Influence of Host Marble Rocks on the Formation of Intrusive Alkaline Rocks and Carbonatites of Sangilen (E. Siberia, Russia)
Abstract
:1. Introduction
2. Geological Framework
3. Chik Intrusion
4. Kharly, Tarbagatay and Skalny Intrusions
5. Methods
6. Results
6.1. Isotope Study of Alkaline Rocks and Host Marbles of the Chik Intrusion
6.2. Alkaline Rocks and Host Marbles of the Erzin–Tarbagatay Group (ETG)
7. Discussion
8. Conclusions
- (1)
- assimilation of host carbonate rocks by silicate magma;
- (2)
- reaction of carbonates with magmatic melt, resulting in the removal of carbon dioxide from the system and the formation of specific mineral associations. For the Chik area, we estimate that about 40% of the initial mass of carbonates involved in the interaction with silicate melts should remain after decarbonation;
- (3)
- isotope exchange of oxygen between residual carbonate material and silicate phases during crystallization of melts and further cooling of intrusions.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Sample № | Rock Type | Mineral Composition | δ13C ‰ (VPDB) | δ18O ‰ (VSMOW) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Kfs | Nph | Cpx | Gar | Mic | Cal | Gf | Ap | Ttn | ||||
Chik intrusion rock types | ||||||||||||
270/2 | Garnet Ijolite | 60 | 26 | 13 | <1 | <1 | 0.66 | 16.78 | ||||
V-1-0 | Urtite | 71 | 23 | 5 | <1 | <1 | 0.10 | 16.45 | ||||
Chik intrusion, silicate–carbonate rocks, south contact zone, >50 % Cal | ||||||||||||
V-1-21 | Pyroxene carbonatite | 49 | 1 | 50 | 0.55 | 15.49 | ||||||
V-1-28 | Pyroxene carbonatite | 5 | 40 | 54 | <1 | 0.00 | 16.03 | |||||
V-2-1 | Pyroxene carbonatite | 50 | 50 | 0.12 | 16.31 | |||||||
V-2-4 | Nepheline–pyroxene–garnet carbonatite | 20 | 13 | 15 | 50 | 2 | 0.07 | 16.22 | ||||
V-2-17 | Nepheline carbonatite | 20 | 8 | 71 | <1 | <1 | −0.15 | 15.34 | ||||
272/3 | Nepheline–pyroxene carbonatite | 10 | 36 | 53 | 1 | 0.06 | 15.69 | |||||
Chik intrusion, silicate–carbonate rocks, south contact zone, <50 % Cal | ||||||||||||
V-1-20 | Calcite–graphite melteigite | 50 | 34 | 10 | 6 | 0.27 | 16.86 | |||||
V-1-23 | Calcite Ijolite | 39 | 36 | 25 | 0.13 | 16.41 | ||||||
V-1-27 | Urtite | 87 | 1 | 1 | 9 | 1 | <1 | 0.16 | 16.00 | |||
V-1-29 | Ijolite | 50 | 41 | 8 | <1 | 0.05 | 16.94 | |||||
V-1-30 | Calcite–graphite ijolite | 30 | 30 | 30 | 10 | 0.11 | 16.17 | |||||
V-1-34 | Urtite | 91 | 5 | 3 | <1 | <1 | 0.29 | 16.07 | ||||
V-1-35 | Carbonatite | 55 | 44 | <1 | 0.12 | 15.74 | ||||||
V-1-37 | Ijolite | 61 | 30 | 9 | 0.27 | 14.01 | ||||||
V-2-8 | Calcite–garnet urtite | 60 | 10 | 15 | 14 | <1 | 0.41 | 17.19 | ||||
V-2-10 | Calcite–garnet Ijolite | 38 | 7 | 35 | 19 | <1 | 0.56 | 16.89 | ||||
V-2-15 | Urtite | 70 | 18 | 8 | <1 | 3 | 0.77 | 17.35 | ||||
V-3-1 | Ijolite | 37 | 57 | 5 | <1 | 0.42 | 17.06 | |||||
V-3-5 | Calcite Ijolite | 37 | 25 | 37 | <1 | −0.05 | 16.03 | |||||
272/2 | Calcite Ijolite | 30 | 50 | 9 | 11 | 0.07 | 16.25 | |||||
Chik intrusion, marble xenoliths, to varying degrees recrystallized | ||||||||||||
V-1-1 | Calcite–graphite rock | 40 | 60 | 0.36 | 17.34 | |||||||
V-1-2 | Calcite–graphite rock | 60 | 40 | 1.66 | 20.53 | |||||||
V-1-3 | Calcite–graphite rock | 15 | 85 | −0.01 | 15.37 | |||||||
V-1-4 | Calcite–graphite rock | 60 | 40 | 0.80 | 16.26 | |||||||
V-1-5 | Graphite rock | 5 | 95 | 4.94 | 18.17 | |||||||
V-1-6 | Calcite coarse-grained | 100 | 0.74 | 17.43 | ||||||||
V-1-7 | Calcite–graphite rock | 45 | 55 | 0.79 | 17.59 | |||||||
V-1-10 | Calcite coarse-grained | 98 | 2 | 0.59 | 17.07 | |||||||
V-1-18 | Pyroxene–graphite carbonatite | 35 | 50 | 14 | 1 | 0.77 | 17.16 | |||||
V-2-6 | Calcite coarse-grained | <1 | 99 | −0.18 | 14.86 | |||||||
V-2-7 | Calcite marble | 95 | 5 | 3.13 | 22.06 | |||||||
Chik intrusion, host marbles | ||||||||||||
Chk-6 | Calcite marble, 5 m from contact | 99 | <1 | 0.98 | 26.17 | |||||||
20-43g | Calcite marble, 3 m from contact | 99 | <1 | 4.11 | 23.77 | |||||||
Chk-18 | Calcite marble, 700 m from contact | 99 | 3.80 | 26.55 | ||||||||
Skalny intrusion of Erzin–Tarbagatay group | ||||||||||||
Chk-17/1 | Calcite marble, >10 m to the north from contact | 99 | <1 | 3.70 | 23.82 | |||||||
Chk-7/1 | Calcite marble, >10 m to the north from contact | 99 | <1 | 3.69 | 24.07 | |||||||
Chk-7/2 | Calcite marble, >10 m to the north from contact | 99 | <1 | 3.17 | 25.31 | |||||||
273/1 | Calcite marble, 150 m to the north from contact | 99 | <1 | 3.11 | 23.80 | |||||||
V-7-3 | Calcite coarse-grained from nepheline syenites | 100 | −1.52 | 16.47 | ||||||||
V-7-4 | Calcite–pyroxene rock | 20 | 80 | −1.41 | 17.54 | |||||||
V-7-5 | Calcite rock different-grained | 99 | −1.29 | 20.30 | ||||||||
V-7-6 | Calcite rock fine-grained | <1 | 98 | 1 | −0.89 | 21.72 | ||||||
V-7-7 | Calcite coarse-grained | 99 | −2.71 | 14.67 | ||||||||
Tarbagatay intrusion of Erzin–Tarbagatay group | ||||||||||||
V-064-2 | Calcite rock coarse-grained with apatite | <1 | 95 | 5 | −2.73 | 17.86 | ||||||
Kharly intrusion of Erzin–Tarbagatay group | ||||||||||||
V-8-2 | Nepheline syenite | 30 | 35 | 30 | 5 | −2.55 | 16.59 | |||||
V-8-4 | Calcite–pyroxene–nepheline rock | 50 | 30 | 20 | −2.39 | 15.35 | ||||||
V-8-5 | Feldspar urtite | 20 | 78 | <1 | 1 | −5.75 | 14.95 | |||||
V-8-6 | Calcite–pyroxene–nepheline rock | 20 | 39 | <1 | 40 | −2.57 | 15.11 | |||||
V-8-7 | Calcite–pyroxene–nepheline rock with apatite | 10 | 10 | 75 | 5 | −2.83 | 15.72 | |||||
Host marbles of the Skalny, Tarbagatay and Kharly intrusions of Erzin–Tarbagatay group | ||||||||||||
V-91 | Marble medium-grained from the Kharly river mouth (>1 km from contact) | 99 | <1 | <1 | −0.50 | 23.59 | ||||||
268/26 | Calcite marble | 99 | <1 | −2.87 | 24.10 | |||||||
Marble, Kharly intrusion (Kuleshov, 1986) [39] | ||||||||||||
497 | Calcite marble, south-east contact | −1.9 | 20 | |||||||||
961 | Banded dolomite-bearing marble from external contact zone | −0.5 | 22.3 | |||||||||
961 a | Altered marble with apatite and pyroxene from external contact zone | −2.1 | 18.7 | |||||||||
850 | Marble xenolith within ijolite | −2.9 | 17.3 | |||||||||
1008 | Banded marble | −3.3 | 18.3 | |||||||||
1060 | Marble xenolith within ijolite | −1.7 | 23.3 | |||||||||
1135 | Marble xenolith within granites | −3.3 | 14.3 | |||||||||
1399 | Banded marble | −3.5 | 17.5 | |||||||||
Calciphyres, Kharly intrusion (Kuleshov, 1986) [39] | ||||||||||||
488 | Altered marble with feldspathoids | −2.3 | 20.1 | |||||||||
957 | Apatite–pyroxene–calcite rock | −2.1 | 14.2 | |||||||||
521 | Apatite–pyroxene–calcite rock | −2.8 | 16.1 | |||||||||
1022 a | Nepheline–calcite rock | −3.9 | 14.6 | |||||||||
1025 | Nepheline–calcite rock | −3.4 | 16.2 | |||||||||
1026 | Nepheline–calcite rock | −4 | 15.4 | |||||||||
1032 a | Flogopite–calcite rock | −2.9 | 16.8 | |||||||||
1032 δ | Calciphyre | −3.6 | 17.5 | |||||||||
1098 a | Ijolite | −5.8 | 14.6 | |||||||||
Carbonatite-like rocks, Kharly intrusion (Kuleshov, 1986) [39] | ||||||||||||
1084 | Pegmatite with calcite from nepheline syenites | −5 | 13 | |||||||||
499 | Calcite vein with apatite, magnetite and mica from nepheline syenite | −3.8 | 18.6 | |||||||||
498 | Calcite vein with apatite, magnetite and mica from nepheline syenite | −0.7 | 16.4 | |||||||||
908 | Calcite vein with apatite, magnetite and mica from nepheline syenite | −3.4 | 16.6 | |||||||||
798 | Central part of the calcite vein from nepheline syenite | −3.3 | 17.6 | |||||||||
929 | Calcite vein from nepheline syenites | −3.1 | 17.5 | |||||||||
971 | Calcite vein from Ijolites | −2.5 | 16 | |||||||||
1179 | Silicate–carbonate rock from ijolite and marble contact zone | −4 | 16 | |||||||||
1186 | Calcite vein with apatite and mica from ijolite | −3.9 | 17.1 | |||||||||
1190 | Calcite vein with feldspar from ijolite | −3.8 | 14 | |||||||||
1198 | Dyke of calcite–pyroxene–apatite–mica rock, cutting ijolites | −3.4 | 17.1 | |||||||||
1197 | Calcite vein with pyroxene from ijolite | −3.6 | 17.3 | |||||||||
1203 | Calcite vein with pyroxene | −0.7 | 16.4 | |||||||||
1220 | Calcite vein from nepheline syenite | −3.4 | 16.6 | |||||||||
1308 | Silicate–carbonate rock | −2.9 | 15.9 | |||||||||
Kharly intrusion (Vrublevskiy etc. 2019) [27] | ||||||||||||
950 | Ijolite | –2.2 | 16.9 | |||||||||
2540 | Carbonatite-like rock | –2.7 | 15.2 | |||||||||
498/2 | Carbonatite-like rock with apatite | –2.3 | 16.4 | |||||||||
268/10 | Carbonatite-like rock c microcline | –2.6 | 15 | |||||||||
268/11 | Carbonatite-like rock | –2.3 | 19.5 | |||||||||
2843/35 | Calcite vein | –0.5 | 17.3 | |||||||||
2843/31 | Calcite vein | –0.6 | 17.5 |
References
- Kogarko, L.N.; Ryabchikov, I.D. Geochemical evidence for meimechite magma generation in the subcontinental lithosphere of Polar Siberia. J. Asian Earth Sci. 2000, 18, 195–203. [Google Scholar] [CrossRef]
- Panina, L.I.; Motorina, I.V. Meimechites, porphyritic alkaline picrites, and melanephelinites, of Siberia: Conditions of crystallization, parental magmas, and sources. Geochem. Int. 2013, 51, 109–128. [Google Scholar] [CrossRef]
- Isakova, A.T.; Panina, L.I.; Rokosova, E.Y. Carbonatite melts and genesis of apatite mineralization in the Guli pluton (northern East Siberia). Russ. Geol. Geophys. 2015, 56, 466–475. [Google Scholar] [CrossRef]
- Ryabchikov, I.D.; Kogarko, L.N. Deep differentiation of alkali ultramafic magmas: Formation of carbonatite melts. Geochem. Int. 2016, 54, 739–747. [Google Scholar] [CrossRef]
- Frolov, A.A.; Lapin, A.V.; Tolstov, A.V. Carbonatites and Kimberlites; NIA-Nature: Moscow, Russia, 2005; pp. 1–540. (In Russian) [Google Scholar]
- Woolley, A.R.; Kjarsgaard, B.A. Paragenetic types of carbonatites as indicated by the diversity and relative abundances of associated silicate rocks: Evidence from a global database. Can. Mineral. 2008, 46, 741–752. [Google Scholar] [CrossRef]
- Egorov, L.S. Ijolite-Carbonatite Plutonism, by the Example of the Maimecha-Kotui Complex in Arctic Siberia; Nedra: Leningrad, Russia, 1991; pp. 1–260. (In Russian) [Google Scholar]
- Woolley, A.R.; Kjarsgaard, B.A. Carbonatite Occurrences of the World: Map and Database; Geological Survey of Canada: Ottawa, ON, Canada, 2008; Open File 5796. [Google Scholar] [CrossRef]
- Konev, A.A. Nepheline Rocks of Sayan-Baikal Mountain Area; Nauka, Siberian branch: Novosibirsk, Russia, 1982; pp. 1–201. (In Russian) [Google Scholar]
- Kovalenko, V.I.; Popolitov, E.I. Petrology and Geochemistry of Rare Elements of Alkaline and Granitic Rocks of North-Eastern Tuva; Nauka: Moscow, Russia, 1970; pp. 1–258. (In Russian) [Google Scholar]
- Yashina, R.M. Alkaline Magmatism in Orogenic Areas (Case of the Southern Periphery of the Siberian Craton; Nauka: Moscow, Russia, 1982; pp. 1–274. (In Russian) [Google Scholar]
- Kononova, V.A. Jacupirangite-Urtite Series of Alkaline Rocks; Nauka: Moscow, Russia, 1976; pp. 1–215. (In Russian) [Google Scholar]
- Peccerillo, A. Plio-Quaternary Volcanism in Italy. Petrology, Geochemistry, Geodynamics; Springer GmbH & Co. K: Berlin/Heidelberg, Germany, 2005; pp. 1–365. ISBN 13 9783540290926. [Google Scholar]
- Marziano, G.I.; Gaillard, F.; Pichavant, M. Limestone assimilation by basaltic magmas: An experimental reassessment and application to Italian volcanoes. Contrib. Mineral. Petrol. 2008, 155, 719–738. [Google Scholar] [CrossRef] [Green Version]
- Pokrovsky, B.G. Crustal Contamination of Mantle Magmas according to Isotope Geochemistry; Nauka: Moscow, Russia, 2000; pp. 1–223. (In Russian) [Google Scholar]
- Doroshkevich, A.G.; Ripp, G.S.; Izbrodin, I.A.; Savatenkov, V.M. Alkaline magmatism of the Vitim province, West Transbaikalia, Russia: Age, mineralogical, geochemical and isotope (O, C, D, Sr and Nd) data. Lithos 2012, 152, 157–172. [Google Scholar] [CrossRef]
- Doroshkevich, A.G.; Sklyarov, E.V.; Starikova, A.E.; Vasiliev, V.I.; Ripp, G.S.; Izbrodin, I.A.; Posokhov, V.F. Stable isotope (C, O, H) characteristics and genesis of the Tazheran brucite marbles and skarns, Olkhon region, Russia. Miner Petrol. 2017, 111, 399–416. [Google Scholar] [CrossRef]
- Vrublevskii, V.V.; Gertner, I.F.; Chugaev, A.V. Parental sources of high–alumina alkaline melts: Nd, Sr, Pb, and O isotopic evidence from the Devonian Kiya-Shaltyr gabbro–urtite intrusion, South Siberia. Doklady Earth Sci. 2018, 479, 518–523. [Google Scholar] [CrossRef]
- Vrublevskii, V.V.; Nikiforov, A.V.; Sugorakova, A.M.; Kozulina, T.V. Mantle-crustal nature of Early Paleozoic alkaline intrusions in Central Sangilen, Tuva (from Nd, Sr, Pb, C, and O isotope data). Russ. Geol. Geophys. 2019, 60, 451–462. [Google Scholar] [CrossRef]
- Kozakov, I.K.; Kotov, A.B.; Sal’nikova, E.B.; Kovach, V.P.; Natman, A.; Bibikova, E.V.; Kirnozova, T.I.; Todt, W.; Kröner, A.; Yakovleva, S.Z.; et al. Timing of the Structural Evolution of Metamorphic Rocks in the Tuva-Mongolian Massif. Geotektonika 2001, 3, 165–184. [Google Scholar]
- Kozakov, I.K.; Nutman, A.; Sal’nikova, E.B.; Kovach, V.P.; Kotov, A.B.; Podkovyrov, V.N.; Plotkina, Y.V. Metasedimentary Complexes of the Tuva-Mongolian Massif: Age, Provenances, and Tectonic Position. Stratigr. Geol. Korrelyatsiya 2005, 13, 1–20. [Google Scholar]
- Kozakov, I.K.; Azimov, P.Y. Geodynamics of the origin of granulites in the Sangilen block of the Tuva–Mongolian terrane, Central Asian Orogenic Belt. Petrology 2017, 25, 615–624. [Google Scholar] [CrossRef]
- Vladimirov, V.G.; Vladimirov, A.G.; Gibsher, A.S.; Travin, A.V.; Rudnev, S.N.; Shemelina, I.V.; Barabash, N.V.; Savinykh, Y.V. Model of the tectonometamorphic evolution for the Sangilen block (Southeastern Tuva, Central Asia) as a reflection of the Early Caledonian accretion–collision tectogenesis. Dokl. Earth Sci. 2005, 405, 1159–1165. [Google Scholar]
- Vladimirov, V.G.; Karmysheva, I.V.; Yakovlev, V.А.; Travin, А.V.; Tsygankov, А.А.; Burmakina, G.N. Thermochronology of mingling dykes in west Sangilen (south-east Tuva, Russia): Evidence of the collapse of the collisional system in the north-western edge of the Tuva-Mongolia Massif. Geodyn. Tectonophys. 2017, 8, 283–310. [Google Scholar] [CrossRef] [Green Version]
- Salnikova, E.B.; Stifeeva, M.V.; Nikiforov, A.V.; Yarmolyuk, V.V.; Kotov, A.B.; Anisimova, I.V.; Sugorakova, A.M.; Vrublevskii, V.V. Andradite–morimotoite garnets as promising U–Pb geochronometers for dating ultrabasic alkaline rocks. Dokl. Earth Sci. 2018, 480, 779–783. [Google Scholar] [CrossRef]
- Nikiforov, A.V.; Salnikova, E.B.; Yarmolyuk, V.V.; Kotov, A.B.; Sugorakova, A.M.; Anisimova, I.V. Early Permian Age of Nepheline Syenites of the Korgere-Daba Massif (Sangilen Highlands, Tuva). Dokl. Earth Sci. 2019, 485, 235–237. [Google Scholar] [CrossRef]
- Vrublevskii, V.V.; Nikiforov, A.V.; Sugorakova, A.M.; Kozulina, T.V. Petrogenesis and tectonic setting of the Cambrian Kharly alkaline–carbonatite complex (Sangilen Plateau, Southern Siberia): Implications for the Early Paleozoic evolution of magmatism in the western Central Asian Orogenic Belt. J. Asian Earth Sci. 2020, 188, 104163. [Google Scholar] [CrossRef]
- Available online: http://rasterdb.vsegei.ru/rasters_tree.php (accessed on 21 June 2021).
- Kapustin, Y.L. A new apatite-bearing alkaline massif on Sangilen. Rep. Acad. Sci. USSR 1974, 218, 423–426. (In Russian) [Google Scholar]
- Kapustin, Y.L. The new North-Sangilensky alkaline belt, its petrogenesis and rare-metal mineralization. In Problems of the Geology of Rare Elements; Nauka: Moscow, Russia, 1978; pp. 58–76. (In Russian) [Google Scholar]
- Yashina, R.M. Kharly concentric-zonal alkaline massif and conditions of its formation. In Alkaline Rocks of Siberia; Publishing House of the USSR Academy of Sciences: Moscow, Russia, 1962; pp. 7–38. (In Russian) [Google Scholar]
- Yashina, R.М. On a contact-reaction interaction between nepheline syenites and xenoliths of dolomite-bearing marbles (as exemplified by the Aruktinsk alkaline massif of south-eastern Tuva). In Physico-Chemical Problems of the Formation of Rocks and Ores; Publishing House of the USSR Academy of Sciences: Moscow, Russia, 1963; Volume 2, pp. 117–127. (In Russian) [Google Scholar]
- Yashina, R.M. On the influence of the host medium on the development of contact-reaction processes of the magmatic stage of the formation of nepheline-syenite intrusions (on the example of the alkaline massifs of south-eastern Tuva). In The Origin of Alkaline Rocks; Nauka: Moscow, Russia, 1964; pp. 57–69, (In Russian, Abstract in English). [Google Scholar]
- Sharp, Z.D. A laser-based microanalytical method for the in-situ determination of oxygen isotope ratios in silicates and oxides. Geochim. Cosmochim. Acta 1990, 54, 1353–1357. [Google Scholar] [CrossRef]
- Valley, J.W.; Kitchen, N.; Kohn, M.J.; Niendorf, C.R.; Spicuzza, M.J. UWG-2, a garnet standard for oxygen isotope ratios: Strategies for high precision and accuracy with laser heating. Geochim. Cosmochim. Acta 1995, 59, 5223–5231. [Google Scholar] [CrossRef]
- Dubinina, E.O.; Aranovich, L.Y.; van Reenen, D.D.; Avdeenko, A.S.; Varlamov, D.A.; Shaposhnikov, V.V.; Kurdyukov, E.B. Involvement of fluids in the metamorphic processes within different zones of the southern marginal zone of the Limpopo Complex, South Africa: An oxygen isotope perspective. Precambrian Res. 2015, 256, 48–61. [Google Scholar] [CrossRef]
- Chiba, H.; Chacko, T.; Clayton, R.N.; Goldsmith, J.R. Oxygen isotope fractionations involving diopside, forsterite, magnetite, and calcite: Applications to geothermometry. Geochim. Cosmochim. Acta 1989, 53, 2985–2995. [Google Scholar] [CrossRef]
- Zheng, Y.F. Calculation of oxygen isotope fractionation in anhydrous silicate minerals. Geochim. Cosmochim. Acta 1993, 57, 1079–1091. [Google Scholar] [CrossRef]
- Kuleshov, V.N. Isotope Composition and Origin of Endogenous Carbonates; Nauka: Moscow, Russia, 1986; pp. 1–124. (In Russian) [Google Scholar]
- Basarova, T.Y.; Bakumenko, J.T.; Kostyuk, V.P.; Panina, L.I.; Sobolev, V.S.; Chepurov, A.I. Magmatic Crystallization as Based on the Study of Melt in Inclusions; Sobolev, V.S., Kostyuk, V.P., Eds.; Publishing house Nauka, Siberian Branch: Novosibirsk, Russia, 1975; pp. 1–231. (In Russian) [Google Scholar]
- Baumgartner, L.P.; Valley, J.W. Stable isotope transport and contact metamorphic fluid flow. Rev. Mineral. Geochem. 2001, 43, 415–467. [Google Scholar] [CrossRef]
- Taylor, H.P.; Frechen, J.; Degens, E.T. Oxygen and carbon isotope studies of carbonatites from the Laacher See district, West Germany and the Alno district, Sweden. Geochim. Cosmochim. Acta 1967, 31, 407–430. [Google Scholar] [CrossRef]
- Scheele, N.; Hoefs, J. Carbon isotope fractionation between calcite, graphite and CO2: An experimental study. Contrib. Mineral. Petrol. 1992, 112, 35–45. [Google Scholar] [CrossRef]
- Chacko, T.; Deines, P. Theoretical calculation of oxygen isotope fractionation factors in carbonate systems. Geochim. Cosmochim. Acta 2008, 72, 364–23660. [Google Scholar] [CrossRef]
- Valley, J.W. Stable isotope thermometry at high temperatures. Rev. Mineral. Geochem. 2001, 43, 365–414. [Google Scholar] [CrossRef]
- Mollo, S.; Gaeta, M.; Freda, C.; Di Rocco, T.; Misiti, V.; Scarlato, P. Carbonate assimilation in magmas: A reappraisal based on experimental petrology. Lithos 2010, 114, 503–514. [Google Scholar] [CrossRef]
- Perchuk, L.L. Magmatic replacement of limestones with the formation of nepheline-syenites and other alkaline rocks as exemplified by the Dezhnev massif. In The Origin of Alkaline Rocks; Nauka: Moscow, Russia, 1964; pp. 160–181, (In Russian, Abstract in English). [Google Scholar]
- Dubinina, E.O.; Nosova, A.A.; Avdeenko, A.S.; Aranovich, L.Y. Isotopic (Sr, Nd, O) systematics of the high Sr-Ba Late Miocene granitoid intrusions from the Caucasian Mineral Waters region. Petrology 2010, 18, 211–238. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikiforov, A.V.; Dubinina, E.O.; Polyakov, N.A.; Sugorakova, A.M.; Khertek, A.K. Influence of Host Marble Rocks on the Formation of Intrusive Alkaline Rocks and Carbonatites of Sangilen (E. Siberia, Russia). Minerals 2021, 11, 666. https://doi.org/10.3390/min11070666
Nikiforov AV, Dubinina EO, Polyakov NA, Sugorakova AM, Khertek AK. Influence of Host Marble Rocks on the Formation of Intrusive Alkaline Rocks and Carbonatites of Sangilen (E. Siberia, Russia). Minerals. 2021; 11(7):666. https://doi.org/10.3390/min11070666
Chicago/Turabian StyleNikiforov, Anatoly V., Elena O. Dubinina, Nikolay A. Polyakov, Amina M. Sugorakova, and Aylan K. Khertek. 2021. "Influence of Host Marble Rocks on the Formation of Intrusive Alkaline Rocks and Carbonatites of Sangilen (E. Siberia, Russia)" Minerals 11, no. 7: 666. https://doi.org/10.3390/min11070666
APA StyleNikiforov, A. V., Dubinina, E. O., Polyakov, N. A., Sugorakova, A. M., & Khertek, A. K. (2021). Influence of Host Marble Rocks on the Formation of Intrusive Alkaline Rocks and Carbonatites of Sangilen (E. Siberia, Russia). Minerals, 11(7), 666. https://doi.org/10.3390/min11070666