Formation of a Composite Albian–Eocene Orogenic Wedge in the Inner Western Carpathians: P–T Estimates and 40Ar/39Ar Geochronology from Structural Units
Abstract
:1. Introduction
Review of the Western Carpathians Tectonic Units
2. Geological Setting with Reappraisal of Tectonic Units, and Terminology
2.1. Allochthonous vs. Subautochthonous Fatricum
2.2. The Infratatricum
2.3. Tatricum
Sample | Sample Description GPS Coordinates | Chl(C) | Chl(J) | Chl(V) | T* (°C) | Ph(M) | Chl-Ms(V) | |
---|---|---|---|---|---|---|---|---|
T (°C) | P (MPa) | T (°C) | P (MPa) | |||||
±50 °C | ±200 MPa | ±50 °C | ±200 MPa | |||||
MF-84 | gneiss phyllonite N 49°02.893′ E 18°50.894′ | 319–338 | 321–339 | 309–327 | 314 | 450 | 283–294 | 400–450 |
MF-KU4 | gneiss phyllonite N 49°04.981′ E 18°44.897′ | 311–329 | 318–336 | 287–314 | 305 | 600 | 241–253 | 550–560 |
MF-KU1 | gneiss phyllonite N 49°05.086′ E 18°44.936′ | 263–311 | 235–286 | 245–250 | 265 | 300 | - | - |
2.4. Penninic, Infratatric and Tatric Units of the Malé Karpaty Mts.
3. Materials and Methods
4. Results
4.1. Petrography, Mineral Chemistry and Tectono-Metamorphic P–T Conditions
4.1.1. Infratatricum
Považský Inovec Mts. Selec Block (Inovec Nappe and Humienec Thrust Sheet)
Sample | Sample Description GPS Coordinates | Chl(C) | Chl(J) | Chl(V) | T* (°C) | Ph(M) | Chl-Ms(V) | Perple_X | ||
---|---|---|---|---|---|---|---|---|---|---|
T (°C) | P (MPa) | T (°C) | P (MPa) | T (°C) | P (MPa) | |||||
±50 °C | ±200 MPa | ±50 °C | ±200 MPa | ±50 °C | ±100 MPa | |||||
Higher Infatatric Inovec Nappe | ||||||||||
PI-7 | Permian meta-sandstone N 48°43.726′ E 17°56.606′ | 329 | 332 | 283 | 309 | - | 290 | 400 | - | - |
PI-B3 | Permian meta-basalt N 48°42.46′ E 17°56.142′ | 284 | 288 | 259 | 277 | - | - | - | 330–345 | 460–580 |
PI-R11 | Permian meta-rhyolite N 48°43.021′ E 17°57.406′ | 296 | 288 | 259 | 285 | - | - | - | - | - |
PI-D1 | Permian meta-dacite N 48°47.578′ E 18°3.182′ | 283 | 287 | 318 | 303 | - | 323 | 600 | - | - |
Lower Infratatric Humienec Thrust Sheet | ||||||||||
PI-39 | Upper Cretaceous Couches-Rouges type marly slate clayey-rich layer N 48°48.95′ E 18°3.823′ | - | - | - | 220 | 750 | - | - | - | - |
PI-88 | Upper Cretaceous “flysch” shale N 48°47.128′ E 18°1.972′ | - | - | - | 200 | 200 | - | - | - | - |
PI-24 | Permian meta-sandstone olistolith in “flysch” N 48°47.305′ E 18°0.759′ | - | - | - | 250 | 400 | - | - | - | - |
PI-21 | Middle Jurassic cherty slate in “flysch” N 48°47.349′ E 18°1.887′ | - | - | - | 250 | 600 | - | - | - | - |
PI-22 | Lower Cretaceous clayey slate in “flysch” N 48°47.356′ E 18°1.938′ | - | - | - | 600 | - | - | - | - |
Považský Inovec Mts. Hlohovec Block (Hlohovec Nappe and Jašter Thrust Sheet)
Sample | Sample Description GPS Coordinates | Chl(C) | Chl(J) | Chl(V) | Ms-Pg(B) | T* (°C) | Ph(M) | Chl-Ms(V) | |
---|---|---|---|---|---|---|---|---|---|
T (°C) | P (MPa) | T (°C) | P (MPa) | ||||||
±50 °C | ±200 MPa | ±50 °C | ±200 MPa | ||||||
Hlohovec Block higher Infratatric Hlohovec Nappe | |||||||||
HC-14 | Lower Triassic meta-quartzite N 48°26.426′ E 17°49.579′ | - | - | - | 280–283 | 282 | 600 | - | - |
HC-15 | Lower Triassic arkosic meta-sandstone N 48°26.421′ E 17°49.621′ | - | - | - | - | 300 | 600 | - | - |
HC-19 | Meta-aplite N 48°26.575′ E 17°49.528′ | 301 | 307 | 261 | - | 280 | - | 245 | 500 |
Hlohovec Block lower Infratatric Jašter Thrust Sheet | |||||||||
JS-2 | Upper Cretaceous C.R. type marly slate clayey-rich layer N 48°26.995′ E 17°48.956′ | 306–331 | 272–304 | 288 | - | 275 | - | 269–278 | 510–620 |
HC-2 | Upper Cretaceous C.R. type marly slate clayey-rich layer N 48°26.862′ E 17°49.286′ | - | - | - | - | 220 | 750 | - | - |
SRB-3 | Upper Cretaceous C.R. type marly slate clayey-rich layer N 48°26.846′ E 17°49.404′ | - | - | - | - | 250 | 650 | - | - |
4.1.2. Subautochthonous Fatricum
Tribeč Mts. Zobor Nappe
Sample | Sample Description GPS Coordinates | Chl(C) | Chl(J) | Chl(V) | T* (°C) | Ph(M) | Chl-Ms(V) | |
---|---|---|---|---|---|---|---|---|
T (°C) ±50 °C | P (MPa) ±200 MPa | T (°C) ±50 °C | P (MPa) ±200 MPa | |||||
NR-1 | Granodiorite/tonalite protomylonite N 48°20.202′ E 18°5.836′ | 271–336 | 277–340 | 298–324 | 308 | - | 250–353 | 500–700 |
ZLT-1 | Granodiorite/tonalite mylonite N 48°28.176′; E 018°18.504′ | 286–359 | 288–361 | 256–359 | 326 | 400 | - | - |
ZLT-2 | Granodiorite/tonalite mylonite N 48°28.176′; E 018°18.504′ | 335–375 | 338–377 | 333–391 | 352 | - | 308–345 | 400–480 |
MV-2 | Granodiorite/tonalite mylonite N 48°29.354′; E 018°16.178′ | 312–346 | 317–351 | 269–359 | 324 | 500 | - | - |
JEL-1 | Lower Triassic meta-quartzite N 48°23.059′; E 018°12.574′ | - | - | - | 300 | 300 | - | - |
HR-1 | Lower Triassic meta-quartzite N 48°28.624′ E 18°25.473′ | - | - | - | 300 | 700 | - | - |
KR-3 | Lower Triassic meta-sandstone N 48°32.079′ E 18°15.769′ | - | - | - | 300 | 300 | - | - |
Tribeč Mts. Razdiel Nappe
Sample | Sample Description | Chl(C) | Chl(J) | Chl(V) | T* (°C) | Ph(M) | Chl-Ms(V) | Perple_X | ||
---|---|---|---|---|---|---|---|---|---|---|
T (°C) | P (MPa) | T (°C) | P (MPa) | T (°C) | P (MPa) | |||||
±50 °C | ±200 MPa | ±50 °C | ±200 MPa | ±50 °C | ±100 MPa | |||||
TRI-21 | Tonalite mylonite N 48°30.412′ E 18°27.384′ | 329–386 | 338–395 | 298–396 | 365 | 400 | - | - | - | - |
TR-CHD-1 | Tonalite blastomylonite N 48°30.475′ E 18°27.338′ | - | - | - | 350 | 550 | - | - | - | - |
CHD-2 | Tonalite blastomylonite N 48°49.972; E 018°46.642′ | 328–333 | 273–339 | 311–315 | 308 | - | 249 | 600 | - | - |
TR-46 | Permian schist N 48°29.309′ E 18°27.726′ | 295–310 | 300–315 | 271–306 | 300 | 750 | - | - | - | - |
TR-35 | Permian meta-basalt N 48°33.255′ E 18°28.214′ | 377 | 376 | - | 376 | - | - | - | 370–400 | 580–700 |
TR-33 | Permian basic meta-pyroclastics N 48°33.259′ E 18°28.26′ | 292–307 | 288–303 | 293–337 | 303 | 700 | - | - | - | - |
TR-43 | Permian meta-basalt N 48°33.316′ E 18°27.729′ | 246–341 | 253–341 | 305–327 | 323 | - | - | - | - | - |
CHD-3 | Greenschist N 48°49.694′; E 018°47.276′ | 303–355 | 303–359 | 286–369 | 330 | 550 | - | - | - | - |
KAM-1 | Tonalite mylonite N 48°30.769′; E 018°30.469′ | 362–378 | 370–386 | 351–358 | 362 | - | 266 | 400 | - | - |
LAM-1 | Tonalite mylonite N 48°30.733′; E 018°30.704′ | 356–377 | 361–383 | 338–383 | 365 | - | 270 | 450 | - | - |
LAM-2A | Permian schist N 48°30.760′; E 018°30.916′ | 339–351 | 343–356 | 310–366 | 334 | - | 263–270 | 400–500 | - | - |
NES-2 | Micaschist phyllonite N 48°52.665′; E 018°47.895′ | 324–370 | 327–376 | 285–347 | 342 | 400 | - | - | - | - |
VYC-2 | Permian meta-arkose N 48°53.349′; E 018°43.234′ | - | - | - | 300 | 400 | - | - | - | - |
LAM-2B | Permian meta-arkose N 48°30.760′; E 018°30.916′ | 359–371 | 367–379 | 332–398 | 360 | - | 257–259 | 470–600 | - | - |
NEM-1 | Low Cretaceous slate N 48°48.412′; E 018°50.927′ | 297–370 | 303–381 | 346–350 | 337 | - | 337 | 400 | - | - |
Eastern Low Tatra Mts. and Upper Hron Valley Vápenica Nappe
Sample | Sample Description GPS Coordinates | Chl(C) | Chl(J) | Chl(V) | T* (°C) | Ph(M) | Chl-Ms(V) | Perple_X | ||
---|---|---|---|---|---|---|---|---|---|---|
T (°C) | P (MPa) | T (°C) | P (MPa) | T (°C) | P (MPa) | |||||
±50 °C | ±200 MPa | ±50 °C | ±200 MPa | ±50 °C | ±100 MPa | |||||
PHK-1 | Tonalite blastomylonite N 48°54.6266′; E 019°59.2838′ | 328–353 | 333–358 | 347–357 | 349 | 600 | - | - | - | - |
MAD-1 | Tonalite blastomylonite N 48°56.0073′; E019°51.7641′ | 331–351 | 335–356 | 333–350 | 342 | - | 332–345 | 350–400 | - | - |
HEL-1-1 | Permian meta-basalt N 48°50.79′ E 19°57.684′ | 302–346 | 303–346 | 261–396 | 323 | - | - | - | 350–410 | 375–480 |
DZ-114 | Granodiorite mylonite N 48°54.325′ E 20°7.161′ | - | - | - | 300 | 700 | - | - | - | - |
PHK-2 | Tonalite blastomylonite N 48°54.6266′; E 019°59.2838′ | 347–362 | 349–363 | 336–359 | 353 | 400 | - | - | - | - |
PO-94 | Permian meta-arkose N 48°52.505′ E 20°1.891′ | - | - | - | 300 | 500 | - | - | - | - |
HEL-4 | Permian meta-arkose N 48°50.79′ E 19°57.684′ | - | - | - | 300 | 600 | - | - | - | - |
Nízke Tatry Mts. Krakľová Nappe
Sample | Sample Description | Chl(C) | Chl(J) | Chl(V) | T* (°C) | Ph(M) |
---|---|---|---|---|---|---|
T (°C) | P (MPa) | |||||
±50 °C | ±200 MPa | |||||
LED-1 | Permian meta-granite-porphyre N 48°51.8884′; E 019°45.3063′ | 321–334 | 327–338 | 312–324 | 327 | 500 |
BAC-1 | Permian meta-dacite N 48°53.428′ E 19°48.059′ | 307–331 | 314–336 | 273–311 | 290 | 600 |
PL-65 | Permian meta-rhyolite N 48°48.447′ E 19°29.871′ | 324–340 | 327–344 | 317–325 | 330 | 600 |
BA-72 | Permian meta-rhyolite N4 8°53.299′ E 19°47.335′ | 351–369 | 358–373 | 330–342 | 354 | 550 |
PR-2 | Micaschist phyllonite N 48°54.67′ E 19°56.893′ | 339–414 | 349–423 | 341–384 | 396 | - |
4.2. New Mica 40Ar/39Ar Age Data from Subautochthonous Fatricum and Infratatricum and Their Interpretation
Sample | Mineral | Plateau Age | K/Ca | 39Ar(%) | No. of | MSWD |
---|---|---|---|---|---|---|
(Ma ± 2σ) | Steps | |||||
ZI-3 | Cel-Ms | 62.21 ± 0.31 | 1 | 57 (mini-plateau) | 13 out of 22 | 0.43 |
HC-12 | Ph | cannot calculate | - | - | 0 out of 22 | - |
SRB-1 | Ph | cannot calculate | - | - | 0 out of 22 | - |
SRB-1 | Ms | cannot calculate | - | - | - | - |
SRB-1 | Bt | cannot calculate | - | - | 0 out of 19 | - |
5. Discussion
5.1. Applied Methods for Metamorphic P–T Estimates
5.2. Fatric–Tatric–Infratatric Evolutionary Stages Constrained by Published and New 40Ar/39Ar Ages
6. Conclusions
- Thermodynamic modeling, geothermobarometry and white mica 40Ar/39Ar dating constrain the metamorphic conditions and evolutionary (D) stages of the structural units which formed due to closure of the Jurassic–Cretaceous Atlantic (Alpine) Tethys basin system and subsequent opening and closure the Upper Cretaceous basin system in the northern part of the IWC (Figure 58, Figure 59 and Figure 60).
- The metamorphic conditions determined from the Permian meta-basalts of the Infratatricum and subautochthonous Fatricum by Perple_X modeling are very similar (within the error of the applied methods), indicating the D1 stage or syn-collisional burial in the Albian–Cenomanian/Turonian accretional wedge. The subautochthonous Fatric structural units provided the pressures of 400–700 MPa at 250–410 °C by the Perple_X modeling (Razdiel and Vápenica nappes), Chl–Ph geothermobarometry, Chl geothermometry and Ph geobarometry. The higher Infratatric nappes achieved 400–600 MPa at 250–350 °C that was constrained by the Perple_X modeling (Inovec Nappe), Chl–Ph geothermobarometry, Chl and Ph–Pg geothermometry and Ph geobarometry. Such small differences in the estimated P/T conditions for most of the nappes after the D1 stage indicate their neighbouring position in the Albian–Cenomanian/Turonian wedge, in general, south of the Tatricum and beneath the Veporicum (Figure 60, cross-section C). The present-day higher Infratatric Inovec and Hlohovec nappes and the Manín–Klape nappe units achieved the Infratatric position in the D1 wedge front by the overthrusting the Tatricum terminated edges yet before the opening of the Belice Basin. The Infratatric nappes were secondarily overthrust by the Tatricum during the D3 stage (Figure 59 and Figure 60, cross-section D).
- The D1 event was 40Ar/39Ar dated on phengitic white mica to two ca. 90 Ma apparent step ages from the higher Infratatric Hlohovec Nappe marble thrust sheet (SRB-1 and HC-12 samples). We interprete this age of ca. 90 Ma as a mixture of Ph ages from the D1 and the D3 tectono-metamorphic stages. A Cel-Ms age of ca. 62 Ma from the subautochthonous Fatric Zobor Nappe (ZI-3 meta-quartzite sample) indicates advanced (late-D3) exhumation of the D1 wedge rear.
- The average metamorphic conditions determined from the lower Infratatric Humienec and Jašter thrust sheets C.R. type marly slates with newly formed Ilt-Ph are ca. 220–270 °C and 600–750 MPa by the Chl–Ph geothermobarometry and Ph geobarometry. These conditions are related to the compressional D3 stage or burial of the C.R. underneath the exhumed (D2) higher Infratatric nappes at ca. 75–65 Ma. The newly formed Ilt to Ilt-Ph in the “flysch” pelagites indicates the lowest anchi-metamorphic conditions of the D4 stage.
- The lower Infratatric Humienec and Jašter thrust sheets with the C.R. slates, incorporating the rugged thinned basement (micaschists or granitoids with the cover rocks), underlie the higher Infratatric Inovec and Hlohovec nappes after the D3 stage. The Belice “flysch” trough closure at 65–50 Ma was followed by the Infratatricum accretion to the Tatricum and the rear bivergently structured subautochthonous Fatricum in the Eocene orogenic wedge.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Platt, J.P. Exhumation of high-pressure rocks: A review of concepts and processes. Terra Nova 1993, 5, 119–133. [Google Scholar] [CrossRef]
- Schmid, S.M.; Bernoulli, D.; Fügenschuh, B.; Matenco, L.; Schefer, S.; Schuster, R.; Tischler, M.; Ustaszewski, K. The Alpine-Carpathian-Dinaridic orogenic system: Correlation and evolution of tectonic units. Swiss J. Geosci. 2008, 101, 139–183. [Google Scholar] [CrossRef] [Green Version]
- Putiš, M.; Danišík, M.; Siman, P.; Nemec, O.; Tomek, Č.; Ružička, P. Cretaceous and Eocene tectono-thermal events determined in the Inner Western Carpathians orogenic front Infratatricum. Geol. Q. 2019, 63, 248–274. [Google Scholar] [CrossRef] [Green Version]
- Putiš, M.; Soták, J.; Li, Q.-L.; Ondrejka, M.; Li, X.-H.; Hu, Z.; Ling, X.; Nemec, O.; Németh, Z.; Ružička, P. Origin and age determination of the Neotethys Meliata Basin ophiolite fragments in the Late Jurassic–Early Cretaceous accretionary wedge mélange (Inner Western Carpathians, Slovakia). Minerals 2019, 9, 652. [Google Scholar] [CrossRef] [Green Version]
- Plašienka, D. Continuity and episodicity in the early Alpine tectonic evolution of the Western Carpathians: How large-scale processes are expressed by the orogenic architecture and rock record data. Tectonics 2018, 37, 2029–2079. [Google Scholar] [CrossRef]
- Putiš, M.; Gawlick, H.-J.; Frisch, W.; Sulák, M. Cretaceous transformation from passive to active continental margin in the Western Carpathians as indicated by the sedimentary record in the Infratatric unit. Int. J. Earth Sci. 2008, 97, 799–819. [Google Scholar] [CrossRef]
- Putiš, M.; Frank, W.; Plašienka, D.; Siman, P.; Sulák, M.; Biron, A. Progradation of the Alpidic Central Western Carpathians orogenic wedge related to two subductions: Constrained by 40Ar/39Ar ages of white micas. Geodin. Acta 2009, 22, 31–56. [Google Scholar] [CrossRef]
- Plašienka, D.; Grecula, P.; Putiš, M.; Kováč, M.; Hovorka, D. Evolution and structure of the Western Carpathians: An overview. In Geological Evolution of the Western Carpathians; Grecula, P., Hovorka, D., Putiš, M., Eds.; Mineralia Slovaca Corporation—Geocomplex, a.s.: Bratislava, Slovakia, 1997; pp. 1–24i. [Google Scholar]
- Maheľ, M. Island character of Klippen Belt; Váhikum—Continuation of southern Pennicum in West Carpathians. Geol. Carpath. 1981, 32, 293–305. [Google Scholar]
- Soták, J.; Spišiak, J.; Biroň, A. Metamorphic sequences with ‘Bündnerschiefer’ lithology in the Pre-Neogene basement of the East Slovakian Basin. Mitt. Oesterr. Geol. Ges. 1994, 86, 111–120. [Google Scholar]
- Schmid, S.M.; Scharf, A.; Handy, M.R.; Rosenberg, C.L. The Tauern Window (Eastern Alps, Austria): A new tectonic map, with cross-sections and a tectonometamorphic synthesis. Swiss J. Geosci. 2013, 106, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Tollmann, A. Geology and tectonics of the eastern Alps (middle sector). In Abhandlungen der Geologischen Bundesanstalt; Abhandlungen der Geologischen Bundesanstalt; Geologische Bundesanst: Wien, Austria, 1980; Volume 34, pp. 197–255. [Google Scholar]
- Maheľ, M. Geological Structure of the Czechoslovakia Carpathians: Paleoalpine Units; Veda: Bratislava, Slovakia, 1986. (In Slovak) [Google Scholar]
- Andrusov, D.; Bystrický, J.; Fusán, O. Outline of the Structure of the West Carpathians. In Congres of Carpathian-Balkan Association X; Geological Survey of Slovak Republic: Bratislava, Slovakia, 1973; pp. 1–44. [Google Scholar]
- Prokešová, R.; Plašienka, D.; Milovský, R. Structural pattern and emplacement mechanisms of the Krížna cover nappe (Central Western Carpathians). Geol. Carpath. 2012, 63, 13–32. [Google Scholar] [CrossRef] [Green Version]
- Polák, M.; Plašienka, D.; Kohút, M.; Putiš, M.; Bezák, V.; Filo, I.; Olšavský, M.; Havrila, M.; Buček, S.; Maglay, J.; et al. Explanations to the Geological Map of the Malé Karpaty Mts 1:50,000; Geological Survey of Slovak Republic: Bratislava, Slovakia, 2012. [Google Scholar]
- Pelech, O.; Hók, J.; Józsa, S. Turonian–Santonian sediments in the Tatricum of the Považský Inovec Mts. (Internal Western Carpathians, Slovakia). Austrian J. Earth Sci. 2017, 110, 19–33. [Google Scholar] [CrossRef]
- Lexa, J.; Bezák, V.; Elečko, M.; Mello, J.; Polák, M.; Potfaj, M.; Vozár, J.; Schnabel, G.W.; Pálenský, P.; Császár, G. Geological Map of Western Carpathians and Adjacent Areas 1: 500,000; Geological Survey of Slovak Republic: Bratislava, Slovakia, 2000. [Google Scholar]
- Korikovsky, S.P.; Putiš, M.; Plašienka, D. Cretaceous low-grade metamorphism of the Veporic and North-Gemeric Zones: A result of collisional. In Geological Evolution of the Western Carpathians; Grecula, P., Hovorka, D., Putiš, M., Eds.; Mineralia Slovaca Corporation—Geocomplex, a.s.: Bratislava, Slovakia, 1997; pp. 107–130. ISBN 9788096701872. [Google Scholar]
- Korikovsky, S.P.; Putiš, M.; Plašienka, D.; Ďurovič, V. Cretaceous very low-grade metamorphism of the Infratatric and Supratatric domains: An indicator of thin-skinned tectonics in the central Western Carpathians. In Geological Evolution of the Western Carpathians; Grecula, P., Hovorka, D., Putiš, M., Eds.; Mineralia Slovaca Corporation—Geocomplex, a.s.: Bratislava, Slovakia, 1997; pp. 89–106. ISBN 9788096701872. [Google Scholar]
- Krist, E.; Korikovskij, S.P.; Putiš, M.; Janák, M.; Faryad, S.W. Geology and Petrology of Metamorphic Rocks of the Western Carpathian Crystalline Complexes; Comenius University Press: Bratislava, Slovakia, 1992; p. 324. [Google Scholar]
- Putiš, M. Variscan and Alpidic nappe structures of the Western Carpathians crystalline basement. Geol. Carpath. 1992, 43, 369–380. [Google Scholar]
- Dallmeyer, R.D.; Neubauer, F.; Putiš, M. 40Ar/39Ar mineral age controls for the Pre-Alpine and Alpine tectonic evolution of nappe complexes in the Western Carpathians. In Pre-Alpine Events in the Western Carpathians’ Realm; Pitoňák, P., Spišiak, J., Eds.; Conference in Stará Lesná, Excursion Guide; Slovak Academy of Sciences: Bratislava, Slovakia, 1993; pp. 11–20. [Google Scholar]
- Dallmeyer, R.D.; Neubauer, F.; Handler, R.; Fritz, H.; Müller, W.; Pana, D.; Putiš, M. Tectonothermal evolution of the internal Alps and Carpathians: Evidence from 40Ar/39Ar mineral and whole-rock data. Eclogae Geol. Helv. 1996, 89, 203–227. [Google Scholar]
- Maluski, H.; Rajlich, P.; Matte, P. 40Ar–39Ar dating of the Inner Carpathians Variscan basement and Alpine mylonitic overprinting. Tectonophysics 1993, 223, 313–337. [Google Scholar] [CrossRef]
- Hók, J.; Siman, P.; Frank, W.; Král’, J.; Kotulová, J.; Rakús, M. Origin and exhumation of mylonites in the Lúčanská Malá Fatra Mts. (the Western Carpathians). Slovak Geol. Mag. 2000, 6, 325–334. [Google Scholar]
- Kráľ, J.; Hók, J.; Frank, W.; Siman, P.; Liščák, P.; Jánová, M. Shear deformation in granodiorite: Structural, 40Ar/39Ar, and geotechnical data (Tribeč Mts., Western Carpathians). Slovak Geol. Mag. 2002, 8, 235–246. [Google Scholar]
- Etzel, T.M.; Catlos, E.J.; Kohút, M.; Yin, H.Z. Dating the High Tatra Mountains, Slovakia: Tectonic Implications. In Proceedings of the 5th Central-European Mineralogical Conference (CEMC) and 7th Mineral Sciences in the Carpathians Conference (MSCC), Banská Štiavnica, Slovakia, 26–30 June 2018. [Google Scholar]
- Danišík, M.; Kohút, M.; Broska, I.; Frisch, W. Thermal evolution of the Malá Fatra Mountains (Central Western Carpathians): Insights from zircon and apatite fission track thermochronology. Geol. Carp. 2010, 61, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Danišík, M.; Kadlec, J.; Glotzbach, C.; Weisheit, A.; Dunkl, I.; Kohút, M.; Evans, N.J.; Orvošová, M.; McDonald, B.J. Tracing metamorphism, exhumation and topographic evolution in orogenic belts by multiple thermochronology: A case study from the Nízke Tatry Mts., Western Carpathians. Swiss J. Geosci. 2011, 104, 285–298. [Google Scholar] [CrossRef]
- Dallmeyer, R.D.; Németh, Z.; Putiš, M. Regional tectonothermal events in Gemericum and adjacent units (Western Carpathians, Slovakia): Contribution by the 40Ar/39Ar dating. Slovak Geol. Mag. 2005, 11, 155–163. [Google Scholar]
- Faryad, S.W.; Henjes-Kunst, F. Petrological and K–Ar and 40Ar–39Ar age constraints for the tectonothermal evolution of the high-pressure Meliata unit, Western Carpathians (Slovakia). Tectonophysics 1997, 280, 141–156. [Google Scholar] [CrossRef]
- Nemec, O.; Putiš, M.; Bačík, P.; Ružička, P.; Németh, Z. Metamorphic conditions of Neotethyan Meliatic accretionary wedge estimated by thermodynamic modelling and geothermobarometry (Inner Western Carpathians). Minerals 2020, 10, 1094. [Google Scholar] [CrossRef]
- Putiš, M.; Danišík, M.; Ružička, P.; Schmiedt, I. Constraining exhumation pathway in an accretionary wedge by (U-Th)/He thermochronology—Case study on Meliatic nappes in the Western Carpathians. J. Geodyn. 2014, 81, 80–90. [Google Scholar] [CrossRef]
- Putiš, M.; Li, X.-H.; Ondrejka, M.; Siman, P.; Németh, Z.; Koller, F.; Nemec, O.; Ružička, P. The Eoalpine Orogen evolution from Permian–Triassic extension to Jurassic–Eocene accretion determined by Zrn U/Pb SIMS, microprobe Mnz and WhM Ar/Ar ages in the Western Carpathians and the Eastern Alps. In Proceedings of the 13th Workshop on Alpine Geological Studies—Émile Argand Conference, Zlatibor, Serbia, 17–18 September 2017; EGU Series. University of Belgrade: Belgrade, Serbia, 2017; pp. 89–90. [Google Scholar]
- Vozárová, A.; Konečný, P.; Šarinová, K.; Vozár, J. Ordovician and Cretaceous tectonothermal history of the Southern Gemericum Unit from microprobe monazite geochronology (Western Carpathians, Slovakia). Int. J. Earth Sci. 2014, 103, 1005–1022. [Google Scholar] [CrossRef]
- Hurai, V.; Paquette, J.-L.; Lexa, O.; Konečný, P.; Dianiška, I. U-Pb-Th geochronology of monazite and zircon in albitite metasomatites of the Rožňava-Nadabula ore field (Western Carpathians, Slovakia): Implications for the origin of hydrothermal polymetallic siderite veins. Mineral. Petrol. 2015, 109, 519–530. [Google Scholar] [CrossRef]
- Hók, J.; Pelech, O.; Teťák, F.; Németh, Z.; Nagy, A. Outline of the geology of Slovakia (W. Carpathians). Miner. Slov. 2019, 51, 31–60. [Google Scholar]
- Plašienka, D. Tectonochronology and Paleotectonic Model of the Jurassic – Cretaceous Evolution of the Central Western Carpathians; Veda: Bratislava, Slovakia, 1999; p. 125, (in Slovak, with English summary). [Google Scholar]
- Putiš, M. Structural-metamorphic evolution of the crystalline basement of the eastern part of the Low Tatra Mts. Miner. Slov. 1989, 21, 217–224. [Google Scholar]
- Putiš, M. Tectonic styles and Late Variscan-Alpine evolution of the Tatric-Veporic crystalline basement in the Western Carpathians. Zent. Geol. Paläontologie Teil 1 1991, 1, 181–204. [Google Scholar]
- Buday, T.; Kodym, O.; Maheľ, M.; Máška, M.; Matějka, A.; Svoboda, J.; Zoubek, V. Tectonic Development of Czechoslovakia; ČSAV: Prague, Czech Republic, 1962; p. 249. [Google Scholar]
- Putiš, M. Geology and petrotectonics of some shear zones in the West Carpathian crystalline complexes. Miner. Slov. 1991, 23, 459–473. [Google Scholar]
- Biely, A.; Beňuška, P.; Bezák, V.; Bujnovský, A.; Halouzka, R.; Ivanička, J.; Kohút, M.; Klinec, A.; Lukáčik, E.; Maglay, J.; et al. Geological Map of the Nízke Tatry Mountains; Geological Survey of Slovak Republic: Bratislava, Slovakia, 1992. [Google Scholar]
- Ivanička, J.; Hók, J.; Polák, M.; Határ, J.; Vozár, J.; Nagy, A.; Fordinál, K.; Pristaš, J.; Konečný, V.; Šimon, L.; et al. Explanations to the Geological Map of the Tribeč Mts. 1:50,000; Geological Survey of Slovak Republic: Bratislava, Slovakia, 1998. [Google Scholar]
- Bezák, V. Proposal of the new division of the West Carpathian crystalline based on the Hercynian tectonic building reconstruction. Miner. Slov. 1994, 26, 1–6. [Google Scholar]
- Putiš, M.; Sergeev, S.; Ondrejka, M.; Larionov, A.; Siman, P.; Spišiak, J.; Uher, P.; Paderin, I. Cambrian-Ordovician metaigneous rocks associated with Cadomian fragments in the West-Carpathian basement dated by SHRIMP on zircons: A record from the Gondwana active margin setting. Geol. Carpath. 2008, 59, 3–18. [Google Scholar]
- Putiš, M.; Ivan, P.; Kohút, M.; Spišiak, J.; Siman, P.; Radvanec, M.; Uher, P.; Sergeev, S.; Larionov, A.; Méres, S.; et al. Meta-igneous rocks of the West-Carpathian basement, Slovakia: Indicators of Early Paleozoic extension and shortening events. Bull. Soc. Géol. Fr. 2009, 180, 461–471. [Google Scholar] [CrossRef]
- Leško, B.; Šutora, A.; Putiš, M. Geology of the Považský Inovec Horst based on geophysical investigation. Geol. Zborník Geol. Carpath. 1988, 39, 195–216. [Google Scholar]
- Putiš, M. Outline of geological-structural development of the crystalline complex and envelope Paleozoic of the Považský Inovec Mts. Geol. Carpath. 1983, 34, 457–482. [Google Scholar]
- Putiš, M. Upper Palaeozoic complex of the Považský Inovec Mts. Geol. Práce. Správy 1986, 84, 65–83. [Google Scholar]
- Putiš, M.; Sulák, M.; Gawlick, H.J.; Bojar, A.V. Infratatricum of the Považský Inovec Mts. (Western Carpathians): Geodynamic evolution of continetal margin in the vicinity of the oceanic Penninicum. Miner. Slov. 2006, 38, 7–28. [Google Scholar]
- Plašienka, D.; Marschalko, R.; Soták, J.; Uher, P.; Peterčáková, M. Origin and structural position of Upper Cretaceous sediments in the northern part of the Považský Inovec Mts. Part 1: Lithostratigraphy and sedimentology. Miner. Slov. 1994, 26, 311–334. [Google Scholar]
- Plašienka, D. Jurassic syn-rift and Cretaceous syn-orogenic, coarse-grained deposits related to opening and closure of the Vahic (South Penninic) Ocean in the Western Carpathians—An overview. Geol. Q. 2012, 56, 601–628. [Google Scholar] [CrossRef] [Green Version]
- Kullmanová, A.; Gašpariková, V. Upper Cretaceous sediments in northern part of Považský Inovec Mts. Geol. Práce, Správy 1982, 78, 85–95. [Google Scholar]
- Korikovsky, S.P.; Putiš, M.; Zakariadze, G.S.; Ďurovič, V. Alpine Anchimetamorphism of the Infratatricum cover, Western Carpathians: Composition of authigenic and detrital muscovite-phengite as an indicator of the metamorphic grade. Petrology 1995, 3, 525–538. [Google Scholar]
- Putiš, M.; Li, J.; Ružička, P.; Ling, X.; Nemec, O. U/Pb SIMS zircon dating of a rhyolite intercalation in Permian siliciclastics as well as a rhyodacite dyke in micaschists (Infratatricum, W. Carpathians). Miner. Slov. 2016, 48, 135–144. [Google Scholar]
- Plašienka, D.; Soták, J. Evolution of Late Cretaceous–Palaeogene synorogenic basins in the Pieniny Klippen Belt and adjacent zones (Western Carpathians, Slovakia): Tectonic controls over a growing orogenic wedge. Ann. Soc. Geol. Pol. 2015, 85, 43–76. [Google Scholar] [CrossRef]
- Oszczypko, N.; Ślączka, A.; Oszczypko-Clowes, M.; Olszewska, B. Where was the Magura Ocean? Acta Geol. Pol. 2015, 65, 319–344. [Google Scholar] [CrossRef] [Green Version]
- Ivanička, J.; Havrila, M.; Kohút, M.; Kováčik, M.; Madarás, J.; Olšavský, M.; Hók, J.; Polák, M.; Filo, I.; Elečko, M.; et al. Geological Map of the Považský Inovec Mts. and SE part of the Trenčianska kotlina Depression 1:50,000; Geological Survey of Slovak Republic: Bratislava, Slovakia, 2007. [Google Scholar]
- Putiš, M.; Németh, Z.; Unzog, W.; Wallbrecher, E. The quartz and calcite X-ray texture goniometer patterns from the Western Carpathians Cretaceous ductile shear zones used as kinematic indicators. Geol. Carpath. 1999, 50, 165–169. [Google Scholar]
- Pelech, O.; Józsa, Š.; Kohút, M.; Plašienka, D.; Hók, J.; Soták, J. Structural, biostratigraphic and petrographic evaluation of the Upper Cretaceous red marlstones and underlying granitoids from the borehole HPJ-1 Jašter near Hlohovec (Považský Inovec Mts., Slovakia). Acta Geol. Slovaca 2016, 8, 27–42. [Google Scholar]
- Havrila, M.; Vaškovský, I. Explanations to Geological Map of Mesozoicum in Southern Part of Považský Inovec Mts; Geological Survey of Slovak Republic: Bratislava, Slovakia, 1983. [Google Scholar]
- Cúlová, V.; Andrusov, D. Précision de l’âge de la formation des nappes de recouvrement des karpates occidentales centrales. Geol. Carpath. 1964, 15, 253. [Google Scholar]
- Boorová, D.; Potfaj, M. Biostratigraphical and lithological evaluation of the profile “BALCOVÁ”, Šiprúň sequence, Vel’ká Fatra Mts. Slov. Geol. Mag. 1997, 3, 315–329. [Google Scholar]
- Putiš, M. Cataclastic metamorphism of metapelitic and metabasic rocks in the Malé Karpaty Mts. Geol. Carpath. 1986, 37, 225–243. [Google Scholar]
- Kohút, M.; Sherlock, S. Pseudotachylites from the High Tatra Mts.-evidences for late paleogene seismic/tectonic events. Geol. Carpath. 2002, 53, 1–4. [Google Scholar]
- Hanes, R.; Putiš, M. Cataclasites and pseudotachylites in granitoid rocks of the Vysoké Tatry Mts. Miner. Slov. 2004, 36, 169–182. [Google Scholar]
- Sulák, M.; Kaindl, R.; Putiš, M.; Sitek, J.; Krenn, K.; Tóth, I. Chemical and spectroscopic characteristics of potassium white micas related to polystage evolution of the Central Western Carpathians orogenic wedge. Lithos 2009, 113, 709–730. [Google Scholar] [CrossRef]
- Cathelineau, M. Cation site occupancy in chlorites and illites as function of temperature. Clay Miner. 1988, 23, 471–485. [Google Scholar] [CrossRef]
- Jowett, E.C. Fitting Iron and Magnesium into the Hydrothermal Chlorite Geothermometer. In Proceedings of the Geological Association of Canada + MAC + SEG Joint Annual Meeting, Toronto, ON, Canada, 27–29 May 1991; pp. 1–14. [Google Scholar]
- Massonne, H.-J.; Schreyer, W. Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite, and quartz. Contrib. Mineral. Petrol. 1987, 96, 212–224. [Google Scholar] [CrossRef]
- Vidal, O.; Andrade, V.D.E.; Lewin, E.; Munoz, M.; Parra, T.; Pascarelli, S. P-T-deformation-Fe3+/Fe2+ mapping at the thin section scale and comparison with XANES mapping: Application to a garnet-bearing metapelite from the Sambagawa metamorphic belt (Japan). J. Metamorph. Geol. 2006, 24, 669–683. [Google Scholar] [CrossRef]
- Anczkiewicz, A.A.; Danišík, M.; Środoń, J. Multiple low-temperature thermochronology constraints on exhumation of the Tatra Mountains: New implication for the complex evolution of the Western Carpathians in the Cenozoic. Tectonics 2015, 34, 2296–2317. [Google Scholar] [CrossRef] [Green Version]
- Śmigielski, M.; Sinclair, H.D.; Stuart, F.M.; Persano, C.; Krzywiec, P. Exhumation history of the Tatry Mountains, Western Carpathians, constrained by low-temperature thermochronology. Tectonics 2016, 35, 187–207. [Google Scholar] [CrossRef] [Green Version]
- Danišík, M.; Dunkl, I.; Putiš, M.; Frisch, W.; Král’, J. Tertiary burial and exhumation history of basement highs along the NW margin of the Pannonian Basin—An apatite fission track study. Austrian J. Earth Sci. 2004, 95, 60–70. [Google Scholar]
- Králiková, S.; Vojtko, R.; Hók, J.; Fügenschuh, B.; Kováč, M. Low-temperature constraints on the Alpine thermal evolution of the Western Carpathian basement rock complexes. J. Struct. Geol. 2016, 91, 144–160. [Google Scholar] [CrossRef]
- Plašienka, D.; Michalík, J.; Kováč, M.; Gross, P.; Putiš, M. Paleotectonic evolution of the Malé Karpaty Mts.—An overview. Geol. Carpath. 1991, 42, 195–208. [Google Scholar]
- Putiš, M.; Hrdlička, M.; Uher, P. Lithology and granitoid magmatism of Lower Paleozoic in the Malé Karpaty Mts. Miner. Slov. 2004, 36, 183–194. [Google Scholar]
- Kytková, B.; Tomek, C.; Bielik, M.; Putiš, M. Interpretation of deep seismic reflection profiles in the northern part of the Malé Karpaty Mountains. Contr. Geophys. Geod. 2007, 37, 43–58. [Google Scholar]
- Plašienka, D.; Korikovsky, S.P.; Hacura, A. Anchizonal Alpine metamorphism of Tatric cover sediments in the Malé Karpaty Mts., Western Carpathians. Geol. Carpath. 1993, 44, 365–371. [Google Scholar]
- Putiš, M. Geology and tectonics of southwestern and nothern part of the Malé Karpaty Mts. crystalline complex. Miner. Slov. 1987, 19, 135–157. [Google Scholar]
- Yavuz, F.; Kumral, M.; Karakaya, N.; Karakaya, M.Ç.; Yıldırım, D.K. A Windows program for chlorite calculation and classification. Comput. Geosci. 2015, 81, 101–113. [Google Scholar] [CrossRef]
- Zane, A.; Weiss, Z. A procedure for classifying rock-forming chlorites based on microprobe data. Rend. Lincei Sci. Fis. Nat. 1998, 9, 51–56. [Google Scholar] [CrossRef]
- Tischendorf, G.; Förster, H.-J.; Gottesmann, B.; Rieder, M. True and brittle micas: Composition and solid-solution series. Mineral. Mag. 2007, 71, 285–320. [Google Scholar] [CrossRef]
- Locock, A.J. An Excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations. Comput. Geosci. 2014, 62, 1–11. [Google Scholar] [CrossRef]
- Hawthorne, F.C.; Oberti, R.; Harlow, G.E.; Maresch, W.V.; Martin, R.F.; Schumacher, J.C.; Welch, M.D. Nomenclature of the amphibole supergroup. Am. Mineral. 2012, 97, 2031–2048. [Google Scholar] [CrossRef]
- Blencoe, J.G.; Guidotti, C.V.; Sassi, F.P. The paragonite-muscovite solvus: II. Numerical geothermometers for natural, quasibinary paragonite-muscovite pairs. Geochim. Cosmochim. Acta 1994, 58, 2277–2288. [Google Scholar] [CrossRef]
- Lanari, P.; Vidal, O.; De Andrade, V.; Dubacq, B.; Lewin, E.; Grosch, E.G.; Schwartz, S. XMapTools: A MATLAB©-based program for electron microprobe X-ray image processing and geothermobarometry. Comput. Geosci. 2014, 62, 227–240. [Google Scholar] [CrossRef] [Green Version]
- Parra, T.; Vidal, O.; Agard, P. A thermodynamic model for Fe–Mg dioctahedral K white micas using data from phase-equilibrium experiments and natural pelitic assemblages. Contrib. Mineral. Petrol. 2002, 143, 706–732. [Google Scholar] [CrossRef]
- Dubacq, B.; Vidal, O.; Andrade, V.D. Dehydration of dioctahedral aluminous phyllosilicates: Thermodynamic modelling and implications for thermobarometric estimates. Contrib. Mineral. Petrol. 2010, 159, 159. [Google Scholar] [CrossRef]
- Connolly, J.A.D.; Petrini, K. An automated strategy for calculation of phase diagram sections and retrieval of rock properties as a function of physical conditions. J. Metamorph. Geol. 2002, 20, 697–708. [Google Scholar] [CrossRef] [Green Version]
- Connolly, J.A.D. Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 2005, 236, 524–541. [Google Scholar] [CrossRef]
- Holland, T.J.B.; Powell, R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J. Metamorph. Geol. 2011, 29, 333–383. [Google Scholar] [CrossRef]
- Green, E.C.R.; White, R.W.; Diener, J.F.A.; Powell, R.; Holland, T.J.B.; Palin, R.M. Activity-composition relations for the calculation of partial melting equilibria in metabasic rocks. J. Metamorph. Geol. 2016, 34, 845–869. [Google Scholar] [CrossRef]
- White, R.W.; Powell, R.; Holland, T.J.B.; Johnson, T.E.; Green, E.C.R. New mineral activity-composition relations for thermodynamic calculations in metapelitic systems. J. Metamorph. Geol. 2014, 32, 261–286. [Google Scholar] [CrossRef]
- Renne, P.R.; Balco, G.; Ludwig, K.R.; Mundil, R.; Min, K. Response to the comment by WH Schwarz et al. on “Joint determination of 40K decay constants and 40Ar∗/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology” by PR Renne et al. (2010). Geochim. Cosmochim. Acta 2011, 75, 5097–5100. [Google Scholar] [CrossRef]
- Jourdan, F.; Timms, N.E.; Eroglu, E.; Mayers, C.; Frew, A.; Bland, P.A.; Collins, G.S.; Davison, T.M.; Abe, M.; Yada, T. Collisional history of asteroid Itokawa. Geology 2017, 45, 819–822. [Google Scholar] [CrossRef]
- Koppers, A.A.P. ArArCALC—software for 40Ar/39Ar age calculations. Comput. Geosci. 2002, 28, 605–619. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Marti, K.; Severinghaus, J.P.; Kawamura, K.; Yoo, H.-S.; Lee, J.B.; Kim, J.S. A redetermination of the isotopic abundances of atmospheric Ar. Geochim. Cosmochim. Acta 2006, 70, 4507–4512. [Google Scholar] [CrossRef]
- Renne, P.R.; Deino, A.L.; Hilgen, F.J.; Kuiper, K.F.; Mark, D.F.; Mitchell, W.S., 3rd; Morgan, L.E.; Mundil, R.; Smit, J. Time scales of critical events around the Cretaceous-Paleogene boundary. Science 2013, 339, 684–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaen, A.J.; Jicha, B.R.; Hodges, K.V.; Vermeesch, P.; Stelten, M.E.; Mercer, C.M.; Phillips, D.; Rivera, T.A.; Jourdan, F.; Matchan, E.L.; et al. Interpreting and reporting 40Ar/39Ar geochronologic data. GSA Bull. 2020, 133, 461–487. [Google Scholar] [CrossRef]
- Hunziker, J.C.; Frey, M.; Clauer, N.; Dallmeyer, R.D.; Friedrichsen, H.; Flehmig, W.; Hochstrasser, K.; Roggwiler, P.; Schwander, H. The evolution of illite to muscovite: Mineralogical and isotopic data from the Glarus Alps, Switzerland. Contrib. Mineral. Petrol. 1986, 92, 157–180. [Google Scholar] [CrossRef]
- Korikovsky, S.P.; Putiš, M. Evolution of Authigenic and Detrital K-Micas at the Boundary between Anchimetamorphism and Low-Temperature Metamorphism during the Cretaceous Tectono-Metamorphic Cycle in the Western Carpathians. Petrology 1999, 7, 364–382. [Google Scholar]
- Passchier, C.W.; Trouw, R.A.J. Microtectonics; Springer: Berlin/Heidelberg, Germany, 2005; ISBN 9783540640035. [Google Scholar]
- VanLaningham, S.; Mark, D.F. Step heating of 40Ar/39Ar standard mineral mixtures: Investigation of a fine-grained bulk sediment provenance tool. Geochim. Cosmochim. Acta 2011, 75, 2324–2335. [Google Scholar] [CrossRef]
- Forster, M.A.; Lister, G.S. The interpretation of 40Ar/39Ar apparent age spectra produced by mixing: Application of the method of asymptotes and limits. J. Struct. Geol. 2004, 26, 287–305. [Google Scholar] [CrossRef]
- Cathelineau, M.; Nieva, D. A chlorite solid solution geothermometer the Los Azufres (Mexico) geothermal system. Contrib. Mineral. Petrol. 1985, 91, 235–244. [Google Scholar] [CrossRef]
- De Caritat, P.; Hutcheon, J.; Walshe, J.L. Chlorite Geothermometry: A Review. Clays Clay Miner. 1993, 41, 219–239. [Google Scholar] [CrossRef]
- Essene, E.J.; Peacor, D.R. Clay Mineral Thermometry—A Critical Perspective. Clays Clay Miner. 1995, 43, 540–553. [Google Scholar] [CrossRef]
- Bourdelle, F. Low-Temperature Chlorite Geothermometry and Related Recent Analytical Advances: A Review. Minerals 2021, 11, 130. [Google Scholar] [CrossRef]
- Zang, W.; Fyfe, W.S. Chloritization of the hydrothermally altered bedrock at the Igarapé Bahia gold deposit, Carajás, Brazil. Miner. Depos. 1995, 30, 30–38. [Google Scholar] [CrossRef]
- Vidal, O.; Parra, T. Exhumation paths of high-pressure metapelites obtained from local equilibria for chlorite-phengite assemblages. Geol. J. 2000, 35, 139–161. [Google Scholar] [CrossRef]
- Velde, B. Si+4 content of natural phengites. Contrib. Mineral. Petrol. 1967, 14, 250–258. [Google Scholar] [CrossRef]
- Velde, B. Phengite micas: Synthesis, stability, and natural occurrence. Am. J. Sci. 1965, 263, 886–891. [Google Scholar] [CrossRef]
- Massonne, H.-J.; Schreyer, W. Stability field of the high-pressure assemblage talc + phengite and two new phengite barometers. Eur. J. Mineral. 1989, 1, 391–410. [Google Scholar] [CrossRef]
- Massonne, H.J.; Szpurka, F. The thermodynamic properties of white micas on the basis of high-pressure experiments in the systems K2O-MgO-Al2O3-SiO2-H2O and K2O-FeO-Al2O3-SiO2-H2O. Lithos 1997, 41, 229–250. [Google Scholar] [CrossRef]
- Guidotti, C.V.; Sassi, F.P. Petrogenetic significance of Na-K white mica mineralogy: Recent advances for metamorphic rocks. Eur. J. Mineral. 1998, 10, 815–854. [Google Scholar] [CrossRef]
- Livi, K.J.T.; Veblen, D.R.; Ferry, J.M.; Frey, M. Evolution of 2:1 layered silicates in low-grade metamorphosed Liassic shales of Central Switzerland. J. Metamorph. Geol. 1997, 15, 323–344. [Google Scholar] [CrossRef]
- Árkai, P. Phyllosilicates in very low-grade metamorphism: Transformation to micas. Rev. Mineral. Geochem. 2002, 46, 463–478. [Google Scholar] [CrossRef]
- Goncalves, P.; Oliot, E.; Marquer, D.; Connolly, J.A.D. Role of chemical processes on shear zone formation: An example from the Grimsel metagranodiorite (Aar massif, Central Alps). J. Metamorph. Geol. 2012, 30, 703–722. [Google Scholar] [CrossRef]
- Gervais, F.; Trapy, P.-H. Testing solution models for phase equilibrium (forward) modeling of partial melting experiments. Contrib. Mineral. Petrol. 2021, 176, 1–18. [Google Scholar] [CrossRef]
- Holland, T.J.B.; Powell, R. An internally consistent thermodynamic data set for phases of petrological interest. J. Metamorph. Geol. 1998, 16, 309–343. [Google Scholar] [CrossRef]
- Hók, J.; Kováč, P.; Madarás, J. Extensional tectonics of the western part of the contact area between Veporicum and Gemericum (Western Carpathians). Miner. Slov. 1993, 25, 172–176. [Google Scholar]
- Putiš, M. South Tatric-Veporic basement geology: Variscan nappes; Alpine thick-skinned and extensional tectonics (Low Tatra Mts., Slovak Ore Mts.-NW, the Western Carpathians). Mitt. Oesterr. Geol. Ges. 1994, 86, 83–99. [Google Scholar]
- Putiš, M.; Unzog, W.; Wallbrecher, E.; Fritz, H. Mylonitization and chemical mass-transfer in granitoid rocks of the Vepor pluton near the Cretaceous Pohorelá thrust (Veporic unit, central Western Carpathians). In Geological Evolution of the Western Carpathians; Grecula, P., Hovorka, D., Putiš, M., Eds.; Mineralia Slovaca Corporation—Geocomplex, a.s.: Bratislava, Slovakia, 1997; pp. 197–214. [Google Scholar]
- Tomek, Č. Deep crustal structure beneath the central and inner West Carpathians. Tectonophysics 1993, 226, 417–431. [Google Scholar] [CrossRef]
- Kráľ, J. Fission track ages of apatites from some granitoid rocks in West Carpathians. Geol. Zborník Geol. Carpath. 1977, 28, 269–276. [Google Scholar]
- Neubauer, F.; Genser, J.; Handler, R. The Eastern Alps: Result of a two-stage collision process. Mitt. Oesterr. Geol. Ges. 2000, 92, 117–134. [Google Scholar]
- Kohút, M.; Sherlock, S.C. Tracing the Initiation of the Tribeč Mountain Exhumation by Laser-Probe 40Ar/39Ar Dating of Seismogenic Pseudotachylytes (Western Carpathians, Slovakia). J. Geol. 2016, 124, 255–265. [Google Scholar] [CrossRef]
- Danišík, M.; Kohút, M.; Dunkl, I.; Hraško, L.; Frisch, W. Apatite fission track and (U-Th)/He thermochronology of the Rochovce granite (Slovakia)—Implications for the thermal evolution of the Western Carpathian-Pannonian region. Swiss J. Geosci. 2008, 101, 225–233. [Google Scholar] [CrossRef]
- Putiš, M.; Tomek, Č. Metamorphosed sources of the Late Cretaceous flysch in the Infratatric Albian-Eocene accretionary wedge: Impact on large-scale tectonics. In Proceedings of the 10th ESSEWECA Conference, Abstract Book, Bratislava, Slovakia, 1–2 December 2016; pp. 80–82. [Google Scholar]
- Soták, J.; Pulišová, Z.; Plašienka, D.; Šimonová, V. Stratigraphic and tectonic control of deep-water scarp accumulation in Paleogene synorogenic basins: A case study of the Súl’ov Conglomerates (Middle Váh Valley, Western Carpathians). Geol. Carpath. 2017, 68, 403–418. [Google Scholar] [CrossRef] [Green Version]
- Oxburgh, E.R. Flake Tectonics and Continental Collision. Nature 1972, 239, 202–204. [Google Scholar] [CrossRef]
- Meissner, R.; Mooney, W. Weakness of the lower continental crust: A condition for delamination, uplift, and escape. Tectonophysics 1998, 296, 47–60. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Putiš, M.; Nemec, O.; Danišík, M.; Jourdan, F.; Soták, J.; Tomek, Č.; Ružička, P.; Molnárová, A. Formation of a Composite Albian–Eocene Orogenic Wedge in the Inner Western Carpathians: P–T Estimates and 40Ar/39Ar Geochronology from Structural Units. Minerals 2021, 11, 988. https://doi.org/10.3390/min11090988
Putiš M, Nemec O, Danišík M, Jourdan F, Soták J, Tomek Č, Ružička P, Molnárová A. Formation of a Composite Albian–Eocene Orogenic Wedge in the Inner Western Carpathians: P–T Estimates and 40Ar/39Ar Geochronology from Structural Units. Minerals. 2021; 11(9):988. https://doi.org/10.3390/min11090988
Chicago/Turabian StylePutiš, Marián, Ondrej Nemec, Martin Danišík, Fred Jourdan, Ján Soták, Čestmír Tomek, Peter Ružička, and Alexandra Molnárová. 2021. "Formation of a Composite Albian–Eocene Orogenic Wedge in the Inner Western Carpathians: P–T Estimates and 40Ar/39Ar Geochronology from Structural Units" Minerals 11, no. 9: 988. https://doi.org/10.3390/min11090988
APA StylePutiš, M., Nemec, O., Danišík, M., Jourdan, F., Soták, J., Tomek, Č., Ružička, P., & Molnárová, A. (2021). Formation of a Composite Albian–Eocene Orogenic Wedge in the Inner Western Carpathians: P–T Estimates and 40Ar/39Ar Geochronology from Structural Units. Minerals, 11(9), 988. https://doi.org/10.3390/min11090988