Low Temperature Illitization through Illite-Dioctahedral Vermiculite Mixed Layers in a Tropical Saline Lake Rich in Hydrothermal Fluids (Sochagota Lake, Colombia)
Abstract
:1. Introduction
2. Geological Context
The Waters and Sediments of the Lake
3. Methods
4. Results
4.1. XRD Data
4.2. SEM-EDX Data
4.3. HRTEM-EDX Data
5. Discussion
5.1. Source Materials: Weathering and Transport
5.2. Detrital Deposit
5.3. Neoformation of Clay Minerals
6. Conclusions
- Illitization takes place in the Sochagota Lake (Tunja, Colombia). The mineral precursor is detrital mixed-layer I-DV incorporated into the lake by the El Salitre River, which discharges to the south of the lake. The illitization process within the lake is supported by (a) the absence of illite in the sediments of both the El Salitre River, which feeds the lake, and of the Chicamocha River, which receives water from the lake, above the lake mouth, and (b) by the presence of illite both in the lake and in the Chichamocha River below the lake mouth.
- TEM-EDS data revealed that neoformed illite has more Fe than I-DV, revealing that the uptaking of Fe played an important role during the illitization process.
- The chemistry of the lake water, which is enriched in K and Fe by hydrothermal input, and the reducing conditions generated by the decay of abundant organic matter caused Fe mobilization and the incorporation of K and Fe into detrital mixed-layer I-DV. This low-temperature illitization process highlights the importance of clays in the uptake of K from hydrothermal waters in geothermal areas.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baldermann, A.; Warr, L.; Letofsky-Papst, I.; Mavromatis, V. Substantial iron sequestration during green-clay authigenesis in modern deep-sea sediments. Nat. Geosci. 2015, 8, 885–890. [Google Scholar] [CrossRef]
- Cuadros, J.; Andrade, G.; Ferreira, T.O.; Partiti, C.S.M.; Cohen, R.; Vidal-Torrado, P. The mangrove reactor: Fast clay transformation and potassium sink. Appl. Clay Sci. 2017, 140, 50–58. [Google Scholar] [CrossRef]
- Drief, A.; Martinez-Ruiz, F.; Nieto, F.; Sanchez, N. Transmission electron microscopy evidence for experimental illitization of smectite in K-enriched seawater solution at 50 degrees C and basic pH. Clays Clay Miner. 2002, 50, 746–756. [Google Scholar] [CrossRef]
- Noël, V.; Boye, K.; Kukkadapu, R.K.; Bone, S.; Pacheco, J.S.L.; Cardarelli, E.; Janot, N.; Fendorf, S.; Williams, K.H.; Bargar, J.R. Understanding controls on redox processes in floodplain sediments of the Upper Colorado River Basin. Sci. Total Environ. 2017, 603–604, 663–675. [Google Scholar] [CrossRef] [Green Version]
- Kasina, M.; Bock, S.; Wurdemann, H.; Pudlo, D.; Picard, A.; Lichtschlag, A.; Marz, C.; Wagenknecht, L.; Wehrmann, L.M.; Vogt, C.; et al. Mineralogical and geochemical analysis of Fe-phases in drill-cores from the Triassic Stuttgart Formation at Ketzin CO2 storage site before CO2 arrival. Environ. Earth Sci. 2017, 76, 161. [Google Scholar] [CrossRef] [Green Version]
- Andrade, G.R.P.; Cuadros, J.; Partiti, C.M.S.; Cohen, R.; Vidal-Torrado, P. Sequential mineral transformation from kaolinite to Fe-illite in two Brazilian mangrove soils. Geoderma 2018, 309, 84–99. [Google Scholar] [CrossRef]
- Deocampo, D.M.; Cuadros, J.; Wing-Dudek, T.; Olives, J.; Amouric, M. Saline lake diagenesis as revealed by coupled mineralogy and geochemistry multiple ultrafine clay phases: Pliocene Olduvai Gorge, Tanzania. Am. J. Sci. 2009, 309, 834–868. [Google Scholar] [CrossRef]
- Andrade, G.R.P.; Azevedo, A.C.; Cuadros, J.; Furquim, S.A.C.; Souza, V.S., Jr.; Kiyohara, P.K.; Vidal-Torrado, P. Transformation of kaolinite into smectite and Fe-illite in Brazilian mangrove soils. Soil Sci. Soc. Am. J. 2014, 78, 655–672. [Google Scholar] [CrossRef]
- Huggett, J.; Cuadros, J.; Gale, A.S.; Wray, D.; Adetunji, J. Low temperature, authigenic illite and carbonates in a mixed dolomite-clastic lagoonal and pedogenic setting, Spanish Central System, Spain. Appl. Clay Sci. 2016, 132–133, 296–312. [Google Scholar] [CrossRef]
- Singer, A.; Stoffers, P. Clay mineral diagenesis in two East African lake sediments. Clay Miner. 1980, 15, 291–307. [Google Scholar] [CrossRef]
- Deconinck, J.F.; Strasser, A.; Debrabant, P. Formation of illitic minerals at surface temperatures in Purbeckian sediments (Lower Berriasian, Swiss and French Jura). Clay Miner. 1988, 23, 91–103. [Google Scholar] [CrossRef]
- Deconinck, J.F.; Gillot, P.Y.; Steinberg, M.; Strasser, A. Syn-depositional, low temperature illite formation at the Jurassic-Cretaceous boundary (Purbeckian) in the Jura Mountains (Switzerland and France): K/Ar and ∂18O evidence. Bull. Soc. Geol. France 2001, 172, 209–213. [Google Scholar] [CrossRef]
- Eberl, D.D.; Srodon, J.; Northrop, H.R. Potassium fixation in smectite by wetting and drying. In Geochemical Processes at Mineral Surfaces; Davis, J.A., Hayes, K.F., Eds.; American Chemical Society: Washington, DC, USA, 1986; pp. 296–326. [Google Scholar]
- Deocampo, D.M. Authigenic clays in lacustrine mudstones. In Paying Attention to Mudstones: Priceless; Egenhoff, S., Ed.; Geological Society of America Special Paper; Geological Society of America: Boulder, CO, USA, 2015; pp. 49–64. [Google Scholar] [CrossRef]
- Cifuentes, G.R.; Jiménez-Millán, J.; Quevedo, C.P.; Jiménez-Espinosa, R. Transformation of S-bearing minerals in organic matter-rich sediments from a saline lake with hydrothermal inputs. Minerals 2020, 10, 525. [Google Scholar] [CrossRef]
- Barnes, H.L. Solubilities of ore metals. In Geochemistry of Hydrothermal Ore Deposits, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1997; pp. 404–460. [Google Scholar]
- Seward, T.M.; Barnes, H.L. Metal transport by hydrothermal ore fluids. In Geochemistry of Hydrothermal Ore Deposits, 3rd ed.; John Wiley and Sons: New York, NY, USA, 1997; pp. 435–486. [Google Scholar]
- Aiuppa, A.; Dongarra, G.; Capasso, G.; Allard, P. Trace elements in the thermal groundwaters of Vulcano Island Sicily. J. Volcanol. Geotherm. Res. 2000, 98, 189–207. [Google Scholar] [CrossRef]
- Aiuppa, A.; Federico, C.; Allard, P.; Gurrieri, S.; Valenza, M. Trace metal modeling of groundwater-gas-rock interactions in a volcanic aquifer: Mount Vesuvius, Southern Italy. Chem. Geol. 2005, 216, 289–311. [Google Scholar] [CrossRef]
- Pardo, N.; Cepeda, H.; Jaramillo, J.M. The Paipa volcano, Eastern Cordillera of Colombia, South America: Volcanic stratigraphy. Earth Sci. Res. J. 2005, 9, 3–18. Available online: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1794-61902005000100001&lng=en&nrm=iso (accessed on 14 May 2021).
- Kaasalainen, H.; Stefánsson, A.; Giroud, N.; Arnórsson, S. The geochemistry of trace elements in geothermal fluids. Iceland. App. Geochem. 2015, 62, 207–223. [Google Scholar] [CrossRef]
- Lanson, B.; Beaufort, D.; Berger, G.; Bauer, A.; Cassagnabere, A.; Meunier, A. Authigenic kaolin and illitic minerals during burial diagenesis of sandstones: A review. Clay Miner. 2002, 37, 1–22. [Google Scholar] [CrossRef]
- Dietel, J.; Ufer, K.; Kaufhold, S.; Dohrmann, R. Unusual illite–dioctahedral vermiculite interstratification with Reichweite 2 in clays from northern Hungary. Eur. J. Mineral. 2018, 30, 747–757. [Google Scholar] [CrossRef]
- Cifuentes, G.R.; Jiménez-Espinosa, R.; Quevedo, C.P.; Jiménez-Millán, J. El ciclo del azufre en sedimentos de lagos con aportes hidrotermales y antrópicos: El Lago Sochagota (Boyacá-Colombia). Macla 2017, 22, 27–28. [Google Scholar]
- Quevedo, C.P.; Jiménez-Millán, J.; Cifuentes, G.R.; Jiménez-Espinosa, R. Clay mineral transformations in anthropic organic matter-rich sediments under saline water environment. Effect on the detrital mineral assemblages in the upper Chicamocha river basin, Colombia. Appl. Clay Sci. 2020, 196, 105576. [Google Scholar] [CrossRef]
- Quevedo, C.P.; Jiménez-Millán, J.; Cifuentes, G.R.; Jiménez-Espinosa, R. Electron microscopy evidence of Zn bioauthigenic sulfides formation in polluted organic matter-rich sediments from the Chicamocha River (Boyacá-Colombia). Minerals 2020, 10, 673. [Google Scholar] [CrossRef]
- Cifuentes, G.R.; Jiménez-Espinosa, R.; Quevedo, C.P.; Jiménez-Millán, J. Damming induced natural attenuation of hydrothermal waters by runoff freshwater dilution and sediment biogeochemical transformations (Sochagota Lake, Colombia). Water 2021, in press. [Google Scholar]
- Cifuentes, G.R.; Jiménez-Millán, J.; Quevedo, C.P.; Gálvez, A.; Castellanos-Rozo, A.; Jiménez-Espinosa, R. Trace element fixation in sediments rich in organic matter from a saline lake in tropical latitude with hydrothermal inputs (Sochagota Lake, Colombia): The role of bacterial communities. Sci. Total Environ. 2021, 762, 143113. [Google Scholar] [CrossRef]
- Rye, R.O.; Bethke, P.M.; Wasserman, M.D. The stable isotope geochemistry of acid sulfate alteration. Econ. Geol. 1992, 87, 225–262. [Google Scholar] [CrossRef]
- John, D.A.; Lee, R.G.; Breit, G.N.; Dilles, J.H.; Calvert, A.T.; Muffler, L.J.P.; Clynne, M.A. Pleistocene hydrothermal activity on Brokeoff volcano and in the Maidu volcanic center, Lassen Peak area, northeast California: Evolution of magmatic—hydrothermal systems on stratovolcanoes. Geosphere 2019, 15, 946–982. [Google Scholar] [CrossRef]
- Nieto, F.; Ortega-Huertas, M.; Peacor, D.R.; Aróstegui, J. Evolution of illite/smectite from early diagenesis through incipient metamorphism in sediments of the Basque-Cantabrian Basin. Clays Clay Miner. 1996, 44, 304–323. [Google Scholar] [CrossRef]
- Moore, D.M.; Reynolds, R.C.J. X-ray Diffraction and the Identification and Analysis of Clay Minerals; Oxford University Press: New York, NY, USA, 1997; p. 378. [Google Scholar]
- Yin, K.; Honga, H.; Churchman, G.J.; Li, Z.; Fang, Q. Mixed-layer illite-vermiculite as a paleoclimatic indicator in the Pleistocene red soil sediments in Jiujiang, southern China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 510, 140–151. [Google Scholar] [CrossRef]
- Fagel, N.; Robert, C.; Hillaire-Marcel, C. Clay mineral signature of the NW Atlantic boundary undercurrent. Mar. Geol. 1996, 130, 19–28. [Google Scholar] [CrossRef]
- Petersen, L.; Rasmussen, K. Mineralogical composition of the clay fraction of two fluvio-glacial sediments from East Greenland. Clay Miner. 1980, 15, 135–145. [Google Scholar] [CrossRef]
- Churchman, G.J. Clay minerals formed from micas and chlorites in some New Zealand soils. Clay Miner. 1980, 15, 59–76. [Google Scholar] [CrossRef]
- April, R.H.; Hluchy, M.M.; Newton, R.M. The nature of vermiculite in Adirondack soils and till. Clays Clay Miner. 1986, 34, 549–556. [Google Scholar] [CrossRef]
- McCartan, L. Geology and Paleontology of the Haynesville Cores Northeastern Virginia Coastal Plain; U.S. Geological Survey: Denver, CO, USA, 1989; p. 1489.
- Bain, D.C.; Mellor, A.; Wilson, M.J. Nature and origin of an aluminous vermiculitic weathering product in acid soils from upland catchments in Scotland. Clay Miner. 1990, 25, 467–475. [Google Scholar] [CrossRef]
- Bonifacio, E.; Falsone, G.; Simonov, G.; Sokolova, T.; Tolpeshta, I. Pedogenic processes and clay transformations in bisequal soils of the Southern Taiga zone. Geoderma 2009, 149, 66–75. [Google Scholar] [CrossRef]
- Yin, K.; Hong, H.; Churchman, G.J.; Li, R.; Li, Z.; Wang, C.; Han, W. Hydroxyinterlayered vermiculite genesis in Jiujiang late-Pleistocene red earth sediments and significance to climate. Appl. Clay Sci. 2013, 74, 20–27. [Google Scholar] [CrossRef]
- Hong, H.; Churchman, G.J.; Yin, K.; Li, R.; Li, Z. Randomly interstratified illite–vermiculite from weathering of illite in red earth sediments in Xuancheng, southeastern China. Geoderma 2014, 214, 42–49. [Google Scholar] [CrossRef]
- Berry, R.W.; Johns, W. Mineralogy of the claysize fractions of some North Atlantic Arctic Ocean bottom current. Geol. Soc. Am. Bull. 1966, 77, 183–196. [Google Scholar] [CrossRef]
- Srodon, J. Nature of mixed-layer clays and mechanisms of their formation and alteration. Annu. Rev. Earth Planet. Sci. 1999, 27, 19–53. [Google Scholar] [CrossRef]
- Vanderaveroet, P.; Averbuch, O.; Deconinck, J.F.; Chamley, H. A record of glacial/interglacial alternations in Pleistocene sediments off New Jersey expressed by clay mineral, grain-size and magnetic susceptibility data. Mar. Geol. 1999, 159, 79–92. [Google Scholar] [CrossRef]
- Vanderaveroet, P.; Bout-Roumazeilles, V.; Fagel, N.; Chamley, H.; Deconinck, J.F. Significance of random illite/vermiculite mixed-layers in Pleistocene sediments of the northwestern Atlantic Ocean. Clay Miner. 2000, 35, 679–691. [Google Scholar] [CrossRef]
- Vilhena, M.P.S.P.; Costa, M.L.; Berrêdo, J.F. Continental and marine contributions to formation of mangrove sediments in an eastern Amazonian mudplain: The case of Marapanin estuary. J. S. Am. Earth Sci. 2010, 79, 427–438. [Google Scholar] [CrossRef]
- Barnishel, R.I.; Bertsch, P.M. Chlorites and hydroxy-interlayered vermiculite and smectite. In Minerals in Soil Environments, 2nd ed.; Dixon, J.B., Weed, S.B., Eds.; Soil Science Society of America: Madison, WN, USA, 1989. [Google Scholar]
- Meunier, A. Soil hydroxy-interlayered minerals: A re-interpretation of their crystallochemical properties. Clays Clay Miner. 2007, 55, 380–388. [Google Scholar] [CrossRef]
- Velde, B.; Meunier, A. The Origin of Clay Minerals in Soils and Weathered Rocks; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Skiba, M.; Skiba, S.; Derkowski, A.; Maj-Szeliga, K.; Dziubińsk, B. Formation of NH4-Illite-like phase at the expense of dioctahedral vermiculite in soil and diagenetic environments—An experimental approach. Clays Clay Miner. 2018, 66, 74–85. [Google Scholar] [CrossRef]
- Foerster, V.; Deocampo, D.; Asrat, A.; Günter, C.; Junginger, A.; Kraemer, K.H.; Stroncik, N.; Trauth, M. Towards an understanding of climate proxy formation in the Chew Bahir basin, southern Ethiopian Rift. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 501. [Google Scholar] [CrossRef]
Sample-Analysis | Si | Al IV | Al VI | Fe | Mg | ∑ VI | Ca | K | Na | ∑ XII |
---|---|---|---|---|---|---|---|---|---|---|
Illite-dioctahedral vermiculite mixed layers (I-DV) | ||||||||||
7-1 | 3.50 | 0.50 | 1.75 | 0.12 | 0.10 | 1.97 | 0.04 | 0.60 | 0.01 | 0.65 |
7-2 | 3.35 | 0.65 | 1.80 | 0.15 | 0.05 | 2.00 | 0.04 | 0.62 | 0.00 | 0.66 |
7-3 | 3.40 | 0.60 | 1.72 | 0.16 | 0.12 | 2.00 | 0.03 | 0.64 | 0.02 | 0.69 |
7-4 | 3.43 | 0.57 | 1.79 | 0.13 | 0.05 | 1.97 | 0.05 | 0.60 | 0.01 | 0.66 |
7-5 | 3.38 | 0.62 | 1.73 | 0.16 | 0.13 | 2.02 | 0.04 | 0.58 | 0.03 | 0.65 |
8-1 | 3.48 | 0.52 | 1.78 | 0.11 | 0.10 | 1.99 | 0.03 | 0.58 | 0.01 | 0.62 |
8-2 | 3.36 | 0.64 | 1.72 | 0.16 | 0.14 | 2.02 | 0.05 | 0.61 | 0.01 | 0.67 |
8-3 | 3.47 | 0.53 | 1.75 | 0.15 | 0.08 | 1.98 | 0.05 | 0.56 | 0.01 | 0.62 |
8-4 | 3.37 | 0.63 | 1.70 | 0.18 | 0.14 | 2.02 | 0.05 | 0.60 | 0.01 | 0.66 |
8-5 | 3.42 | 0.58 | 1.74 | 0.12 | 0.15 | 2.01 | 0.04 | 0.60 | 0.02 | 0.66 |
8-6 | 3.39 | 0.61 | 1.73 | 0.15 | 0.12 | 2.00 | 0.03 | 0.63 | 0.03 | 0.69 |
11-1 | 3.36 | 0.64 | 1.71 | 0.15 | 0.14 | 2.00 | 0.05 | 0.61 | 0.01 | 0.67 |
11-2 | 3.36 | 0.64 | 1.89 | 0.12 | 0.05 | 2.06 | 0.03 | 0.62 | 0.02 | 0.67 |
11-3 | 3.46 | 0.54 | 1.77 | 0.15 | 0.09 | 2.01 | 0.05 | 0.56 | 0.01 | 0.62 |
11-4 | 3.44 | 0.56 | 1.81 | 0.12 | 0.05 | 1.98 | 0.04 | 0.61 | 0.02 | 0.67 |
13-1 | 3.37 | 0.63 | 1.71 | 0.17 | 0.13 | 2.01 | 0.04 | 0.58 | 0.03 | 0.65 |
13-2 | 3.49 | 0.51 | 1.79 | 0.12 | 0.10 | 2.01 | 0.02 | 0.59 | 0.02 | 0.63 |
13-3 | 3.41 | 0.49 | 1.73 | 0.12 | 0.13 | 1.98 | 0.04 | 0.61 | 0.01 | 0.66 |
13-4 | 3.38 | 0.62 | 1.71 | 0.18 | 0.12 | 2.01 | 0.05 | 0.60 | 0.01 | 0.66 |
13-5 | 3.49 | 0.51 | 1.76 | 0.12 | 0.11 | 1.99 | 0.04 | 0.60 | 0.01 | 0.65 |
Illite | ||||||||||
7-1 | 3.36 | 0.64 | 1.59 | 0.31 | 0.1 | 2.00 | 0.00 | 0.68 | 0.06 | 0.74 |
7-2 | 3.30 | 0.7 | 1.57 | 0.29 | 0.16 | 2.02 | 0.03 | 0.7 | 0.04 | 0.77 |
7-3 | 3.33 | 0.67 | 1.55 | 0.32 | 0.14 | 2.01 | 0.02 | 0.7 | 0.04 | 0.76 |
8-1 | 3.39 | 0.61 | 1.62 | 0.24 | 0.12 | 1.98 | 0.01 | 0.71 | 0.03 | 0.75 |
8-2 | 3.37 | 0.63 | 1.58 | 0.3 | 0.12 | 2.00 | 0.01 | 0.71 | 0.03 | 0.75 |
11-1 | 3.32 | 0.68 | 1.56 | 0.3 | 0.15 | 2.01 | 0.03 | 0.69 | 0.03 | 0.75 |
11-2 | 3.34 | 0.66 | 1.56 | 0.31 | 0.14 | 2.01 | 0.02 | 0.69 | 0.05 | 0.76 |
13-1 | 3.38 | 0.62 | 1.62 | 0.25 | 0.11 | 1.98 | 0.01 | 0.7 | 0.02 | 0.73 |
Kaolinite | ||||||||||
11-1 | 4.03 | 0.00 | 3.87 | 0.09 | 0.00 | 3.96 | - | - | - | - |
11-2 | 4.00 | 0.00 | 3.94 | 0.05 | 0.00 | 3.99 | - | - | - | - |
19-1 | 4.01 | 0.00 | 3.91 | 0.07 | 0.00 | 3.98 | - | - | - | - |
20-1 | 4.02 | 0.00 | 3.92 | 0.08 | 0.00 | 4.00 | - | - | - | - |
20-2 | 4.01 | 0.00 | 3.93 | 0.07 | 0.00 | 4.00 | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cifuentes, G.R.; Jiménez-Millán, J.; Quevedo, C.P.; Nieto, F.; Cuadros, J.; Jiménez-Espinosa, R. Low Temperature Illitization through Illite-Dioctahedral Vermiculite Mixed Layers in a Tropical Saline Lake Rich in Hydrothermal Fluids (Sochagota Lake, Colombia). Minerals 2021, 11, 523. https://doi.org/10.3390/min11050523
Cifuentes GR, Jiménez-Millán J, Quevedo CP, Nieto F, Cuadros J, Jiménez-Espinosa R. Low Temperature Illitization through Illite-Dioctahedral Vermiculite Mixed Layers in a Tropical Saline Lake Rich in Hydrothermal Fluids (Sochagota Lake, Colombia). Minerals. 2021; 11(5):523. https://doi.org/10.3390/min11050523
Chicago/Turabian StyleCifuentes, Gabriel Ricardo, Juan Jiménez-Millán, Claudia Patricia Quevedo, Fernando Nieto, Javier Cuadros, and Rosario Jiménez-Espinosa. 2021. "Low Temperature Illitization through Illite-Dioctahedral Vermiculite Mixed Layers in a Tropical Saline Lake Rich in Hydrothermal Fluids (Sochagota Lake, Colombia)" Minerals 11, no. 5: 523. https://doi.org/10.3390/min11050523
APA StyleCifuentes, G. R., Jiménez-Millán, J., Quevedo, C. P., Nieto, F., Cuadros, J., & Jiménez-Espinosa, R. (2021). Low Temperature Illitization through Illite-Dioctahedral Vermiculite Mixed Layers in a Tropical Saline Lake Rich in Hydrothermal Fluids (Sochagota Lake, Colombia). Minerals, 11(5), 523. https://doi.org/10.3390/min11050523