0.01 | 0.21 | 0.08 | 0.39 | 0.09 | 0.25 | 0.03 | 0.10 | 0.12 | 81.44 | 1.51 | 23.0 | 71.68 | 450.0 |
Urn-41 | 68.88 | 3.34 | 4.56 | 1.34 | 0.48 | 0.08 | <0.01 | 0.87 | 0.23 | 0.04 | <0.01 | <0.01 | 0.20 | <0.01 | 0.22 | 0.06 | 0.08 | 0.07 | <0.01 | 0.01 | 80.46 | 0.92 | 20.2 | 72.23 | 470.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, G.; Bonnetti, C.; Zhang, Z.; Li, G.; Yan, Z.; Wu, J.; Wu, Y.; Liu, X.; Wu, B. SIMS U-Pb Dating of Uraninite from the Guangshigou Uranium Deposit: Constraints on the Paleozoic Pegmatite-Type Uranium Mineralization in North Qinling Orogen, China. Minerals 2021, 11, 402. https://doi.org/10.3390/min11040402
Guo G, Bonnetti C, Zhang Z, Li G, Yan Z, Wu J, Wu Y, Liu X, Wu B. SIMS U-Pb Dating of Uraninite from the Guangshigou Uranium Deposit: Constraints on the Paleozoic Pegmatite-Type Uranium Mineralization in North Qinling Orogen, China. Minerals. 2021; 11(4):402. https://doi.org/10.3390/min11040402
Chicago/Turabian StyleGuo, Guolin, Christophe Bonnetti, Zhanshi Zhang, Guanglai Li, Zhaobin Yan, Jianhua Wu, Yong Wu, Xiaodong Liu, and Bin Wu. 2021. "SIMS U-Pb Dating of Uraninite from the Guangshigou Uranium Deposit: Constraints on the Paleozoic Pegmatite-Type Uranium Mineralization in North Qinling Orogen, China" Minerals 11, no. 4: 402. https://doi.org/10.3390/min11040402
APA StyleGuo, G., Bonnetti, C., Zhang, Z., Li, G., Yan, Z., Wu, J., Wu, Y., Liu, X., & Wu, B. (2021). SIMS U-Pb Dating of Uraninite from the Guangshigou Uranium Deposit: Constraints on the Paleozoic Pegmatite-Type Uranium Mineralization in North Qinling Orogen, China. Minerals, 11(4), 402. https://doi.org/10.3390/min11040402