A Mineralogical, Geochemical, and Geochronological Study of ‘Valencianite’ from La Valenciana Mine, Guanajuato, Mexico
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Methods
4. Results and Discussion
4.1. Morphology
4.2. Optics
4.3. Crystal Structure and Al-Si Ordering
4.4. Chemistry
4.5. Age
4.6. The Mineral ‘Variety’ Problem. Is Valencianite a New Mineral?
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Van der Plas, L. The identification of detrital feldspars. In Developments in Sedimentology; Elsevier: Amsterdam, The Netherlands, 1966; Volume 6, 305p. [Google Scholar]
- Smith, J.V. Feldspar Minerals. 1. Crystal Structure and Physical Properties; Springer-Verlag: Berlin/Heidelberg, Germany, 1974; 627p. [Google Scholar]
- Smith, J.V. Feldspar Minerals. 2. Chemical and Textural Properties. Springer-Verlag: Berlin/Heidelberg, Germany, 1974; 686p.
- Ribbe, P.H. Feldspar Mineralogy. In Reviews in Mineralogy, 2nd ed.; Ribbe, P.H., Ed.; The Mineralogical Society of America: Chantilly, VA, USA, 1975; Volume 2, 362p. [Google Scholar]
- Brown, W.L. Feldspars and Feldspathoids. Structures, Properties and Occurrences; NATO ASI Series C: Mathematical and Physical Science; Brow, D.L., Ed.; Springer-Science + Business Media: Dordrecht, The Netherlands, 1983; Volume 137, 541p. [Google Scholar] [CrossRef]
- Ribbe, P.H. Feldspar Mineralogy. In Reviews in Mineralogy, 2nd ed.; Ribbe, P.H., Ed.; The Mineralogical Society of America: Chantilly, VA, USA, 1983; Volume 2, 362p. [Google Scholar]
- Smith, J.V.; Brown, W.L. Feldspar Minerals. Crystal Structures, Physical, Chemical, and Microtextural Properties; Springer-Verlag: Berlin/Heidelberg, Germany, 1988; Volume 1, 828p. [Google Scholar]
- Parsons, I. Feldspars and Their Reactions; NATO ASI Series C: Mathematical and Physical Sciences; Parsons, I., Ed.; Springer-Science + Business Media: Dordrecht, The Netherlands, 1993; Volume 421, 650p. [Google Scholar]
- Deer, W.A.; Howie, R.A.; Zussman, J. Rock-Forming Minerals: Framework Silicates: Feldspars, 2nd ed.; Geological Society of London: London, UK, 2001; Volume 4A. [Google Scholar]
- Parsons, I.; Fitz Gerald, J.D.; Heizler, M.T.; Heizler, L.L.; Ivanic, T.; Lee, M.R. Eight-phase alkali feldspars: Low-temperature cryptoperthite, peristerite and multiple replacement reactions in the Klokken intrusion. Contrib. Mineral. Petrol. 2013, 165, 931–960. [Google Scholar] [CrossRef]
- Martin, R.F. The K-feldspar mineralogy of granites and rhyolites: A generalized case of pseudomorphism of the magmatic phase. Rendiconti Società Italiana di Mineralogia e Petrologia 1988, 43, 343–354. [Google Scholar]
- Lacroix, A. Minéralogie de Madagascar; A. Challamel: Paris, France, 1922; Volume 1, pp. 557–562. [Google Scholar]
- Blasi, A.; De Pol Blasi, C. Crystal structures of alkali feldspars from granitic pegmatites: A review. Memorie della Societa Italiana di Scienza Naturali e del Museo Civico di Storia Naturale Milano 2000, 30, 73–109. [Google Scholar]
- Bambauer, H.U.; Krause, C.; Kroll, H. TEM-investigation of the sanidine/microcline transition across metamorphic zones: The K-feldspar varieties. Eur. J. Mineral. 1989, 1, 47–58. [Google Scholar] [CrossRef]
- Pini, E. Memoria Mineralogica sulla Montagna e sui Contorni di S. Gottardo; Stamperia di Giuseppe Marelli: Milan, Italy, 1783; 128p. + xvi. [Google Scholar]
- Eastwood, A.; Oze, C.; Fraser, S.J.; Cole, J.; Gravley, D.; Chambefort, I.; Gordon, K.C. Application of Raman spectroscopy to distinguish adularia and sanidine in drill cuttings from the Ngtamariki Geothermal Field, New Zealand. New Zealand J. Geol. Geop. 2015, 58, 66–77. [Google Scholar] [CrossRef]
- Kastner, M.; Siever, R. Low temperature feldspar in sedimentary rocks. Am. J. Sci. 1979, 279, 435–479. [Google Scholar] [CrossRef]
- Mensing, T.; Faure, G. Identification and age of neoformed Paleozoic feldspar (adularia) in Precambrian basement core from Scioto County, Ohio, USA. Contrib. Mineral. Petrol. 1983, 82, 327–333. [Google Scholar] [CrossRef]
- Duffin, M.E. Nature and origin of authigenic K-feldspar in Precambrian basement rocks of the North American midcontinent. Geology 1989, 17, 765–768. [Google Scholar] [CrossRef]
- Taylor, P.S. Mineral variations in the silver veins of Guanajuato, Mexico. Ph.D. Thesis, Darmouth College, Hanover, NH, USA, 1971; 139p. [Google Scholar]
- Gross, W.H. New ore discovery and source of silver-gold veins, Guanajuato, Mexico. Econ. Geol. 1975, 70, 1175–1189. [Google Scholar] [CrossRef]
- Nieto-Samaniego, A.F.; Báez-López, J.A.; Levresse, G.; Alaniz-Álvarez, S.A.; Ortega-Obregón, C.; López-Martínez, M.; Noguez-Alcántara, B.; Solé-Viñas, J. New stratigraphic, geochronological, and structural data from the southern Guanajuato Mining District, México: Implications for the caldera hypothesis. Int. Geol. Rev. 2016, 58, 246–262. [Google Scholar] [CrossRef]
- Randall, R.J.A.; Saldaña, A.E.; Clark, K.F. Exploration in a volcano-plutonic center at Guanajuato, Mexico. Econ. Geol. 1994, 89, 1722–1751. [Google Scholar] [CrossRef]
- Moncada, D.; Mutchler, S.; Nieto, A.; Reynolds, T.J.; Rimstidt, J.D.; Bodnar, R.J. Mineral textures and fluid inclusion petrography of the epithermal Ag-Au deposits at Guanajuato, Mexico: Application to exploration. J. Geochem. Explor. 2012, 114, 20–35. [Google Scholar] [CrossRef]
- Fries, C., Jr.; Hibbard, C.W.; Dunkle, D.H. Early Cenozoic vertebrates in the red conglomerate at Guanajuato, Mexico. Smithson. Misc. Collect. 1955, 123, 25. [Google Scholar]
- Edwards, J.D. Studies of some early Tertiary red conglomerates of central Mexico. Geol. Surv. Prof. Paper 1955, P0264-H, 185. [Google Scholar]
- Aranda-Gómez, J.J.; Godchaux, M.M.; Aguirre-Díaz, G.J.; Bonnichsen, B.; Martínez-Reyes, J. Three superimposed volcanic arcs in the southern Cordillera—From the Early Cretaceous to the Miocene, Guanajuato, Mexico. In Proceedings of the Geologic Transects Across Cordilleran Mexico, Guidebook for Field Trips of the 99th Annual Meeting of the Cordilleran Section of the Geological Society of America, Mexico City, Mexico, 5–8 April 2003; Publicación Especial 1, Field Trip 6. Universidad Nacional Autónoma de México, Instituto de Geología: Mexico City, Mexico, 2003; pp. 121–168. [Google Scholar]
- Godchaux, M.M.; Bonnichsen, B.; Aguirre Diaz, G.; De, J.; Aranda Gomez, J.J.; Rangel Solis, G. Volcanological and tectonic evolution of a complex Oligocene caldera system, Guanajuato mining district, central Mexico. Geol. Soc. Am. 2003, 35, 8, (Abstracts with Programs). [Google Scholar]
- Buchanan, L.J. Ore controls of vertically stacked deposits, Guanajuato, Mexico. Soc. Min. Eng. Am. Inst. Min. Metall. Pet. Eng. 1980, 80–82, 27. [Google Scholar]
- Camprubí, A.; Albinson, T. Epithermal deposits in Mexico—update of current knowledge, and an empirical reclassification. Geol. S. Am. S. 2007, 422, 377–415. [Google Scholar] [CrossRef]
- Petruck, W.; Owens, D. Some mineralogical characteristics of the silver deposits in the Guanajuato mining district, Mexico. Econ. Geol. 1974, 69, 1078–1085. [Google Scholar] [CrossRef]
- Moncada, D.; Baker, D.; Bodnar, R.J. Mineral textures and fluid inclusion petrography of the epithermal Ag–Au deposits at Guanajuato, México. Ore Geol. Rev. 2017, 89, 143–170. [Google Scholar] [CrossRef]
- Del Río, A.M. Elementos de Orictognosia: Ó del Conocimiento de los Fósiles, Según el Sistema de Bercelio; y Según los Principios de Abraham Góttlob Wérner; Parte 1; Imprenta de J. F. Hurtel: Filadelfia, PA, USA, 1832; p. 684. [Google Scholar]
- Humboldt, A. Voyage aux Régions Equinoxiales du Nouveau Continent, Fait en 1799, 1800, 1801, 1802, 1803 et 1804, Par Al. De Humboldt et A. Bonpland; Rédigé Par Alexander de Humboldt; Avec un Atlas Géographique et Physique; Librairie rue git le coeur: Paris, France, 1820; Volume 30, pp. 1805–1834. [Google Scholar]
- Rietveld, H. A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Cheary, R.W.; Coelho, A.A. A fundamental parameters approach of X-ray line-profile fitting. J. Appl. Crystallogr. 1992, 25, 109–121. [Google Scholar] [CrossRef]
- Lozano, R.; Bernal, J.P. Characterization of a new set of wight geochemical reference materials for XRF major and trace element analysis. Rev. Mex. Cienc. Geol. 2005, 22, 329–344. [Google Scholar]
- Clark, A.H.; Archibald, D.A.; Lee, A.W.; Farrar, E.; Hodgson, C.J. Laser probe 40Ar/39Ar ages of early- and late-stage alteration assemblages, Rosario porphyry copper-molybdenum deposit, Collahuasi District, I Region, Chile. Econ. Geol. 1988, 93, 326–337. [Google Scholar] [CrossRef]
- Goldschmidt, V. Atlas der Krystallenformen. Band III Danalith-Feldspat-Gruppe; Carl Winters Universitäts Buchhandlung: Heidelberg, Germany, 1916; Text, 240, 247p. [Google Scholar]
- Černý, P.; Chapman, R. Adularia from hydrothermal vein deposits: Extremes on structural state. Can. Mineral. 1986, 24, 717–728. [Google Scholar]
- Franke, W.; Ghobarkar, H. The morphology of hydrothermally grown K-feldspar. Neues Jb. für Miner. Monat. 1982, 2, 57–68. [Google Scholar]
- Woensdregt, C.F. Crystal morphology of monoclinic potassium feldspars. Z. Kristallogr. 1982, 161, 15–33. [Google Scholar] [CrossRef]
- Kalb, G. Die Kristalltracht des Kalifeldspates in minerogenetischer Betrachtung. Centr. Min. Abt. A 1924, 449–460, 449–460. [Google Scholar]
- Pupin, J.P. Zircon and granite petrology. Contrib. Mineral. Petrol. 1980, 73, 207–220. [Google Scholar] [CrossRef]
- Evzikova, N.Z. Prospecting Crystal Morphology; Nauka: Moscow, Russia, 1984; 144p. (In Russian) [Google Scholar]
- Sunagawa, I. Crystals: Growth, Morphology and Perfection; Cambridge University Press: Cambridge, UK, 2005; 295p. [Google Scholar]
- Sánchez-Muñoz, L.; Sanz, J.; Sobrados, I.; Gan, Z. Medium-range order in disordered K-feldspars by multinuclear NMR. Am. Mineral. 2013, 98, 2115–2131. [Google Scholar] [CrossRef] [Green Version]
- Chaisson, U. The optics of triclinic adularia. J. Geol. 1950, 58, 537–547. [Google Scholar] [CrossRef]
- Akizuki, M.; Sunagawa, I. Study of the sector structure in adularia by means of optical microscopy, infra-red absorption, and electron microscopy. Mineral. Mag. 1978, 42, 453–462. [Google Scholar] [CrossRef]
- Bambauer, H.H.; Laves, F. Zum Adularproblem I. Schweiz. Miner. Petrog. 1960, 40, 177–205. [Google Scholar]
- Hovis, G.L. Determination of chemical composition, state of order, molar volume, and density of a monoclinic alkali feldspar using X-ray diffraction. In Teaching Mineralogy; Brady, J.B., Mogk, D.W., Perkins, D., Eds.; Mineralogical Society of America: Washington, DC, USA; Schoell: Paris, France, 1997; pp. 107–118. [Google Scholar]
- Wright, T.L.; Stewart, D.B. X-ray and optical study of alkali feldspar: I. Determination of composition and structural state from refined unit-cell parameters and 2V. Am. Mineral. 1968, 53, 38–87. [Google Scholar]
- Spencer, E. The potash-soda feldspars. I. Thermal stability. Mineral. Mag. 1937, 24, 453–494. [Google Scholar] [CrossRef]
- Sahl, K.; De Albuquerque, C.A.R.; Shaw, D.M. Thallium. In Handbook of Geochemistry; Wedepohl, K.H., Ed.; Springer-Verlag: Berlin/Heidelberg, Germany, 1974; Volume II-5, Chap. 81; 60p. [Google Scholar]
- Kyono, A.; Kimata, A. The crystal structure of synthetic TlAlSi3O8: Influence of the inert-pair effect of thallium on the feldspar structure. Eur. J. Mineral. 2001, 13, 849–856. [Google Scholar] [CrossRef]
- Rader, S.T.; Mazdab, F.K.; Barton, M.D. Mineralogical thallium geochemistry and isotope variations from igneous, metamorphic, and metasomatic systems. Geochim. Cosmochim. Acta 2018, 243, 42–65. [Google Scholar] [CrossRef]
- Martínez-Reyes, J.J.; Camprubí, A.; Tonguç Uysal, I.; Iriondo, A.; González-Partida, E. Geochronology of Mexican mineral deposits. II: Veta Madre and Sierra epitermal vein systems, Guanajuato district. B. Soc. Geol. Mex. 2015, 67, 349–355. [Google Scholar] [CrossRef]
- Steiger, R.H.; Jäger, E. Subcomission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth Planet. Sci. Lett. 1977, 36, 359–362. [Google Scholar] [CrossRef]
- Rotenberg, E.; Davis, D.W.; Amelin, Y.; Ghosh, S.; Bergquist, B.A. Determination of the decay-constant of 87Rb by laboratory accumulation of 87Sr. Geochim. Cosmochim. Acta 2012, 85, 41–57. [Google Scholar] [CrossRef]
- Povarennykh, A.S. Crystal Chemical Classification of Minerals; Springer Science + Business Media: New York, NY, USA, 1972; Volume 1, 458p. [Google Scholar]
- Gubser, R.; Laves, F. On x-ray properties of “adularia”, (K, Na) AlSi3O8. Schweiz. Miner. Petrog. 1967, 47, 177–188. [Google Scholar]
- Hawthorne, F.C.; Mills, S.J.; Hatert, F.; Rumsey, M.S. ontology, archetypes and the definition of ‘mineral species’. Mineral. Mag. 2021, 85, 125–131. [Google Scholar] [CrossRef]
- Mallard, F. Explications des phénomènes optiques anomaux qui présentent un grand nombre de substances cristallisées. Annales des Mines 1876, 10, 187–240. [Google Scholar]
- Tutton, A.E.H. The structure of adularia and moonstone. Nature 1921, 108, 352–353. [Google Scholar] [CrossRef]
- Spencer, E. A contribution to the study of moonstone from Ceylon and other areas and of the stability relations of the alkali-feldspars. Mineral. Mag. 1930, 22, 291–367. [Google Scholar] [CrossRef]
- Kôzu, S.; Endô, Y. X-ray analysis of adularia and moonstone, and the influence of temperature on the atomic arrangement of these minerals. Sci. Rep. Tôhoku Imp. Univ. 1921, 1, 1–17. [Google Scholar]
- Laves, F. The lattice and twinning of microcline and other potash feldspars. J. Geol. 1950, 58, 548–571. [Google Scholar] [CrossRef]
- Colville, A.A.; Ribbe, P.H. The crystal structure of an adularia and a refinement of the structure of orthoclase. Am. Mineral. 1968, 53, 25–37. [Google Scholar]
- Bass, M.N.; Ferrara, G. Age of adularia and metamorphism, Ouachita Mountains, Arkansas. Am. J. Sci. 1969, 267, 491–498. [Google Scholar] [CrossRef]
- Steiner, A. Genesis of hydrothermal K-feldspar (adularia) in an active geothermal environment at Wairakei, New Zealand. Mineral. Mag. 1970, 37, 916–922. [Google Scholar] [CrossRef] [Green Version]
- Halliday, A.N.; Mitchell, J.G. Structural, K-Ar and 40Ar-39Ar age studies of adularia K-feldspars from the Lizard complex, England. Earth Planet. Sci. Lett. 1976, 29, 227–237. [Google Scholar] [CrossRef]
- Solé, J.; Cosca, M.; Sharp, Z.; Enrique, P. 40Ar/39Ar geochronology and stable isotope geochemistry of Late-Hercynian intrusions from north-eastern Iberia with implications for argon loss in K-feldspar. Int. J. Earth Sci. 2002, 91, 865–881. [Google Scholar] [CrossRef]
- Černý, P.; Chapman, R. Paragenesis, chemistry and structural state of adularia from granitic pegmatites. Bull. Min. 1984, 107, 369–384. [Google Scholar] [CrossRef]
- Borutskiy, B.Y.E.; Organova, N.I.; Marsiy, I.M.; Simonov, M.A.; Zhelezin, Y.E.P. The crystal structures and Si/Al-ordering in adularia and microcline from Khibiny. Int. Geol. Rev. 1985, 27, 746–753. [Google Scholar] [CrossRef]
- Muszyński, M.; Wyszomirski, P. Adularia from the basement of the Cracow-Silesian monocline near Zawircie. Mineralogia Polonica 1986, 17, 43–54, (plus V plates). [Google Scholar]
- Ferguson, R.B.; Ball, N.A.; Černý, P. Structure refinement of an adularian end-member high sanidine from the Buck Claim Pegmatite, Bernic Lake, Manitoba. Can. Mineral. 1991, 29, 543–552. [Google Scholar]
- Dong, G.; Morrison, G.W. Adularia in epithermal veins, Queensland: Morphology, structural state and origin. Miner. Depos. 1995, 30, 11–19. [Google Scholar] [CrossRef]
- Zhou, L.; Guo, J.; Liu, B.; Li, L. Structural state of adularia from Hishikari, Japan. Chin. Sci. Bull. 2001, 46, 950–953. [Google Scholar] [CrossRef]
- Bermanec, V.; Horvat, M.; Žigovečki Gobac, Ž.; Zebec, V.; Scholz, R.; Škoda, R.; Wegner, R.; Brito Barreto, S.; Dódony, I. Pseudomorphs of low microcline after adularia fourlings form the Alto Da Cabeça (Boqueirão) and Morro Redondo pegmatites, Brazil. Can. Mineral. 2012, 50, 975–987. [Google Scholar] [CrossRef]
- Xu, H.; Jin, S.; Lee, S.; Hobbs, F.W.C. Nano-phase KNA(Si6Al2)O16 in adularia: A new member in the alkali feldspar series with ordered K-Na distribution. Minerals 2019, 9, 649. [Google Scholar] [CrossRef] [Green Version]
Parameter | Value |
---|---|
X-ray diffractometer | Shimadzu XRD-6000 |
Geometry | Bragg-Brentano |
Goniometer radius | 185 mm |
Radiation source | CuKα |
Generator | 40 kV, 30 mA |
Tube | Fine focus |
Divergence slit | ½° |
Receiving slit | 1° |
Soller slits | 5.729° (0.10 rad) |
Resolving slit | 0.15 mm |
Monochromator | Graphite (diffracted beam) |
Detector | Scintillation counter |
Step size | 0.02° |
Integration time | 4 s |
Parameters | Valencianite #1 | Valencianite #3 | ||
---|---|---|---|---|
Rwp = 4.26; Gof = 1.25 | Rwp = 4.94; Gof = 1.40 | |||
Sanidine | Microcline | Sanidine | Microcline | |
a | 8.5950 (14) * | 8.5967 (13) | 8.5969 (17) | 8.5959 (17) |
b | 13.0110 (20) | 13.0289 (20) | 13.0103 (26) | 13.0338 (26) |
c | 7.1866 (11) | 7.1734 (11) | 7.1907 (15) | 7.1751 (14) |
α | 90.0° | 90.0802° (41) | 90.0° | 90.0775° (52) |
β | 116.0627° (34) | 116.0727° (32) | 116.0454° (32) | 116.0479° (47) |
γ | 90.0° | 89.6739° (41) | 90.0° | 89.6680° (52) |
a* | 0.12952 | 0.12950 | 0.12958 | 0.12956 |
b* | 0.07686 | 0.07675 | 0.07690 | 0.07680 |
c* | 0.15490 | 0.15520 | 0.15496 | 0.15524 |
α* | 90.0° | 90.0703° | 90.0° | 90.0700° |
β* | 63.9373° | 63.9274° | 63.9558° | 63.9440° |
γ* | 90.0° | 90.3238° | 90.0° | 90.3023° |
V | 721.96 (20) | 721.68 (19) | 722.58 (25) | 722.21 (25) |
density | 2.56345 (71) | 2.56442 (69) | 2.56123 (89) | 2.56256 (89) |
XOr | 0.96 | 0.96 | 0.98 | 0.97 |
% phase | 41.3 (2.2) | 56.8 (2.2) | 57.8 (2.0) | 41.8 (2.0) |
Oxide | #1 | #2 | #3 | Guanajuato | Spencer E |
---|---|---|---|---|---|
SiO2 | 66.32 | 65.33 | 65.50 | 64.90 | 64.28 |
TiO2 | 0.01 | 0.01 | 0.01 | - | - |
Al2O3 | 17.47 | 17.81 | 17.87 | 18.20 | 19.19 |
Fe2O3 | 0.07 | 0.08 | 0.09 | - | 0.09 |
MgO | 0.10 | 0.10 | 0.15 | - | 0.10 |
CaO | 0.01 | 0.01 | 0.02 | - | 0.11 |
BaO | 0.28 * | - | - | - | 0.11 |
Na2O | 0.28 | 0.23 | 0.26 | - | 0.92 |
K2O | 15.58 | 16.03 | 15.85 | 16.50 | 15.30 |
P2O5 | 0.02 | 0.01 | 0.03 | - | - |
L.O.I. | - | - | 0.29 | - | 0.36 |
Total | 100.14 | 99.61 | 100.06 | 99.60 | 100.35 |
Atoms (8 oxygens) | |||||
Si | 3.049 | 3.024 | 3.023 | 3.010 | 2.964 |
Ti | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Al | 0.947 | 0.971 | 0.972 | 0.995 | 1.043 |
Fe | 0.002 | 0.003 | 0.003 | 0.000 | 0.003 |
Mg | 0.007 | 0.007 | 0.010 | 0.000 | 0.007 |
Ca | 0.001 | 0.001 | 0.001 | 0.000 | 0.005 |
Na | 0.025 | 0.021 | 0.023 | 0.000 | 0.082 |
K | 0.914 | 0.947 | 0.934 | 0.976 | 0.900 |
P | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Total | 4.945 | 4.973 | 4.967 | 4.981 | 5.004 |
Not Detected | Detected | ||||||
---|---|---|---|---|---|---|---|
V | <5 | In | <0.1 | Ga | 7 | Nd | 0.45 |
Cr | <20 | Eu | <0.005 | Rb | 1060 | Sm | 0.15 |
Co | <1 | Ho | <0.01 | Sr | 50 | Gd | 0.13 |
Ni | <20 | Tm | <0.005 | Zr | 6 | Tb | 0.01 |
Cu | <10 | Lu | <0.002 | Nb | 5.8 | Dy | 0.05 |
Zn | <30 | Ta | <0.01 | Sn | 1 | Er | 0.02 |
Ge | <0.5 | W | <0.5 | Sb | 0.6 | Yb | 0.02 |
As | <5 | Pb | <5 | Cs | 15.0 | Hf | 0.1 |
Y | <5 | Bi | <0.1 | Ba | 2550 | Tl | 12.80 |
Mo | <2 | - | - | La | 0.42 | Th | 0.27 |
Ag | <0.5 | - | - | Ce | 0.98 | U | 0.13 |
- | - | - | - | Pr | 0.11 | - | - |
Experiment | Age (Ma) | ±1sd | %40Ar | Ca/K | Experiment | Age (Ma) | ±1sd | %40Ar | Ca/K |
---|---|---|---|---|---|---|---|---|---|
1 | 30.24 | 0.32 | 21.46 | 0.024 | 3 | 30.23 | 0.39 | 23.60 | 0.034 |
1 | 30.89 | 0.99 | 45.35 | 0.002 | 3 | 30.42 | 0.33 | 28.28 | 0.010 |
1 | 30.41 | 0.67 | 24.96 | 0.002 | 3 | 30.89 | 0.57 | 42.81 | 0.015 |
1 | 30.41 | 1.31 | 38.04 | 0.008 | 3 | 30.46 | 0.5 | 23.53 | 0.013 |
2 | 30.09 | 0.28 | 17.77 | 0.540 | 3 | 30.69 | 0.26 | 16.01 | 0.000 |
2 | 30.37 | 0.54 | 19.04 | 0.003 | 3 | 31.06 | 0.89 | 17.63 | 0.005 |
2 | 30.37 | 1.42 | 38.48 | 0.001 | 3 | 30.79 | 0.8 | 20.36 | 0.000 |
- | - | - | - | - | 3 | 30.87 | 0.82 | 42.38 | 0.008 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solé, J.; Pi-Puig, T.; Ortega-Rivera, A. A Mineralogical, Geochemical, and Geochronological Study of ‘Valencianite’ from La Valenciana Mine, Guanajuato, Mexico. Minerals 2021, 11, 741. https://doi.org/10.3390/min11070741
Solé J, Pi-Puig T, Ortega-Rivera A. A Mineralogical, Geochemical, and Geochronological Study of ‘Valencianite’ from La Valenciana Mine, Guanajuato, Mexico. Minerals. 2021; 11(7):741. https://doi.org/10.3390/min11070741
Chicago/Turabian StyleSolé, Jesús, Teresa Pi-Puig, and Amabel Ortega-Rivera. 2021. "A Mineralogical, Geochemical, and Geochronological Study of ‘Valencianite’ from La Valenciana Mine, Guanajuato, Mexico" Minerals 11, no. 7: 741. https://doi.org/10.3390/min11070741
APA StyleSolé, J., Pi-Puig, T., & Ortega-Rivera, A. (2021). A Mineralogical, Geochemical, and Geochronological Study of ‘Valencianite’ from La Valenciana Mine, Guanajuato, Mexico. Minerals, 11(7), 741. https://doi.org/10.3390/min11070741