Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = tectono-thermal overprinting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 85969 KiB  
Article
Platinum Group Minerals Associated with Nickel-Bearing Sulfides from the Jatobá Iron Oxide-Copper-Gold Deposit, Carajás Domain, Brazil
by Yuri Tatiana Campo Rodriguez, Nigel J. Cook, Cristiana L. Ciobanu, Maria Emilia Schutesky, Samuel A. King, Sarah Gilbert and Kathy Ehrig
Minerals 2024, 14(8), 757; https://doi.org/10.3390/min14080757 - 26 Jul 2024
Cited by 3 | Viewed by 1870
Abstract
An enrichment in nickel (Ni) or platinum group elements (PGE) is seldom observed in ores of the iron oxide–copper–gold (IOCG) type. This phenomenon is, however, known from a few deposits and prospects in the Carajás Mineral Province, Brazil. The Ni-PGE enrichment is explained, [...] Read more.
An enrichment in nickel (Ni) or platinum group elements (PGE) is seldom observed in ores of the iron oxide–copper–gold (IOCG) type. This phenomenon is, however, known from a few deposits and prospects in the Carajás Mineral Province, Brazil. The Ni-PGE enrichment is explained, in part, by the spatial association of the IOCG-type ores with altered mafic-ultramafic lithologies, as well as by reworking and remobilization of pre-existing Ni and PGE during multiple mineralization and tectonothermal events across the Archean-Proterozoic. One such example of this mineralization is the Jatobá deposit in the southern copper belt of the Carajás Domain. This is the first detailed study of the Ni and PGE mineralization at Jatobá, with implications for understanding ore genesis. Petrographic and compositional study of sulfides shows that pyrite is the main Ni carrier, followed by pyrrhotite and exsolved pentlandite. Measurable concentrations of palladium (Pd) and platinum (Pt), albeit never more than a few ppm, are noted in pyrite. More importantly, however, the trace mineral signature of the Jatobá deposit features several platinum group minerals (PGM), including merenskyite, naldrettite, sudburyite, kotulskite, sperrylite, and borovskite. These PGM occur as sub-10 µm-sized grains that are largely restricted to fractures and grain boundaries in pyrite. All Pd minerals reported contain mobile elements such as Te, Bi, and Sb and are associated with rare earth- and U-minerals. This conspicuous mineralogy, differences in sulfide chemistry between the magnetite-hosted ore and stringer mineralization without magnetite, and microstructural control point to a genetic model for the sulfide mineralization at Jatobá and its relative enrichment in Ni and PGE. Observations support two alternative scenarios for ore genesis. In the first, an initial precipitation of disseminated or semi-massive Ni-PGE-bearing sulfides took place within the mafic rock pile, possibly in a VHMS-like setting. Later partial dissolution and remobilization of this pre-existing mineralization by mineralizing fluids of IOCG-type, possibly during the retrograde stage of a syn-deformational metamorphic event, led to their re-concentration within magnetite along structural conduits. The superposition of IOCG-style mineralization onto a pre-existing assemblage resulted in the observed replacement and overprinting in which PGE combined with components of the IOCG fluids like Sb, Bi, and Te. An alternative model involves leaching, by the IOCG-type fluids, of Ni and PGE from komatiites within the sequence or from ultramafic rocks in the basement. The discovery of PGM in Jatobá emphasizes the potential for additional discoveries of Ni-PGE-enriched ores elsewhere in the Carajás Domain and in analogous settings elsewhere. Full article
Show Figures

Figure 1

77 pages, 39676 KiB  
Article
Formation of a Composite Albian–Eocene Orogenic Wedge in the Inner Western Carpathians: P–T Estimates and 40Ar/39Ar Geochronology from Structural Units
by Marián Putiš, Ondrej Nemec, Martin Danišík, Fred Jourdan, Ján Soták, Čestmír Tomek, Peter Ružička and Alexandra Molnárová
Minerals 2021, 11(9), 988; https://doi.org/10.3390/min11090988 - 9 Sep 2021
Cited by 8 | Viewed by 2838
Abstract
The composite Albian–Eocene orogenic wedge of the northern part of the Inner Western Carpathians (IWC) comprises the European Variscan basement with the Upper Carboniferous–Triassic cover and the Jurassic to Upper Cretaceous sedimentary successions of a large oceanic–continental Atlantic (Alpine) Tethys basin system. This [...] Read more.
The composite Albian–Eocene orogenic wedge of the northern part of the Inner Western Carpathians (IWC) comprises the European Variscan basement with the Upper Carboniferous–Triassic cover and the Jurassic to Upper Cretaceous sedimentary successions of a large oceanic–continental Atlantic (Alpine) Tethys basin system. This paper presents an updated evolutionary model for principal structural units of the orogenic wedge (i.e., Fatricum, Tatricum and Infratatricum) based on new and published white mica 40Ar/39Ar geochronology and P–T estimates by Perple_X modeling and geothermobarometry. The north-directed Cretaceous collision led to closure of the Jurassic–Early Cretaceous basins, and incorporation of their sedimentary infill and a thinned basement into the Albian–Cenomanian/Turonian accretionary wedge. During this compressional D1 stage, the subautochthonous Fatric structural units, including the present-day higher Infratatric nappes, achieved the metamorphic conditions of ca. 250–400 °C and 400–700 MPa. The collapse of the Albian–Cenomanian/Turonian wedge and contemporary southward Penninic oceanic subduction enhanced the extensional exhumation of the low-grade metamorphosed structural complexes (D2 stage) and the opening of a fore-arc basin. This basin hemipelagic Coniacian–Campanian Couches-Rouges type marls (C.R.) spread from the northern Tatric edge, throughout the Infratatric Belice Basin, up to the peri-Pieniny Klippen Belt Kysuca Basin, thus tracing the south-Penninic subduction. The ceasing subduction switched to the compressional regime recorded in the trench-like Belice “flysch” trough formation and the lower anchi-metamorphism of the C.R. at ca. 75–65 Ma (D3 stage). The Belice trough closure was followed by the thrusting of the exhumed low-grade metamorphosed higher Infratatric complexes and the anchi-metamorphosed C.R. over the frontal unmetamorphosed to lowest anchi-metamorphosed Upper Campanian–Maastrichtian “flysch” sediments at ca. 65–50 Ma (D4 stage). Phengite from the Infratatric marble sample SRB-1 and meta-marl sample HC-12 produced apparent 40Ar/39Ar step ages clustered around 90 Ma. A mixture interpretation of this age is consistent with the presence of an older metamorphic Ph1 related to the burial (D1) within the Albian–Cenomanian/Turonian accretionary wedge. On the contrary, a younger Ph2 is closely related to the late- to post-Campanian (D3) thrust fault formation over the C.R. Celadonite-enriched muscovite from the subautochthonous Fatric Zobor Nappe meta-quartzite sample ZI-3 yielded a mini-plateau age of 62.21 ± 0.31 Ma which coincides with the closing of the Infratatric foreland Belice “flysch” trough, the accretion of the Infratatricum to the Tatricum, and the formation of the rear subautochthonous Fatricum bivergent structure in the Eocene orogenic wedge. Full article
(This article belongs to the Special Issue Frontier of the K–Ar (40Ar/39Ar) Geochronology)
Show Figures

Figure 1

23 pages, 8738 KiB  
Article
Timing of Paleozoic Exhumation and Deformation of the High-Pressure Vestgӧtabreen Complex at the Motalafjella Nunatak, Svalbard
by Christopher J. Barnes, Katarzyna Walczak, Emilie Janots, David Schneider and Jarosław Majka
Minerals 2020, 10(2), 125; https://doi.org/10.3390/min10020125 - 31 Jan 2020
Cited by 17 | Viewed by 3679
Abstract
The Vestgӧtabreen Complex exposed in the Southwestern Caledonian Basement Province of Svalbard comprises two Caledonian high-pressure units. In situ white mica 40Ar/39Ar and monazite Th-U-total Pb geochronology has resolved the timing of the tectonic evolution of the complex. Cooling of [...] Read more.
The Vestgӧtabreen Complex exposed in the Southwestern Caledonian Basement Province of Svalbard comprises two Caledonian high-pressure units. In situ white mica 40Ar/39Ar and monazite Th-U-total Pb geochronology has resolved the timing of the tectonic evolution of the complex. Cooling of the Upper Unit during exhumation occurred at 476 ± 2 Ma, shortly after eclogite-facies metamorphism. The two units were juxtaposed at 454 ± 6 Ma. This was followed by subaerial exposure and deposition of Bullbreen Group sediments. A 430–400 Ma late Caledonian phase of thrusting associated with major sinistral shearing throughout Svalbard deformed both the complex and the overlying sediments. This phase of thrusting is prominently recorded in the Lower Unit, and is associated with a pervasive greenschist-facies metamorphic overprint of high-pressure lithologies. A c. 365–344 Ma geochronological record may represent an Ellesmerian tectonothermal overprint. Altogether, the geochronological evolution of the Vestgӧtabreen Complex, with previous petrological and structural studies, suggests that it may be a correlative to the high-pressure Tsäkkok Lens in the Scandinavian Caledonides. It is suggested that the Vestgӧtabreen Complex escaped to the periphery of the orogen along the sinistral strike-slip shear zones prior to, or during the initial stages of continental collision between Baltica and Laurentia. Full article
(This article belongs to the Special Issue High‐and Ultrahigh‐Pressure Rocks)
Show Figures

Figure 1

Back to TopTop