Clay Mineralogy: A Signature of Granitic Geothermal Reservoirs of the Central Upper Rhine Graben
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Binocular Observations on Cuttings
3.2. Geophysical Logs
3.2.1. Gamma Ray
3.2.2. Temperature
3.2.3. Fractures from Borehole Images
- The aperture corrected from the borehole orientation >10 mm;
- The resistivity <2000 ohm·m on the induction log; and
- The conductive contrast on the electrical image logs.
3.3. Chemical Analyses on Bulk Rock
3.4. X-ray Diffraction
3.5. Optical Microscope and Scanning Electron Microscope Coupled with Energy Dispersive Spectroscopy
- in two permeable zones at 3071 m and 3340 m,
- in four non-permeable zones at 3005, 3482, 3573, and 3678 m,
- in the HEXT grade at 3005 m,
- in the HHIG grade at 3071 m,
- in the HMOD grade at 3482 and 3573 m, and
- in the HLOW grade at 3340 and 3678 m.
4. Results
4.1. Petrographical Log—Mineralogy
4.2. Geophysical Logs
4.2.1. Gamma-Ray
4.2.2. Permeable Fracture Zones
- KFZ-1 from 3050 to 3090 m MD,
- KFZ-2 from 3210 to 3230 m MD,
- KFZ-3 from 3310 to 3315 m MD,
- KFZ-4 from 3330 to 3390 m MD,
- KFZ-5 from 3500 to 3570 m MD,
- KFZ-6 from 3630 to 3645 m MD.
4.3. Bulk Rock Chemical Composition
4.4. Identification of Clay Minerals
4.4.1. Illite and Illite-Rich I/S ML
4.4.2. Chlorite
4.5. Chemical Compositions of Clay Minerals (EDS)
4.5.1. Illite and Illite-Rich I/S ML
4.5.2. Chlorite
5. Discussion
5.1. Successive Hydrothermal Alterations in the Illkirch Reservoir
5.2. Successive Hydrothermal Alteration in the URG
- The occurrence of tosudite at Soultz-sous-Forêts, which could be related to the presence of organic compounds related to the overlying petroleum field [77];
- The occurrence of barite at Soultz-sous-Forêts, compared to the occurrence of anhydrite at Rittershoffen and Illkirch, which could be related to the amount of Barium, liberated by the dissolution of feldspars under acidic conditions.
5.3. Towards an Argillic Signature in Permeable Fracture Zones
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masanet, E.; Chang, Y.; Gopal, A.R.; Larsen, P.; Morrow, W.R.; Sathre, R.; Shehabi, A.; Zhai, P. Life-Cycle Assessment of Electric Power Systems. Annu. Rev. Environ. Resour. 2013, 38, 107–136. [Google Scholar] [CrossRef]
- Pratiwi, A.; Ravier, G.; Genter, A. Life-Cycle Climate-Change Impact Assessment of Enhanced Geothermal System Plants in the Upper Rhine Valley. Geothermics 2018, 75, 26–39. [Google Scholar] [CrossRef]
- Vidal, J.; Genter, A. Overview of Naturally Permeable Fractured Reservoirs in the Central and Southern Upper Rhine Graben: Insights from Geothermal Wells. Geothermics 2018, 74, 57–73. [Google Scholar] [CrossRef]
- Baujard, C.; Genter, A.; Dalmais, E.; Maurer, V.; Hehn, R.; Rosillette, R.; Vidal, J.; Schmittbuhl, J. Hydrothermal Characterization of Wells GRT-1 and GRT-2 in Rittershoffen, France: Implications on the Understanding of Natural Flow Systems in the Rhine Graben. Geothermics 2017, 65, 255–268. [Google Scholar] [CrossRef] [Green Version]
- Inoue, A. Formation of Clay Minerals in Hydrothermal Environments. In Origin and Mineralogy of Clays; Velde, B., Ed.; Springer: Berlin, Germany, 1995. [Google Scholar]
- Beaufort, D.; Papapanagiotou, P.; Patrier, P.; Fouillac, A.M.; Traineau, H. I/S and C/S Mixed Layers, Some Indicators of Recent Physical-Chemical Changes in Active Geothermal Systems: The Case Study of Chipilapa (El Salvador); Stanford University: Stanford, CA, USA, 1996. [Google Scholar]
- Mas, A.; Guisseau, D.; Patrier Mas, P.; Beaufort, D.; Genter, A.; Sanjuan, B.; Girard, J.P. Clay Minerals Related to the Hydrothermal Activity of the Bouillante Geothermal Field (Guadeloupe). J. Volcanol. Geotherm. Res. 2006, 158, 380–400. [Google Scholar] [CrossRef]
- Rigault, C.; Patrier, P.; Beaufort, D. Clay Minerals Related to Circulation of near Neutral to Weakly Acidic Fluids in Active High Energy Geothermal Systems. Bull. Société Géologique Fr. 2010, 181, 337–347. [Google Scholar] [CrossRef]
- Buatier, M.D.; Chauvet, A.; Kanitpanyacharoen, W.; Wenk, H.R.; Ritz, J.F.; Jolivet, M. Origin and Behavior of Clay Minerals in the Bogd Fault Gouge, Mongolia. J. Struct. Geol. 2012, 34, 77–90. [Google Scholar] [CrossRef]
- Lévy, L.; Fridriksson, T.; Findling, N.; Lanson, B.; Fraisse, B.; Marino, N.; Gibert, B. Smectite Quantification in Hydrothermally Altered Volcanic Rocks. Geothermics 2020, 85, 101748. [Google Scholar] [CrossRef]
- Meunier, A. Superposition de deux altérations hydrothermales dans la syénite monzonitique du Bac de Montmeyre (Sondage INAG 1, Massif Central, France). Bulmi 1982, 105, 386–394. [Google Scholar] [CrossRef]
- Kamineni, D.C.; Dugal, J.J.B. A Study of Rock Alteration in the Eye—Dashwa Lakes Pluton, Atikokan, Northwestern Ontario, Canada. Chem. Geol. 1982, 36, 35–57. [Google Scholar] [CrossRef]
- Nishimoto, S.; Yoshida, H. Hydrothermal Alteration of Deep Fractured Granite: Effects of Dissolution and Precipitation. Lithos 2010, 115, 153–162. [Google Scholar] [CrossRef]
- Storey, B.C.; Lintern, B.C. Alteration, Fracture Infills and Weathering of the Strath Halladale Granite; Institute of Geological Sciences: London, UK, 1981; p. 32. [Google Scholar]
- Fulignati, P. Clay Minerals in Hydrothermal Systems. Minerals 2020, 10, 919. [Google Scholar] [CrossRef]
- Peters, T.; Hofmann, B. Hydrothermal Clay Mineral Formation in a Biotite-Granite in Northern Switzerland. Clay Miner. 1984, 19, 579–590. [Google Scholar] [CrossRef]
- Meunier, A.; Velde, B. Solid Solutions in I/S Mixed-Layer Minerals and Illite. Am. Mineral. 1989, 74, 1106–1112. [Google Scholar]
- Genter, A.; Traineau, H.; Ledésert, B.; Bourgine, B.; Gentier, S. Over 10 Years of Geological Investigations within the HDR Soultz Project, France. In Proceedings of World Geothermal Congress, Kyushu, Japan, 28 May–10 June 2000; pp. 3707–3712. [Google Scholar]
- Staněk, M.; Géraud, Y. Granite Microporosity Changes Due to Fracturing and Alteration: Secondary Mineral Phases as Proxies for Porosity and Permeability Estimation. Solid Earth 2019, 10, 251–274. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.L.; Bishop, A.M.; Brown, R.W. The Effect of Fluid/Rock Ratio on Feldspar Dissolution and Illite Formation under Reservoir Conditions. Clay Miner. 1986, 21, 585–601. [Google Scholar] [CrossRef]
- Schmidt, R.B.; Bucher, K.; Stober, I. Experiments on Granite Alteration under Geothermal Reservoir Conditions and the Initiation of Fracture Evolution. Eur. J. Mineral. 2018, 30, 899–916. [Google Scholar] [CrossRef]
- Drüppel, K.; Stober, I.; Grimmer, J.C.; Mertz-Kraus, R. Experimental Alteration of Granitic Rocks: Implications for the Evolution of Geothermal Brines in the Upper Rhine Graben, Germany. Geothermics 2020, 88, 101903. [Google Scholar] [CrossRef]
- Gleeson, S.A.; Yardley, B.W.D. Extensional Veins and Pb-Zn Mineralisation in Basement Rocks: The Role of Penetration of Formation Brines. Water-Rock Interact. 2002, 40, 189–205. [Google Scholar] [CrossRef]
- Ledésert, B.; Berger, G.; Meunier, A.; Genter, A.; Bouchet, A. Diagenetic-Type Reactions Related to Hydrothermal Alteration in the Soultz-Sous-Forets Granite, France. Eur. J. Mineral. 1999, 11, 731–741. [Google Scholar] [CrossRef]
- Vidal, J.; Patrier, P.; Genter, A.; Beaufort, D.; Dezayes, C.; Glaas, C.; Lerouge, C.; Sanjuan, B. Clay Minerals Related to the Circulation of Geothermal Fluids in Boreholes at Rittershoffen (Alsace, France). J. Volcanol. Geotherm. Res. 2018, 349, 192–204. [Google Scholar] [CrossRef]
- Glaas, C.; Vidal, J.; Patrier, P.; Girard, J.-F.; Beaufort, D.; Petit, S.; Genter, A. How Do Secondary Minerals in Granite Help Distinguish Paleo- from Present-Day Permeable Fracture Zones? Joint Interpretation of SWIR Spectroscopy and Geophysical Logs in the Geothermal Wells of Northern Alsace. Geofluids 2019, 2019, 1–20. [Google Scholar] [CrossRef]
- Reinecker, J.; Hochschild, T.; Kraml, M.; Löschan, G.; Kreuter, H. Experiences and Challenges in Geothermal Exploration in the Upper Rhine Graben. In Proceedings of European Geothermal Congress, Den Haag, The Netherlans, 11–14 June 2019; p. 8. [Google Scholar]
- Richard, A.; Maurer, V.; Edel, J.-B.; Genter, A.; Baujard, C.; Dalmais, E. Towards Targeting Geothermal Reservoir: Exploration Program for a New EGS Project in Urban Context in Alsace. In Proceedings of the European Geothermal Congress, Strasbourg, France, 19–24 September 2016; pp. 1–7. [Google Scholar]
- Edel, J.B.; Maurer, V.; Dalmais, E.; Genter, A.; Richard, A.; Letourneau, O.; Hehn, R. Structure and Nature of the Palaeozoic Basement Based on Magnetic, Gravimetric and Seismic Investigations in the Central Upper Rhinegraben: Focus on the Deep Geothermal Project of Illkirch-Graffenstaden. Geotherm. Energy 2018, 6. [Google Scholar] [CrossRef]
- Cocherie, A.; Guerrot, C.; Fanning, C.M.; Genter, A. Datation U–Pb Des Deux Faciès Du Granite de Soultz (Fossé Rhénan, France). Comptes Rendus Geosci. 2004, 336, 775–787. [Google Scholar] [CrossRef]
- Stussi, J.-M.; Cheilletz, A.; Royer, J.-J.; Chèvremont, P.; Féraud, G. The Hidden Monzogranite of Soultz-Sous-Forêts (Rhine Graben, France). Mineralogy, Petrology and Genesis. Géologie Fr. 2002, 1, 45–64. [Google Scholar]
- Dubois, M.; Ayt Ougougdal, M.; Meere, P.; Royer, J.-J.; Boiron, M.-C.; Cathelineau, M. Temperature of Paleo- to Modern Self-Sealing within a Continental Rift Basin: The Fluid Inclusion Data (Soultz-Sous-Forêts, Rhine Graben, France). Eur. J. Mineral. 1996, 8, 1065–1080. [Google Scholar] [CrossRef]
- Schleicher, A.M.; Warr, L.N.; Kober, B.; Laverret, E.; Clauer, N. Episodic Mineralization of Hydrothermal Illite in the Soultz-Sous-Forêts Granite (Upper Rhine Graben, France). Contrib Miner. Petrol 2006, 152, 349–364. [Google Scholar] [CrossRef]
- Bartier, D.L.; Meunier, A.; Liewig, N.; Morvan, G.; Addad, A. Hydrothermal Alteration of the Soultz-Sous-Forets Granite (Hot Fractured Rock Geothermal Exchanger) into a Tosudite and Illite Assemblage. Eur. J. Mineral. 2008, 20, 131–142. [Google Scholar] [CrossRef]
- Smith, M.P.; Savary, V.; Yardley, B.W.D.; Valley, J.W.; Royer, J.J.; Dubois, M. The Evolution of the Deep Flow Regime at Soultz-sous-Forêts, Rhine Graben, Eastern France: Evidence from a Composite Quartz Vein. J. Geophys. Res. Solid Earth 1998, 103, 27223–27237. [Google Scholar] [CrossRef]
- Duringer, P.; Aichholzer, C.; Orciani, S.; Genter, A. The Complete Lithostratigraphic Section of the Geothermal Wells in Rittershoffen (Upper Rhine Graben, Eastern France): A Key for Future Geothermal Wells. BSGF Earth Sci. Bull. 2019, 190, 13. [Google Scholar] [CrossRef] [Green Version]
- GeOrg, T. EU-Projekt GeORG—Geoportal. Available online: http://www.geopotenziale.org/home?lang=3 (accessed on 5 October 2020).
- Bossennec, C.; Geraud, Y.; Bertrand, L.; Mattioni, L.; Moretti, I. Insights on Fluid Sources and Pathways in Geothermal Sandstone Reservoir by Structural and Geochemical Characterization of Fractures Infills. In Proceedings of World Geothermal Congress, Reykjavik, Iceland, March–October 2020; p. 12. [Google Scholar]
- Baatartsogt, B.; Schwinn, G.; Wagner, T.; Taubald, H.; Beitter, T.; Markl, G. Contrasting Paleofluid Systems in the Continental Basement: A Fluid Inclusion and Stable Isotope Study of Hydrothermal Vein Mineralization, Schwarzwald District, Germany. Geofluids 2007, 7, 123–147. [Google Scholar] [CrossRef]
- Burisch, M.; Gerdes, A.; Walter, F.B.; Neumann, U.; Fettel, M.; Markl, G. Methane and the Origin of Five-Element Veins: Mineralogy, Age, Fluid Inclusion Chemistry and Ore Forming Processes in the Odenwald, SW Germany. Ore Geol. Rev. 2017, 81, 42–61. [Google Scholar] [CrossRef]
- Walter, B.F.; Burisch, M.; Markl, G. Long-Term Chemical Evolution and Modification of Continental Basement Brines—A Field Study from the Schwarzwald, SW Germany. Geofluids 2016, 16, 604–623. [Google Scholar] [CrossRef] [Green Version]
- Dezayes, C.; Lerouge, C. Reconstructing Paleofluid Circulation at the Hercynian Basement/Mesozoic Sedimentary Cover Interface in the Upper Rhine Graben. Geofluids 2019, 2019, 1–30. [Google Scholar] [CrossRef]
- Clauer, N.; Liewig, N.; Ledesert, B.; Zwingmann, H. Thermal History of Triassic Sandstones from the Vosges Mountains-Rhine Graben Rifting Area, NE France, Based on K-Ar Illite Dating. Clay Miner. 2008, 43, 363–379. [Google Scholar] [CrossRef]
- Lippolt, H.J.; Seibel, W. Evidence for Multistage Alteration of Schwarzwald Lamprophyres. Eur. J. Mineral. 1991, 3, 587–601. [Google Scholar] [CrossRef]
- Burisch, M.; Walter, B.F.; Gerdes, A.; Lanz, M.; Markl, G. Late-Stage Anhydrite-Gypsum-Siderite-Dolomite-Calcite Assemblages Record the Transition from a Deep to a Shallow Hydrothermal System in the Schwarzwald Mining District, SW Germany. Geochim. Cosmochim. Acta 2017, 223, 259–278. [Google Scholar] [CrossRef]
- Pfaff, K.; Hildenbrandt, L.H.; Leach, D.L.; Jacob, D.E.; Markl, G. Formation of the Wiesloch Mississippi Valley-Type Zn-Pb-Ag Deposit in the Extensional Setting of the Upper Rhinegraben, SW Germany. Mineral Deposits 2010, 45, 647–666. [Google Scholar] [CrossRef]
- Walter, B.F.; Burisch, M.; Marks, M.A.W.; Markl, G. Major Element Compositions of Fluid Inclusions from Hydrothermal Vein-Type Deposits Record Eroded Sedimentary Units in the Schwarzwald District, SW Germany. Miner. Depos. 2017, 52, 1191–1204. [Google Scholar] [CrossRef]
- Cathelineau, M.; Boiron, M.-C.; Fourcade, S.; Ruffet, G.; Clauer, N.; Belcourt, O.; Coulibaly, Y.; Banks, D.A.; Guillocheau, F. A Major Late Jurassic Fluid Event at the Basin/Basement Unconformity in Western France: 40Ar/39Ar and K–Ar Dating, Fluid Chemistry, and Related Geodynamic Context. Chem. Geol. 2012, 322–323, 99–120. [Google Scholar] [CrossRef]
- Walter, B.F.; Kortenbruck, P.; Scharrer, M.; Zeitvogel, C.; Wälle, M.; Mertz-Kraus, R.; Markl, G. Chemical Evolution of Ore-Forming Brines—Basement Leaching, Metal Provenance, and the Redox Link between Barren and Ore-Bearing Hydrothermal Veins. A Case Study from the Schwarzwald Mining District in SW-Germany. Chem. Geol. 2019, 506, 126–148. [Google Scholar] [CrossRef]
- Bons, P.D.; Fusswinkel, T.; Gomez-Rivas, E.; Markl, G.; Wagner, T.; Walter, B. Fluid Mixing from below in Unconformity-Related Hydrothermal Ore Deposits. Geology 2014, 42, 1035–1038. [Google Scholar] [CrossRef] [Green Version]
- Staude, S.; Mordhorst, T.; Nau, S.; Pfaff, K.; Brügmann, G.; Jacob, D.E.; Markl, G. Hydrothermal Carbonates of the Schwarzwald Ore District, Southwestern Germany: Carbon Source and Conditions of Formation Using Delta18O, Delta13C, 87Sr/86Sr, and Fluid Inclusions. Can. Mineral. 2012, 50, 1401–1434. [Google Scholar] [CrossRef]
- Walter, B.F.; Burisch, M.; Fusswinkel, T.; Marks, M.A.W.; Steele-MacInnis, M.; Wälle, M.; Apukhtina, O.B.; Markl, G. Multi-Reservoir Fluid Mixing Processes in Rift-Related Hydrothermal Veins, Schwarzwald, SW-Germany. J. Geochem. Explor. 2018, 186, 158–186. [Google Scholar] [CrossRef]
- Boiron, M.-C.; Cathelineau, M.; Richard, A. Fluid Flows and Metal Deposition near Basement/Cover Unconformity: Lessons and Analogies from Pb-Zn-F-Ba Systems for the Understanding of Proterozoic U Deposits. Geofluids 2010, 10, 270–292. [Google Scholar] [CrossRef]
- Cathelineau, M.; Fourcade, S.; Clauer, N.; Buschaert, S.; Rousset, D.; Boiron, M.-C.; Meunier, A.; Lavastre, V.; Javoy, M. Dating Multistage Paleofluid Percolations: A K-Ar and 18O/16O Study of Fracture Illites from Altered Hercynian Plutonites at the Basement/Cover Interface (Poitou High, France). Geochim. Cosmochim. Acta 2004, 68, 2529–2542. [Google Scholar] [CrossRef]
- Schwinn, G.; Wagner, T.; Baatartsogt, B.; Markl, G. Quantification of Mixing Processes in Ore-Forming Hydrothermal Systems by Combination of Stable Isotope and Fluid Inclusion Analyses. Geochim. Cosmochim. Acta 2006, 70, 965–982. [Google Scholar] [CrossRef]
- Sanjuan, B.; Millot, R.; Innocent, C.; Dezayes, C.; Scheiber, J.; Brach, M. Major Geochemical Characteristics of Geothermal Brines from the Upper Rhine Graben Granitic Basement with Constraints on Temperature and Circulation. Chem. Geol. 2016, 428, 27–47. [Google Scholar] [CrossRef]
- Bosia, C.; Mouchot, J.; Ravier, G.; Seibel, O.; Genter, A. Evolution of Brine Geochemical Composition During Operation of EGS Geothermal Plants (Alsace, France). In Proceedings of the 46th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, USA, 15 February 2021; p. 21. [Google Scholar]
- Sanjuan, B.; Négrel, G.; Lous, M.L.; Poulmarch, E.; Gal, F.; Damy, P.-C. Main Geochemical Characteristics of the Deep Geothermal Brine at Vendenheim (Alsace, France) with Constraints on Temperature and Fluid Circulation. In Proceedings of the Proceedings World Geothermal Congress 2021, Reykjavik, Iceland, 24–27 October 2021; p. 12. [Google Scholar]
- Sanjuan, B.; Millot, R.; Dezayes, C.; Brach, M. Main Characteristics of the Deep Geothermal Brine (5 km) at Soultz-Sous-Forêts (France) Determined Using Geochemical and Tracer Test Data. Comptes Rendus Geosci. 2010, 342, 546–559. [Google Scholar] [CrossRef]
- Parneix, J.-C.; Meunier, A. Les Transformations et La Microfissuration Du Granite de Mayet-de-Montagne (Allier, France) Sous l’influence Des Réactions Minérales d’altération. Hydrothermale 1982, 38, 203–210. [Google Scholar]
- Chèvremont, P.; Genter, A. Etude Pétrologique Des Échantillons de Granite de Soultz-Sous-Forêts, Forage GPK-1. IRG report; Bureau De Recherches Geologiques Et Minieres: Orléans, France, 1989; p. 20. [Google Scholar]
- Genter, A. Géothermie Roches Chaudes Sèches: Le Granite de Soultz-Sous-Forêts (Bas-Rhin, France). Fracturation Naturelle, Altérations Hydrothermales et Interaction Eau-Roche. Ph.D.Thesis, Université d’Orléans, Orléans, France, 1989. [Google Scholar]
- Baillieux, P.; Schill, E.; Abdelfettah, Y.; Dezayes, C. Possible Natural Fluid Pathways from Gravity Pseudo-Tomography in the Geothermal Fields of Northern Alsace (Upper Rhine Graben). Geotherm Energy 2014, 2, 16. [Google Scholar] [CrossRef] [Green Version]
- Traineau, H.; Genter, A.; Cautru, J.-P.; Fabriol, H.; Chèvremont, P. Petrography of the granite massif from drill cutting analysis and well log interpretation in the geothermal HDR borehole GPK-1 (Soultz, Alsace, France). Geotherm. Sci. Technol. 1992, 3, 1–29. [Google Scholar]
- Glaas, C.; Genter, A.; Girard, J.F.; Patrier, P.; Vidal, J. How Do the Geological and Geophysical Signatures of Permeable Fractures in Granitic Basement Evolve after Long Periods of Natural Circulation? Insights from the Rittershoffen Geothermal Wells (France). Geotherm. Energy 2018, 6. [Google Scholar] [CrossRef] [Green Version]
- Dezayes, C.; Genter, A.; Valley, B. Structure of the Low Permeable Naturally Fractured Geothermal Reservoir at Soultz. Comptes Rendus Geosci. 2010, 342, 517–530. [Google Scholar] [CrossRef] [Green Version]
- Barton, C.A.; Zoback, M.D.; Moos, D. Fluid Flow along Potentially Active Faults in Crystalline Rock. Geology 1995, 23, 683–686. [Google Scholar] [CrossRef]
- Davatzes, N.C.; Hickman, S.H. Controls on Fault-Hosted Fluid Flow; Preliminary Results from the Coso Geothermal Field, CA; Geothermal Resources Council: Davis, CA, USA, 2005; Volume 29, pp. 343–348. [Google Scholar]
- Bradford, J.; McLennan, J.; Moore, J.; Glasby, D.; Waters, D.; Kruwells, R.; Bailey, A.; Rickard, W.; Bloomfield, K.; King, D. Recent Developments at the Raft River Geothermal Field; Stanford University: Stanford, CA, USA, 2013. [Google Scholar]
- Vidal, J.; Hehn, R.; Glaas, C.; Genter, A. How Can Temperature Logs Help Identify Permeable Fractures and Define a Conceptual Model of Fluid Circulation? An Example from Deep Geothermal Wells in the Upper Rhine Graben. Geofluids 2019, 14. [Google Scholar] [CrossRef] [Green Version]
- Kraal, K.O.; Ayling, B.F.; Blake, K.; Hackett, L.; Perdana, T.S.P.; Stacey, R. Linkages between Hydrothermal Alteration, Natural Fractures, and Permeability: Integration of Borehole Data for Reservoir Characterization at the Fallon FORGE EGS Site, Nevada, USA. Geothermics 2021, 89, 101946. [Google Scholar] [CrossRef]
- Carignan, J.; Hild, P.; Mevelle, G.; Morel, J.; Yeghicheyan, D. Routine Analyses of Trace Elements in Geological Samples Using Flow Injection and Low Pressure On-line Liquid Chromatography Coupled to ICP-MS: A Study of Geochemical Reference Materials BR, DR-N, UB-N, AN-G and GH. Geostand. Newsl. 2001, 25, 187–198. [Google Scholar] [CrossRef]
- Brindley, G.W.; Brown, G. X-Ray Diffraction Procedures for Clay Mineral Identification. In Crystal Structures of Clay Minerals and Their X-Ray Identification; Brindley, G.W., Brown, G., Eds.; European Mineralogical Union: London, UK, 1980; Volume 5. [Google Scholar]
- Moore, D.M.; Reynolds, R.C. X-Ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed.; Oxford University Press: Oxford, UK; New York, NY, USA, 1997. [Google Scholar]
- Wojdyr, M. Fityk: A General-Purpose Peak Fitting Program. J. Appl. Crystallogr. 2010, 43, 1126–1128. [Google Scholar] [CrossRef]
- Genter, A.; Traineau, H. Deepening of GPK-1 HDR Borehole 2000–3600 m (Soultz-Sous-Forêts). Geological Monitoring; BRGM: Orléans, France, 1993. [Google Scholar]
- Ledésert, B.; Joffre, J.; Amblès, A.; Sardini, P.; Genter, A.; Meunier, A. Organic Matter in the Soultz HDR Granitic Thermal Exchanger (France): Natural Tracer of Fluid Circulations between the Basement and Its Sedimentary Cover. J. Volcanol. Geotherm. Res. 1996, 70, 235–253. [Google Scholar] [CrossRef]
- Ledésert, B.; Hebert, R.; Genter, A.; Bartier, D.; Clauer, N.; Grall, C. Fractures, Hydrothermal Alterations and Permeability in the Soultz Enhanced Geothermal System. Comptes Rendus Geosci. 2010, 342, 607–615. [Google Scholar] [CrossRef]
- Jacquemont, B. Etude Des Interactions Eaux-Roches Dans Le Granite de Soultz-Sous-Forêts. Quantification et Modélisation Des Transferts de Matière Par Les Fluides. Ph.D. Thesis, Université de Strasbourg, Strasbourg, France, 2002. [Google Scholar]
- Gardien, V.; Rabinowicz, M.; Vigneresse, J.-L.; Dubois, M.; Boulvais, P.; Martini, R. Long-Lived Interaction between Hydrothermal and Magmatic Fluids in the Soultz-Sous-Forêts Granitic System (Rhine Graben, France). Lithos 2016, 246–247, 110–127. [Google Scholar] [CrossRef]
- Wilson, M.J. Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals; Geological Society: London, UK, 2013; Volume 3c, ISBN 978-1-86239-359-2. [Google Scholar]
- Freymark, J.; Bott, J.; Cacace, M.; Ziegler, M.; Scheck-Wenderoth, M. Influence of the Main Border Faults on the 3D Hydraulic Field of the Central Upper Rhine Graben. Geofluids 2019, 2019, 1–21. [Google Scholar] [CrossRef]
- Koltzer, N.; Scheck-Wenderoth, M.; Bott, J.; Cacace, M.; Frick, M.; Sass, I.; Fritsche, J.-G.; Bär, K. The Effects of Regional Fluid Flow on Deep Temperatures (Hesse, Germany). Energies 2019, 12, 2081. [Google Scholar] [CrossRef] [Green Version]
- Doebl, F. The Tertiary and Pleistocene Sediments of the Northern and Central Part of the Upper Rhinegraben. Abh. Geol. Landesans. 1967, 6, 48–54. [Google Scholar]
- Villemin, T.; Bergerat, F. L’évolution Structurale Du Fossé Rhénan Au Cours Du Cénozoïque: Un Bilan de La Déformation et Des Effets Thermiques de l’extension. Bull. Soc. Géol. Fr. 1987, 8, 245–255. [Google Scholar] [CrossRef]
- Schumacher, M.E. Upper Rhine Graben: Role of Preexisting Structures during Rift Evolution. Tectonics 2002, 21, 6-1–6-17. [Google Scholar] [CrossRef]
- Brockamp, O.; Schlegel, A.; Clauer, N. Mesozoic Hydrothermal Impact on Rotliegende and Bunter Immature Sandstones of the High Rhine Trough and Its Adjacent Eastern Area (Southern Black Forest, Germany). Sediment. Geol. 2011, 234, 76–88. [Google Scholar] [CrossRef]
- Just, J.; Kontny, A. Thermally Induced Alterations of Minerals during Measurements of the Temperature Dependence of Magnetic Susceptibility: A Case Study from the Hydrothermally Altered Soultz-Sous-Forêts Granite, France. Int. J. Earth Sci. 2011, 21. [Google Scholar] [CrossRef]
- Genter, A.; Traineau, H. Analysis of Macroscopic Fractures in Granite in the HDR Geothermal Well EPS-l, Soultz-Sous-Forêts, France. J. Volcanol. Geotherm. Res. 1996, 72, 121–141. [Google Scholar] [CrossRef]
- Beaufort, D.; Rigault, C.; Billon, S.; Billault, V.; Inoue, A.; Inoue, S.; Patrier, P. Chlorite and Chloritization Processes through Mixed-Layer Mineral Series in Low-Temperature Geological Systems—A Review. Clay Miner. 2015, 50, 497–523. [Google Scholar] [CrossRef]
- Komninou, A.; Yardley, B.W.D. Fluid-Rock Interactions in the Rhine Graben: A Thermodynamic Model of the Hydrothermal Alteration Observed in Deep Drilling. Geochim. Cosmochim. Acta 1997, 61, 515–531. [Google Scholar] [CrossRef]
- Bruhn, R.L.; Parry, W.T.; Yonkee, W.A.; Thompson, T. Fracturing and Hydrothermal Alteration in Normal Fault Zones. Pure Appl. Geophys. 1994, 142, 36. [Google Scholar] [CrossRef]
- Simpson, M.P.; Rae, A.J. Short-Wave Infrared (SWIR) Reflectance Spectrometric Characterisation of Clays from Geothermal Systems of the Taupō Volcanic Zone, New Zealand. Geothermics 2018, 73, 74–90. [Google Scholar] [CrossRef]
- Glaas, C.; Vidal, J.; Patrier, P.; Beaufort, D.; Genter, A. Contribution of SWIR to the Clay Signature of Permeable Fracture Zones in the Granitic Basement. Overview of Soultz and Rittershoffen Wells. In Proceedings of European Geothermal Congress, Den Haag, The Netherlands, 11–14 June 2019; p. 11. [Google Scholar]
Geothermal Site | TBottom °C | pH | TDS g/L | Na mg/L | K mg/L | Ca mg/L | Mg mg/L | Cl mg/L | SO4 mg/L | SiO2 mg/L | Br mg/L | Li mg/L | Gas |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Soultz-sous-Forêts | 200 | 4.98 | 99 | 26,400 | 3360 | 7020 | 123 | 55,940 | 108 | 179 | 240 | 160 | CO2 N2 CH4 |
Rittershoffen | >160 | 6.27 | 101 | 27,960 | 3890 | 7450 | 111 | 65,030 | 76 | 175 | 247 | 203 | CO2 N2 CH4 |
Depth MD | Facies and Alteration | SiO2 (%) | Al2O3 (%) | Fe2O3 (%) | MnO (%) | MgO (%) | CaO (%) | Na2O (%) | K2O (%) | TiO2 (%) | P2O5 (%) | LOI (%) | Total (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3391 m | GRBT | 66.89 | 13.91 | 4.24 | 0.14 | 1.99 | 1.98 | 2.78 | 4.77 | 0.59 | <L.D. | 2.02 | 99.32 |
3394 m | GRBT | 69.07 | 14.17 | 3.14 | 0.11 | 1.48 | 2.07 | 2.99 | 4.65 | 0.42 | <L.D. | 1.94 | 100.02 |
3416 m | GRBT | 65.94 | 14.23 | 4.52 | 0.15 | 2.45 | 1.81 | 2.87 | 4.73 | 0.65 | <L.D. | 2.26 | 99.62 |
MEAN GRBT | 67.30 | 14.10 | 3.97 | 0.13 | 1.97 | 1.95 | 2.88 | 4.72 | 0.55 | <L.D. | 2.07 | 97.58 | |
3131 m | HLOW | 65.39 | 15.23 | 2.32 | 0.10 | 1.20 | 3.36 | 2.73 | 5.28 | 0.25 | <L.D. | 4.03 | 99.88 |
3308 m | HLOW | 65.83 | 17.13 | 2.55 | 0.08 | 1.09 | 3.00 | 4.11 | 4.44 | 0.33 | 0.11 | 1.54 | 100.20 |
3341 m | HLOW | 70.38 | 11.04 | 2.51 | 0.07 | 0.73 | 2.75 | 1.54 | 4.62 | 0.29 | <L.D. | 4.85 | 98.77 |
3679 m | HLOW | 69.95 | 12.74 | 2.13 | 0.08 | 0.91 | 2.19 | 3.60 | 4.46 | 0.21 | <L.D. | 4.14 | 100.40 |
3781 m | HLOW | 72.94 | 13.08 | 2.16 | 0.09 | 0.82 | 1.89 | 2.77 | 4.68 | 0.23 | <L.D. | 2.04 | 100.69 |
MEAN HLOW | 68.90 | 13.84 | 2.33 | 0.08 | 0.95 | 2.63 | 2.95 | 4.70 | 0.26 | 0.11 | 3.32 | 96.67 | |
3276 m | HMOD | 65.48 | 16.47 | 2.64 | 0.08 | 1.18 | 2.78 | 3.84 | 4.62 | 0.34 | 0.11 | 2.06 | 99.59 |
3483 m | HMOD | 70.39 | 12.27 | 1.95 | 0.08 | 0.94 | 2.75 | 1.00 | 5.66 | 0.23 | <L.D. | 4.14 | 99.41 |
3524 m | HMOD | 72.77 | 11.90 | 1.87 | 0.07 | 0.88 | 2.36 | 0.81 | 5.38 | 0.22 | <L.D. | 4.05 | 100.31 |
3574 m | HMOD | 69.43 | 12.26 | 2.11 | 0.09 | 1.10 | 2.00 | 3.11 | 4.89 | 0.29 | <L.D. | 4.42 | 99.69 |
3644 m | HMOD | 71.35 | 13.14 | 2.11 | 0.07 | 0.84 | 1.96 | 2.13 | 5.17 | 0.25 | <L.D. | 3.52 | 100.53 |
MEAN HMOD | 69.88 | 13.21 | 2.14 | 0.08 | 0.99 | 2.37 | 2.18 | 5.14 | 0.27 | <L.D. | 3.64 | 96.27 | |
3725 m | HMOD/VEIN | 73.61 | 13.24 | 1.75 | 0.06 | 0.70 | 1.43 | 3.22 | 4.67 | 0.20 | <L.D. | 1.86 | 98.89 |
3071 m | HHIG | 60.36 | 14.75 | 2.90 | 0.15 | 1.81 | 4.74 | 1.79 | 6.07 | 0.22 | <L.D. | 7.36 | 100.16 |
3106 m | HHIG | 65.25 | 13.32 | 2.46 | 0.11 | 1.50 | 3.96 | 1.75 | 5.58 | 0.20 | <L.D. | 5.76 | 99.90 |
3206 m | HHIG | 61.76 | 14.47 | 5.35 | 0.11 | 1.11 | 3.91 | 2.16 | 5.14 | 0.27 | <L.D. | 5.37 | 99.65 |
MEAN HHIG | 62.46 | 14.18 | 3;57 | 0.13 | 1.48 | 4.20 | 1.90 | 5.60 | 0.23 | <L.D. | 6.16 | 93.74 | |
2896 m | HEXT | 59.66 | 2.57 | 1.52 | 0.29 | 0.96 | 17.61 | 0.05 | 1.31 | 0.06 | <L.D. | 15.68 | 99.71 |
3006 m | HEXT/VEIN | 64.27 | 14.72 | 2.42 | 0.10 | 1.08 | 3.70 | 1.45 | 5.90 | 0.24 | <L.D. | 6.06 | 99.94 |
Samples | GIL-1 3005 m | GIL-1 3071 m | GIL-1 3340 m | GIL-1 3482 m | GIL-1 3573 m | GIL-1 3678 m | GIL-1 Rock | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n.a. | 67 | 32 | 18 | 29 | 29 | 18 | 20 | |||||||
An. Av. | s.d. | An. Av. | s.d. | An. Av. | s.d. | An. Av. | s.d. | An. Av. | s.d. | An. Av. | s.d. | An. Av. | s.d. | |
SiO2 | 52.11 | 1.44 | 52.56 | 1.44 | 52.40 | 1.41 | 52.03 | 1.06 | 53.34 | 1.87 | 52.57 | 1.03 | 53.71 | 1.59 |
Al2O3 | 33.02 | 2.51 | 32.26 | 2.63 | 30.58 | 1.35 | 32.90 | 1.86 | 31.37 | 1.94 | 32.47 | 0.97 | 30.81 | 1.83 |
Fe2O3 | 3.29 | 1.26 | 3.37 | 0.99 | 5.10 | 1.46 | 3.18 | 0.97 | 3.19 | 1.02 | 3.46 | 0.78 | 3.63 | 0.85 |
MgO | 1.39 | 0.51 | 1.49 | 0.60 | 1.51 | 0.29 | 1.22 | 0.51 | 1.81 | 0.51 | 1.42 | 0.28 | 2.02 | 0.58 |
TiO2 | 0.08 | 0.15 | 0.04 | 0.07 | 0.11 | 0.09 | 0.08 | 0.15 | 0.02 | 0.03 | 0.08 | 0.13 | 0.22 | 0.46 |
MnO | 0.04 | 0.06 | 0.02 | 0.03 | 0.03 | 0.02 | 0.02 | 0.03 | 0.03 | 0.04 | 0.01 | 0.02 | 0.02 | 0.02 |
CaO | 0.07 | 0.10 | 0.05 | 0.06 | 0.07 | 0.06 | 0.08 | 0.09 | 0.08 | 0.06 | 0.06 | 0.04 | 0.12 | 0.06 |
Na2O | 0.05 | 0.03 | 0.05 | 0.03 | 0.21 | 0.65 | 0.08 | 0.04 | 0.08 | 0.09 | 0.07 | 0.02 | 0.06 | 0.03 |
K2O | 9.95 | 0.74 | 10.15 | 0.65 | 10.00 | 1.13 | 10.42 | 0.38 | 10.09 | 0.57 | 9.88 | 0.36 | 9.42 | 0.53 |
Si | 3.28 | 0.09 | 3.31 | 0.09 | 3.32 | 0.06 | 3.27 | 0.06 | 3.35 | 0.10 | 3.30 | 0.06 | 3.37 | 0.09 |
AlIV | 0.72 | 0.09 | 0.69 | 0.09 | 0.68 | 0.06 | 0.73 | 0.06 | 0.65 | 0.10 | 0.70 | 0.06 | 0.63 | 0.09 |
AlVI | 1.72 | 0.11 | 1.70 | 0.10 | 1.60 | 0.08 | 1.73 | 0.08 | 1.67 | 0.07 | 1.71 | 0.04 | 1.64 | 0.06 |
Fe3+ | 0.16 | 0.06 | 0.16 | 0.05 | 0.24 | 0.07 | 0.15 | 0.05 | 0.15 | 0.05 | 0.16 | 0.04 | 0.17 | 0.04 |
Mg | 0.13 | 0.05 | 0.14 | 0.06 | 0.14 | 0.03 | 0.11 | 0.05 | 0.17 | 0.05 | 0.13 | 0.03 | 0.19 | 0.05 |
Ti | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.02 |
Mn | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
OCT | 2.01 | 0.03 | 2.00 | 0.03 | 1.99 | 0.02 | 1.99 | 0.01 | 2.00 | 0.03 | 2.01 | 0.02 | 2.01 | 0.02 |
Ca | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 |
Na | 0.01 | 0.00 | 0.01 | 0.00 | 0.03 | 0.08 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.00 | 0.01 | 0.00 |
K | 0.80 | 0.06 | 0.82 | 0.06 | 0.81 | 0.10 | 0.84 | 0.03 | 0.81 | 0.05 | 0.79 | 0.03 | 0.75 | 0.05 |
INTCH | 0.81 | 0.06 | 0.83 | 0.05 | 0.84 | 0.04 | 0.86 | 0.03 | 0.83 | 0.05 | 0.81 | 0.03 | 0.78 | 0.04 |
XFe | 0.54 | 0.09 | 0.53 | 0.10 | 0.63 | 0.08 | 0.56 | 0.09 | 0.47 | 0.12 | 0.55 | 0.08 | 0.48 | 0.12 |
Samples | GIL-1 3340 m | GIL-1 3482 m | GIL-1 3573 m | GIL-1 3678 m | |||
---|---|---|---|---|---|---|---|
n.a. | 1 | 2 | 9 | 3 | |||
An. Av. | s.d. | An. Av. | s.d. | An. Av. | s.d. | ||
SiO2 | 32.42 | 35.67 | 0.30 | 33.17 | 1.38 | 35.71 | 3.47 |
Al2O3 | 21.77 | 21.08 | 0.01 | 19.99 | 1.50 | 17.55 | 1.36 |
FeO | 26.36 | 19.13 | 0.40 | 24.76 | 2.67 | 22.32 | 3.83 |
MgO | 16.90 | 20.45 | 21.08 | 18.89 | 1.93 | 15.55 | 0.10 |
TiO2 | 0 | 1.61 | 0.01 | 1.27 | 2.36 | 2.60 | 0.11 |
MnO | 1.58 | 0.63 | 0.02 | 1.19 | 0.41 | 1.23 | 0.28 |
CaO | 0.13 | 0.08 | 0.11 | 0.13 | 0.05 | 0.87 | 1.36 |
Na2O | 0.06 | 0.10 | 0.03 | 0.08 | 0.04 | 0.12 | 0.02 |
K2O | 0.77 | 1.26 | 0.14 | 0.52 | 0.77 | 4.06 | 3.33 |
Si | 2.97 | 3.14 | 0.02 | 3.01 | 0.12 | 3.27 | 0.28 |
AlIV | 1.03 | 0.86 | 0.02 | 0.99 | 0.12 | 0.73 | 0.28 |
AlVI | 1.33 | 1.33 | 0.02 | 1.15 | 0.18 | 1.16 | 0.11 |
Fe2+ | 2.02 | 1.41 | 0.03 | 1.91 | 0.25 | 1.71 | 0.32 |
Mg | 2.31 | 2.68 | 0.01 | 2.55 | 0.20 | 2.12 | 0.04 |
Ti | 0.00 | 0.11 | 0.00 | 0.09 | 0.16 | 0.18 | 0.01 |
Mn | 0.12 | 0.05 | 0.00 | 0.09 | 0.03 | 0.10 | 0.02 |
OCT | 5.79 | 5.57 | 0.01 | 5.79 | 0.16 | 5.27 | 0.26 |
Ca | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.09 | 0.14 |
Na | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 0.02 | 0.00 |
K | 0.09 | 0.14 | 0.01 | 0.06 | 0.09 | 0.47 | 0.39 |
INTCH | 0.13 | 0.17 | 0.01 | 0.10 | 0.09 | 0.66 | 0.12 |
XFe | 0.45 | 0.34 | 0.01 | 0.42 | 0.04 | 0.43 | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glaas, C.; Patrier, P.; Vidal, J.; Beaufort, D.; Genter, A. Clay Mineralogy: A Signature of Granitic Geothermal Reservoirs of the Central Upper Rhine Graben. Minerals 2021, 11, 479. https://doi.org/10.3390/min11050479
Glaas C, Patrier P, Vidal J, Beaufort D, Genter A. Clay Mineralogy: A Signature of Granitic Geothermal Reservoirs of the Central Upper Rhine Graben. Minerals. 2021; 11(5):479. https://doi.org/10.3390/min11050479
Chicago/Turabian StyleGlaas, Carole, Patricia Patrier, Jeanne Vidal, Daniel Beaufort, and Albert Genter. 2021. "Clay Mineralogy: A Signature of Granitic Geothermal Reservoirs of the Central Upper Rhine Graben" Minerals 11, no. 5: 479. https://doi.org/10.3390/min11050479
APA StyleGlaas, C., Patrier, P., Vidal, J., Beaufort, D., & Genter, A. (2021). Clay Mineralogy: A Signature of Granitic Geothermal Reservoirs of the Central Upper Rhine Graben. Minerals, 11(5), 479. https://doi.org/10.3390/min11050479