Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (292)

Search Parameters:
Keywords = uranium mineralization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 1278 KB  
Review
The Evolution of Machine Learning in Large-Scale Mineral Prospectivity Prediction: A Decade of Innovation (2016–2025)
by Zekang Fu, Xiaojun Zheng, Yongfeng Yan, Xiaofei Xu, Fanchao Zhou, Xiao Li, Quantong Zhou and Weikun Mai
Minerals 2025, 15(10), 1042; https://doi.org/10.3390/min15101042 - 30 Sep 2025
Abstract
The continuous growth in global demand for mineral resources and the increasing difficulty of mineral exploration have created bottlenecks for traditional mineral prediction methods in handling complex geological information and large amounts of data. This review aims to explore the latest research progress [...] Read more.
The continuous growth in global demand for mineral resources and the increasing difficulty of mineral exploration have created bottlenecks for traditional mineral prediction methods in handling complex geological information and large amounts of data. This review aims to explore the latest research progress in machine learning technology in the field of large-scale mineral prediction from 2016 to 2025. By systematically searching the Web of Science core database, we have screened and analyzed 255 high-quality scientific studies. These studies cover key areas such as mineral information extraction, target area selection, mineral regularity modeling, and resource potential evaluation. The applied machine learning technologies include Random Forests, Support Vector Machines, Convolutional Neural Networks, Recurrent Neural Networks, etc., and have been widely used in the exploration and prediction of various mineral deposits such as porphyry copper, sandstone uranium, and tin. The findings indicate a substantial shift within the discipline towards the utilization of deep learning methodologies and the integration of multi-source geological data. There is a notable rise in the deployment of cutting-edge techniques, including automatic feature extraction, transfer learning, and few-shot learning. This review endeavors to synthesize the prevailing state and prospective developmental trajectory of machine learning within the domain of large-scale mineral prediction. It seeks to delineate the field’s progression, spotlight pivotal research dilemmas, and pinpoint innovative breakthroughs. Full article
22 pages, 3915 KB  
Article
Geostatistical and Multivariate Assessment of Radon Distribution in Groundwater from the Mexican Altiplano
by Alfredo Bizarro Sánchez, Marusia Renteria-Villalobos, Héctor V. Cabadas Báez, Alondra Villarreal Vega, Miguel Balcázar and Francisco Zepeda Mondragón
Resources 2025, 14(10), 154; https://doi.org/10.3390/resources14100154 - 29 Sep 2025
Abstract
This study examines the impact of physicochemical and geological factors on radon concentrations in groundwater throughout the Mexican Altiplano. Geological diversity, uranium deposits, seismic zones, and geothermal areas with high heat flow are all potential factors contributing to the presence of radon in [...] Read more.
This study examines the impact of physicochemical and geological factors on radon concentrations in groundwater throughout the Mexican Altiplano. Geological diversity, uranium deposits, seismic zones, and geothermal areas with high heat flow are all potential factors contributing to the presence of radon in groundwater. To move beyond local-scale assessments, this research employs spatial prediction methodologies that incorporate geological and geochemical variables recognized for their role in radon transport and geogenic potential. Certain properties of radon enable it to serve as an ideal tracer, viz., short half-life, inertness, and higher incidence in groundwater than surface water. Twenty-five variables were analyzed in samples from 135 water wells. Geostatistical techniques, including inverse distance weighted interpolation and kriging, were used in conjunction with multivariate statistical analyses. Salinity and geothermal heat flow are key indicators for determining groundwater origin, revealing a dynamic interplay between geothermal activity and hydrogeochemical evolution, where high temperatures do not necessarily correlate with increased solute concentrations. The occurrence of toxic trace elements such as Cd, Cr, and Pb is primarily governed by lithogenic sources and proximity to mineralized zones. Radon levels in groundwater are mainly influenced by geological and structural features, notably rhyolitic formations and deep hydrothermal systems. These findings underscore the importance of site-specific groundwater examination, combined with spatiotemporal models, to account for uranium–radium dynamics and flow paths, thereby enhancing radiological risk assessment. Full article
29 pages, 47976 KB  
Article
An Occurrence of Pyroxmangite in the NYF Granitic Pegmatite of the Gabal El-Bakriya Intrusion, Arabian–Nubian Shield
by Danial M. Fathy, Faris A. Abanumay, Shehata Ali, Esam S. Farahat, Andrey Bekker and Mokhles K. Azer
Minerals 2025, 15(10), 1027; https://doi.org/10.3390/min15101027 - 28 Sep 2025
Abstract
We report here, for the first time on the Nubian Shield, the western half of the Arabian–Nubian Shield (ANS), pegmatite-hosted pockets with a unique mineralogy, including pyroxmangite. It represents the second discovery on the ANS, where the first one was at Jabal Aja [...] Read more.
We report here, for the first time on the Nubian Shield, the western half of the Arabian–Nubian Shield (ANS), pegmatite-hosted pockets with a unique mineralogy, including pyroxmangite. It represents the second discovery on the ANS, where the first one was at Jabal Aja on the Arabian Shield, the eastern half of the ANS. One of the most remarkable aspects of pyroxmangite is its rarity and the potential economic value of its use in jewelry and decorative applications. Pegmatites are associated with A-type granites of the Gabal El-Bakriya intrusion (GEBI), Eastern Desert, Egypt. Mineralized pegmatites occur at the margin of the alkali-feldspar granite and exhibit gradational contacts with the host rocks. The pegmatites were emplaced as plugs and dikes within the intrusion and along its periphery. Pyroxmangite appears as coarse-grained, massive black aggregates or as disseminated crystals. The pegmatites are composed of K-feldspars and quartz, with subordinate amounts of albite, micas, and mafic minerals. Accessory phases include monazite-(Ce), zircon, fergusonite, xenotime, fluorite, pyrochlore, allanite, thorite, bastnäsite, samarskite, cassiterite, beryl, and pyrochlore. Pyroxmangite-bearing assemblages consist essentially of pyroxmangite and garnet, with accessory pyrochroite, quartz, zircon, magnetite, and fluorite. Geochemically, the pegmatites are highly evolved, with elevated SiO2 content (76.51–80.69 wt.%) and variable concentrations of trace elements. They show significant enrichment in Nb (Nb > Ta), Y, REE, Zr, Th, U, and F, consistent with NYF-type pegmatites. REE contents range from 173.94 to 518.21 ppm, reflecting diverse accessory mineral assemblages. Tectonically, the pegmatites crystallized in a post-collisional setting, representing a late-stage differentiate of the A-type GEBI magma. Mineralization is concentrated in the apical and marginal zones of the granitic cupola and is dominated by barite, fluorite, Nb-Ta oxides, REE minerals, and uranium-bearing phases. The highly evolved granites, greisens, pegmatites, and quartz-fluorite veins of the GEBI have a high economic potential, deserving further exploration. Full article
(This article belongs to the Special Issue Igneous Rocks and Related Mineral Deposits)
Show Figures

Figure 1

32 pages, 12542 KB  
Article
Minor and Trace Elements in Copper Tailings: A Mineralogical and Geometallurgical Approach to Identify and Evaluate New Opportunities
by Zina Habibi, Nigel J. Cook, Kathy Ehrig, Cristiana L. Ciobanu, Yuri T. Campo-Rodriguez and Samuel A. King
Minerals 2025, 15(10), 1018; https://doi.org/10.3390/min15101018 - 26 Sep 2025
Abstract
Reliable information on the chemical and physical makeup of mine tailings is critical in meeting environmental and regulatory requirements, as well as identifying whether contained elements, including critical minerals, might be economically recovered in future to meet growing demands. Detailed mineralogical characterization, supported [...] Read more.
Reliable information on the chemical and physical makeup of mine tailings is critical in meeting environmental and regulatory requirements, as well as identifying whether contained elements, including critical minerals, might be economically recovered in future to meet growing demands. Detailed mineralogical characterization, supported by chemical assays and automated mineralogy (MLA) data on different size fractions, underpins a case study of flotation tailings from the processing plant at the Carrapateena mine, South Australia. The study provides valuable insights into the deportment of minor and critical elements, including rare earth elements (REEs), along with uranium (U). REE-minerals are represented by major phosphates (monazite and florencite) and subordinate REE-fluorocarbonates (bastnäsite and synchysite). More than half the REE-minerals are concentrated in the finest size fraction (−10 μm). REEs in coarser fractions are largely locked in gangue, such that economic recovery is unlikely to be viable. MLA data shows that the main REE-minerals all display specific associations with gangue, which change with particle size. Quartz and hematite are the most common associations, followed by sericite. Synchysite shows a strong affiliation to carbonates. The contents of other critical elements (e.g., tungsten, molybdenum, cobalt) are low and for the most part occur within other common minerals as submicron-sized inclusions or in the lattice, rather than discrete minerals. Nevertheless, analysis of mine tailings from a large mining–processing operation provides an opportunity to observe intergrowth and replacement relationships in a composite sample representing different ore types from across the deposit. U-bearing species are brannerite (associated with rutile and chlorite), coffinite (in quartz), and uraninite (in hematite). Understanding the ore mineralogy of the Carrapateena deposit and how the ore has evolved in response to overprinting events is advanced by observation of ore textures, including between hematite and rutile, rutile and brannerite, zircon and xenotime, and the U-carbonate minerals rutherfordine and wyartite, the latter two replacing pre-existing U-minerals (uraninite, coffinite, and brannerite). The results of this study are fundamental inputs into future studies evaluating the technical and economic viability of potentially recovering value metals at Carrapateena. They can also guide efforts in understanding the distributions of valuable metals in analogous tailings from elsewhere. Lastly, the study demonstrates the utility of geometallurgical data on process materials to assist in geological interpretation. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

11 pages, 1332 KB  
Article
Unlocking the Biochemical Potential of Diadema setosum Tests: A Pathway Toward Circular Marine Bioeconomy
by Bilge Bilgin Fıçıcılar and Koray Korkmaz
Molecules 2025, 30(18), 3700; https://doi.org/10.3390/molecules30183700 - 11 Sep 2025
Viewed by 401
Abstract
This study investigates the biochemical and elemental composition of the test of Diadema setosum (D. setosum), a sea urchin species increasingly processed in Turkey, where the shell is commonly treated as industrial waste. Specimens were collected from the Mediterranean and [...] Read more.
This study investigates the biochemical and elemental composition of the test of Diadema setosum (D. setosum), a sea urchin species increasingly processed in Turkey, where the shell is commonly treated as industrial waste. Specimens were collected from the Mediterranean and Aegean Seas, and the test material was subjected to amino acid profiling, protein quantification, and X-ray fluorescence (XRF) analysis. The results revealed a considerable protein content (8.03%) and a rich amino acid spectrum dominated by glycine, aspartic acid, and arginine, supporting the presence of residual structural proteins even after processing. Mineral analysis showed a high calcium oxide concentration (43.19%), alongside significant levels of magnesium, phosphorus, strontium, and trace elements such as zinc, copper, and molybdenum. Rare earth elements and radionuclides including neodymium, samarium, and uranium were also detected, suggesting sediment interaction. These findings suggest that D. setosum tests could represent a sustainable source of bioavailable minerals and proteinaceous material, with prospective applications in fish or livestock feed, hydroxyapatite synthesis, or calcium oxide production, pending further validation. Full article
Show Figures

Graphical abstract

18 pages, 1577 KB  
Article
Bacterial Diversity Dynamics in Sandy Loam Soils in Tanzania Under Varying Fertilizer-Derived Uranium Concentrations
by Dennis A. Mwalongo, Jacob B. Lisuma, Nils H. Haneklaus, Ali Maged, Hendrik Brink, Fernando P. Carvalho, Stanisław Wacławek, Nelson Mpumi, Aloyce I. Amasi, Jerome M. Mwimanzi, Furaha M. Chuma, Thomas T. Kivevele and Kelvin M. Mtei
Microorganisms 2025, 13(8), 1886; https://doi.org/10.3390/microorganisms13081886 - 13 Aug 2025
Viewed by 425
Abstract
The presence of radiotoxic uranium (U) in mineral fertilizers is of global concern. A pilot study was conducted in Tabora (Tanzania) to determine the release of U from three brands of phosphate fertilizers and its impact on soil bacteria. The experiment used three [...] Read more.
The presence of radiotoxic uranium (U) in mineral fertilizers is of global concern. A pilot study was conducted in Tabora (Tanzania) to determine the release of U from three brands of phosphate fertilizers and its impact on soil bacteria. The experiment used three types of fertilizer: Minjingu Powder (MP), Nafaka Plus (NP), a mixed and granulated fertilizer made from Minjingu Phosphate Rock (MPR), and YaraMila Cereal (YC) fertilizer. There was also a control treatment that was not fertilized (NF). Alpha diversity and the R tool were used to analyze bacterial diversity in four samples within an average sequencing depth of 74,466 reads, using metrics like ASVs, Shannon index, and Chao1. The results showed that the number of amplicon sequence variants (ASVs) in the DNA from soil bacteria decreased, specifically to 400 ASVs, in the NP treatment, which was in line with the higher U concentration (3.93 mg kg−1) in the soils. In contrast, the MP fertilizer treatment, associated with a lower U concentration (3.06 mg kg−1) in soils, exhibited an increase in ASVs within the DNA of soil bacteria, reaching 795; the highest ASV value (822) was observed in the NF treatment. Higher amounts of U in the soil plots seemed to have resulted in more types of bacteria, with the Actinobacteriota phylum being the most common in all of the treatments. The NP (3.93 mg kg−3 U concentration) and MP (3.06 mg kg−3 U concentration) treatments were the only ones that showed Halobacteriota and Crenarchaeota phyla. Nonetheless, bacterial diversity may also account for the alterations in soil phosphorus and nitrogen following fertilizer application. The YaraMila Cereal treatment did not seem to be linked to any particular bacterial phylum. This means that in this study it did not have any measurable effect on the soil bacteria species compared to the MP and NP treatments. Full article
(This article belongs to the Special Issue Advances in Agro-Microbiology)
Show Figures

Figure 1

14 pages, 3205 KB  
Article
Typomorphic Characterization and Geological Significance of Megacrystalline Uraninite in the Haita Area, Kangdian Region, Southwestern China
by Minghui Yin, Zhengqi Xu, Bo Xie, Chengjiang Zhang and Jian Yao
Crystals 2025, 15(8), 718; https://doi.org/10.3390/cryst15080718 - 8 Aug 2025
Viewed by 515
Abstract
Megacrystalline uraninite within Neoproterozoic migmatites in the Haita area of the Kangdian region of China provides a unique condition for the investigation of uraninite typomorphism under high-temperature conditions. The present study represents the first systematic characterization of the typomorphic signatures and genetic significance [...] Read more.
Megacrystalline uraninite within Neoproterozoic migmatites in the Haita area of the Kangdian region of China provides a unique condition for the investigation of uraninite typomorphism under high-temperature conditions. The present study represents the first systematic characterization of the typomorphic signatures and genetic significance of megacrystalline uraninite via optical microscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XRS), and electron probe microanalysis (EPMA). The results show that uranium mineralization occurs as euhedral megacrystalline uraninite (black grains ≤ 10 mm) hosted in quartz veins, exhibiting frequent rhombic dodecahedral and subordinate cubic–octahedral morphologies. The paragenetic assemblage is quartz–uraninite–titanite–apatite–molybdenite. The investigated uraninite is characterized by elevated unit-cell parameters and a reduced oxygen index, with complex chemical compositions enriched in ThO2 and Y2O3. These typomorphic characteristics indicate crystallization under high-temperature reducing conditions with gradual cooling. Post-crystallization tectonic fragmentation and uplift-facilitated oxidation occur, generating secondary uranium minerals with concentric color zonation (orange–red to yellow–green halos). Mineralization was jointly controlled by migmatization and late-stage tectonism, with the breakup of the Rodinia supercontinent serving as the key driver of fluid mobilization and ore deposition. The data materialized in the present study improve our knowledge about uranium mineralization during continental breakup events. Full article
Show Figures

Figure 1

20 pages, 6776 KB  
Article
Computational Approaches to Assess Flow Rate Efficiency During In Situ Recovery of Uranium: From Reactive Transport to Streamline- and Trajectory-Based Methods
by Maksat Kurmanseiit, Nurlan Shayakhmetov, Daniar Aizhulov, Banu Abdullayeva and Madina Tungatarova
Minerals 2025, 15(8), 835; https://doi.org/10.3390/min15080835 - 6 Aug 2025
Viewed by 394
Abstract
This study presents a comprehensive computational analysis of flow rate efficiency during uranium extraction via the In Situ Recovery method. Using field data from a deposit located in Southern Kazakhstan, a series of mathematical models were developed to evaluate the distribution and balance [...] Read more.
This study presents a comprehensive computational analysis of flow rate efficiency during uranium extraction via the In Situ Recovery method. Using field data from a deposit located in Southern Kazakhstan, a series of mathematical models were developed to evaluate the distribution and balance of leaching solution. A reactive transport model incorporating uranium dissolution kinetics and acid–rock interactions were utilized to assess the accuracy of both traditional and proposed methods. The results reveal a significant spatial imbalance in sulfuric acid distribution, with up to 239.1 tons of acid migrating beyond the block boundaries. To reduce computational demands while maintaining predictive accuracy, two alternative methods, a streamline-based and a trajectory-based approach were proposed and verified. The streamline method showed close agreement with reactive transport modeling and was able to effectively identify the presence of intra-block reagent imbalance. The trajectory-based method provided detailed insight into flow dynamics but tended to overestimate acid overflow outside the block. Both alternative methods outperformed the conventional approach in terms of accuracy by accounting for geological heterogeneity and well spacing. The proposed methods have significantly lower computational costs, as they do not require solving complex systems of partial differential equations involved in reactive transport simulations. The proposed approaches can be used to analyze the efficiency of mineral In Situ Recovery at both the design and operational stages, as well as to determine optimal production regimes for reducing economic expenditures in a timely manner. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

17 pages, 6856 KB  
Article
Selection of Optimal Parameters for Chemical Well Treatment During In Situ Leaching of Uranium Ores
by Kuanysh Togizov, Zhiger Kenzhetaev, Akerke Muzapparova, Shyngyskhan Bainiyazov, Diar Raushanbek and Yuliya Yaremkiv
Minerals 2025, 15(8), 811; https://doi.org/10.3390/min15080811 - 31 Jul 2025
Viewed by 400
Abstract
The aim of this study was to improve the efficiency of in situ uranium leaching by developing a specialized methodology for selecting rational parameters for the chemical treatment of production wells. This approach was designed to enhance the filtration properties of ores and [...] Read more.
The aim of this study was to improve the efficiency of in situ uranium leaching by developing a specialized methodology for selecting rational parameters for the chemical treatment of production wells. This approach was designed to enhance the filtration properties of ores and extend the uninterrupted operation period of wells, considering the clay content of the productive horizon, the geological characteristics of the ore-bearing layer, and the composition of precipitation-forming materials. The mineralogical characteristics of ore and precipitate samples formed during the in situ leaching of uranium under various mining and geological conditions at a uranium deposit in the Syrdarya depression were identified using an X-ray diffraction analysis. It was established that ores of the Santonian stage are relatively homogeneous and consist mainly of quartz. During well operation, the precipitates formed are predominantly gypsum, which has little impact on the filtration properties of the ore. Ores of the Maastrichtian stage are less homogeneous and mainly composed of quartz and smectite, with minor amounts of potassium feldspar and kaolinite. The leaching of these ores results in the formation of gypsum with quartz impurities, which gradually reduces the filtration properties of the ore. Ores of the Campanian stage are heterogeneous, consisting mainly of quartz with varying proportions of clay minerals and gypsum. The leaching of these ores generates a variety of precipitates that significantly reduce the filtration properties of the productive horizon. Effective compositions and concentrations of decolmatant (clog removal) solutions were selected under laboratory conditions using a specially developed methodology and a TESCAN MIRA scanning electron microscope. Based on a scanning electron microscope analysis of the samples, the effectiveness of a decolmatizing solution based on hydrochloric and hydrofluoric acids (taking into account the concentration of the acids in the solution) was established for the destruction of precipitate formation during the in situ leaching of uranium. Geological blocks were ranked by their clay content to select rational parameters of decolmatant solutions for the efficient enhancement of ore filtration properties and the prevention of precipitation formation. Pilot-scale testing of the selected decolmatant parameters under various mining and geological conditions allowed the optimal chemical treatment parameters to be determined based on the clay content and the composition of precipitates in the productive horizon. An analysis of pilot well trials using the new approach showed an increase in the uninterrupted operational period of wells by 30%–40% under average mineral acid concentrations and by 25%–45% under maximum concentrations with surfactant additives in complex geological settings. As a result, an effective methodology for ranking geological blocks based on their ore clay content and precipitate composition was developed to determine the rational parameters of decolmatant solutions, enabling a maximized filtration performance and an extended well service life. This makes it possible to reduce the operating costs of extraction, control the geotechnological parameters of uranium well mining, and improve the efficiency of the in situ leaching of uranium under complex mining and geological conditions. Additionally, the approach increases the environmental and operational safety during uranium ore leaching intensification. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

24 pages, 3436 KB  
Article
Peculiarities of 222Radon and 238Uranium Behavior in Mineral Waters of Highland Terrains
by George Chelnokov, Vasilii Lavrushin, Natalya Kharitonova, Andrey Pavlov and Farid Salikhov
Water 2025, 17(15), 2211; https://doi.org/10.3390/w17152211 - 24 Jul 2025
Viewed by 411
Abstract
Mineral waters from two tectonically active mountain systems within the Alpine-Himalayan orogenic belt, the Pamir and the Greater Caucasus (Elbrus region), were analyzed for 222Rn activity and 238U concentrations to establish correlations with geological conditions, physicochemical characteristics of water, and to [...] Read more.
Mineral waters from two tectonically active mountain systems within the Alpine-Himalayan orogenic belt, the Pamir and the Greater Caucasus (Elbrus region), were analyzed for 222Rn activity and 238U concentrations to establish correlations with geological conditions, physicochemical characteristics of water, and to assess the potential health risk associated with 238U and 222Rn. It was found that in mineral waters of the Pamir, the concentrations of 238U (0.004–13.3 µg/L) and activity of 222Rn (8–130 Bq/L) are higher than in the Elbrus area: 0.04–3.74 µg/L and 6–33 Bq/L, respectively. Results indicate that uranium mobility in water is strongly influenced by T, pH, and Eh, but is less affected by the age of host rocks or springs′ elevation, whereas radon activity in waters depends on the age of rocks, spring elevation, 238U content, and values of δ18O and δ2H in water. This study reveals fundamental geological distinctions governing uranium and radon sources in the mineral waters of these regions. Isotopic evidence (222Rn and 3He/4He) demonstrates crustal radon sources prevail in Pamir, whereas the Elbrus system suggests mantle-derived components. The U concentrations do not exceed 30 µg/L, and most water samples (94%) showed 222Rn activities below 100 Bq/L, complying with the drinking water exposure limits recommended by the World Health Organization and European Union Directive. However, in intermountain depressions of the Pamirs, at low absolute elevations (~2300 m), radon concentrations in water can increase significantly, which requires special attention and study. Full article
Show Figures

Figure 1

22 pages, 16452 KB  
Article
The Uranium Enrichment Mechanism of Hydrocarbon-Bearing Fluids in Aeolian Sedimentary Background Uranium Reservoirs of the Ordos Basin
by Tao Zhang, Jingchao Lei, Cong Hu, Xiaofan Zhou, Chao Liu, Lei Li, Qilin Wang, Yan Hao and Long Guo
Minerals 2025, 15(7), 716; https://doi.org/10.3390/min15070716 - 8 Jul 2025
Viewed by 518
Abstract
Significant uranium exploration breakthroughs have been achieved in the eolian deposits of the uranium reservoirs in the southwestern part of the Ordos Basin. The redox environment remains a crucial factor in controlling the migration and precipitation of uranium. This study, through rock mineralogical [...] Read more.
Significant uranium exploration breakthroughs have been achieved in the eolian deposits of the uranium reservoirs in the southwestern part of the Ordos Basin. The redox environment remains a crucial factor in controlling the migration and precipitation of uranium. This study, through rock mineralogical observations and hydrocarbon gas composition analysis, combined with the regional source rock and basin tectonic evolution history, reveals the characteristics of the reducing medium and the mineralization mechanisms involved in uranium ore formation. The Lower Cretaceous Luohe Formation uranium reservoirs in the study area exhibit a notable lack of common reducing media, such as carbonaceous debris and pyrite. However, the total hydrocarbon gases in the Luohe Formation range from 2967 to 20,602 μmol/kg, with an average of 8411 μmol/kg—significantly higher than those found in uranium reservoirs elsewhere in China, exceeding them by 10 to 100 times. Due to the absence of other macroscopically visible organic matter, hydrocarbon gases are identified as the most crucial reducing agent for uranium mineralization. These gases consist predominantly of methane and originate from the Triassic Yanchang Formation source rock. Faults formed during the Indosinian, Yanshanian, and Himalayan tectonic periods effectively connect the Cretaceous uranium reservoirs with the oil and gas reservoirs of the Triassic and Jurassic, providing pathways for the migration of deep hydrocarbon fluids into the Cretaceous uranium reservoirs. The multiphase tectonic evolution of the Ordos Basin since the Cenozoic has facilitated the development of faults, ensuring a sufficient supply of reducing media for uranium reservoirs in an arid sedimentary context. Additionally, the “Replenishment-Runoff-Drainage System” created by tectonic activity promotes a continuous supply of uranium- and oxygen-bearing fluids to the uranium reservoirs, resulting in a multi-energy coupling mineralization effect. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

24 pages, 20401 KB  
Article
Research on the Prediction of Concealed Uranium Deposits Using Geo-Electrochemical Integrated Technology in the Guangzitian Area, Northern Guangxi, China
by Xiaohan Zhang, Meilan Wen, Qiaohua Luo, Yunxue Ma, Yuheng Jiang, Yuxiong Jiang, Wei Ye and Jiali Zhang
Appl. Sci. 2025, 15(13), 7426; https://doi.org/10.3390/app15137426 - 2 Jul 2025
Viewed by 400
Abstract
To achieve a significant breakthrough in the exploration of uranium resources in the Guangzitian area of northern Guangxi, China, an innovative combination of exploration methods was implemented at the peripheral regions of the Guangzitian uranium deposit under the guidance of the following principle: [...] Read more.
To achieve a significant breakthrough in the exploration of uranium resources in the Guangzitian area of northern Guangxi, China, an innovative combination of exploration methods was implemented at the peripheral regions of the Guangzitian uranium deposit under the guidance of the following principle: “exploring the edges and identifying the bottom, delving deep and un-covering blind spots”. This study introduces geo-electrochemical integrated technology for prospecting research at the peripheral areas of the Guangzitian deposit. By validating the technology’s effectiveness on known geological sections, distinct geo-electrochemical extraction anomalies were identified above recognized ore bodies. Simultaneously, soil ionic conductivity and thermally released mercury anomalies were observed, partially indicating the presence of concealed uranium deposits and fault structures. These findings demonstrate that geo-electrochemical integrated technology is effective in detecting buried uranium mineralization in this region. Subsequently, a geological-geoelectrical prospecting model was established through a systematic analysis of anomaly characteristics and metallogenic regularity, and it was subsequently applied to unexplored areas. As a result, one key anomaly verification zone, one Class A comprehensive anomaly zone, two Class B comprehensive anomaly zones, and one Class C comprehensive anomaly zone were identified within the unexplored research area. Drilling engineering validation was conducted in the No. Ι key anomaly verification zone, resulting in the discovery of an industrial-grade uranium ore body. This achievement not only provides critical technical support but also develops a robust theoretical foundation for future mineral exploration endeavors. Full article
(This article belongs to the Special Issue Recent Advances in Geochemistry)
Show Figures

Figure 1

26 pages, 9572 KB  
Article
Geochemical Characteristics and Risk Assessment of PTEs in the Supergene Environment of the Former Zoige Uranium Mine
by Na Zhang, Zeming Shi, Chengjie Zou, Yinghai Zhu and Yun Hou
Toxics 2025, 13(7), 561; https://doi.org/10.3390/toxics13070561 - 30 Jun 2025
Cited by 1 | Viewed by 412
Abstract
Carbonaceous–siliceous–argillaceous rock-type uranium deposits, a major uranium resource in China, pose significant environmental risks due to heavy metal contamination. Geochemical investigations in the former Zoige uranium mine revealed elevated As, Cd, Cr, Cu, Ni, U, and Zn concentrations in soils and sediments, particularly [...] Read more.
Carbonaceous–siliceous–argillaceous rock-type uranium deposits, a major uranium resource in China, pose significant environmental risks due to heavy metal contamination. Geochemical investigations in the former Zoige uranium mine revealed elevated As, Cd, Cr, Cu, Ni, U, and Zn concentrations in soils and sediments, particularly at river confluences and downstream regions, attributed to leachate migration from ore bodies and tailings ponds. Surface samples exhibited high Cd bioavailability. The integrated BCR and mineral analysis reveals that Acid-soluble and reducible fractions of Ni, Cu, Zn, As, and Pb are governed by carbonate dissolution and Fe-Mn oxide dynamics via silicate weathering, while residual and oxidizable fractions show weak mineral-phase dependencies. Positive Matrix Factorization identified natural lithogenic, anthropogenic–natural composite, mining-related sources. Pollution assessments using geo-accumulation index and contamination factor demonstrated severe contamination disparities: soils showed extreme Cd pollution, moderate U, As, Zn contamination, and no Cr, Pb pollution (overall moderate risk); sediments exhibited extreme Cd pollution, moderate Ni, Zn, U levels, and negligible Cr, Pb impacts (overall extreme risk). USEPA health risk models indicated notable non-carcinogenic (higher in adults) and carcinogenic risks (higher in children) for both age groups. Ecological risk assessments categorized As, Cr, Cu, Ni, Pb, and Zn as low risk, contrasting with Cd (extremely high risk) and sediment-bound U (high risk). These findings underscore mining legacy as a critical environmental stressor and highlight the necessity for multi-source pollution mitigation strategies. Full article
(This article belongs to the Special Issue Assessment and Remediation of Heavy Metal Contamination in Soil)
Show Figures

Graphical abstract

29 pages, 8189 KB  
Article
The Key Controlling Factors and Mechanisms for the Formation of Sandstone-Type Uranium Deposits in the Central Part of the Ulanqab Depression, Erlian Basin
by Yang Liu, Hu Peng, Ning Luo, Xiaolin Yu, Ming Li and Bo Ji
Minerals 2025, 15(7), 688; https://doi.org/10.3390/min15070688 - 27 Jun 2025
Viewed by 484
Abstract
The characteristics of interlayer oxidation zones constrain sandstone-type uranium mineralization. This study conducted a quantitative characterization of the interlayer oxidation zones in the uranium-bearing reservoir of the Saihan Formation in the central Wulanchabu Subbasin of the Erlian Basin through sand dispersion system mapping, [...] Read more.
The characteristics of interlayer oxidation zones constrain sandstone-type uranium mineralization. This study conducted a quantitative characterization of the interlayer oxidation zones in the uranium-bearing reservoir of the Saihan Formation in the central Wulanchabu Subbasin of the Erlian Basin through sand dispersion system mapping, the analysis of sedimentary debris components, environmentally sensitive parameters, and elemental geochemical characteristics. The formation mechanisms and controlling factors of interlayer oxidation zones were investigated, along with uranium mineralization patterns. Research findings reveal that the sandbodies in the study area primarily consist of red sandstone, yellow sandstone, gray ore-bearing sandstone, and primary gray sandstone, representing strong oxidation zones, weak oxidation zones, transitional zones, and reduction zones, respectively. Although the mineral debris content shows minimal variation among different zones, feldspar dissolution is more prevalent in oxidized zones. During interlayer oxidation, environmentally sensitive parameters exhibit an ascending trend from strong oxidation zones through weak oxidation zones and reduction zones to mineralized transitional zones. Four transition metal elements (Co, Ni, Zn, and Mo) demonstrate enrichment in mineralized transitional zones. The development of interlayer oxidation zones is directly controlled by reservoir heterogeneity and sedimentary environments. Oxidation subzones primarily occur in sandbodies with moderate thickness (40–80 m), sand content ratios of 40%–80%, and 2–10 or 10–18 mudstone barriers (approximately 20 m thick), mainly in braided river channels and channel margin deposits. Reduction zones develop in thicker sandbodies (~100 m) with higher sand contents (~80%), fewer mudstone barriers (2–8 layers), greater thickness (40–80 m), and predominantly channel margin deposits. Transitional zones mainly occur in braided distributary channels and floodplain deposits. When oxygen-bearing uranium fluids infiltrate reservoirs, oxygen reacts with reductants like organic matter, whereFe2+ oxidizes to Fe3+, S2− reacts with oxygen, and U4+ oxidizes to U6+, migrating as uranyl complexes. As oxygen depletes, Fe3+ reduces to Fe2+, combining with S2− to form pyrite between mineral grains. Uranyl complexes reduce to precipitate as pitchblende, while some U4+ reacts with SiO44−, forming coffinite, occurring as colloids around quartz debris or pyrite. The concurrent enrichment of certain transition metal elements occurs during this process. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

12 pages, 1867 KB  
Article
A Novel Uranium Quantification Method Based on Natural γ-Ray Total Logging Corrected by Prompt Neutron Time Spectrum
by Yan Zhang, Jinyu Deng, Bin Tang, Haitao Wang, Rui Chen, Xiongjie Zhang, Zhifeng Liu, Renbo Wang, Shumin Zhou and Jinhui Qu
Appl. Sci. 2025, 15(13), 7219; https://doi.org/10.3390/app15137219 - 26 Jun 2025
Viewed by 433
Abstract
The drilling core sampling and chemical analysis method for the quantitative determination of solid mineral deposits has several drawbacks, including a low core drilling efficiency, a high core sampling cost, and a long chemical analysis cycle. In current uranium quantification practices, advanced techniques [...] Read more.
The drilling core sampling and chemical analysis method for the quantitative determination of solid mineral deposits has several drawbacks, including a low core drilling efficiency, a high core sampling cost, and a long chemical analysis cycle. In current uranium quantification practices, advanced techniques have been developed to preliminarily determine the formation of uranium content based on the interpretation results of natural γ-ray total logging. However, such methods still require supplementary core chemical analysis to derive the uranium–radium–radon balance coefficient, which is then used for equilibrium correction to obtain the true uranium content within the uranium-bearing layer. Furthermore, conventional prompt neutron time spectrum logging is constrained by low count rates, resulting in slow logging speeds that fail to meet the demands of practical engineering applications. To address this, this study proposes a uranium quantification method that corrects the natural γ-ray total logging using prompt neutron time spectrum logging. Additionally, a calibration parameter determination method necessary for quantitative interpretation is constructed. Experimental results from standardized model wells indicate that, in sandstone-type uranium deposits, the absolute error of uranium content is within ±0.002%eU, and the relative error is within ±2.5%. These findings validate the feasibility of deriving the uranium–radium–radon balance coefficient without relying on core chemical analysis. Compared with the prompt neutron time spectrum logging method, the proposed approach significantly improves the logging speed while producing results that are essentially consistent with those of natural γ-ray total logging. It provides an efficient and accurate solution for uranium quantitative interpretation. Full article
Show Figures

Figure 1

Back to TopTop