Effects of Transition Metal Ions on the Colour of Blue-Green Beryl
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Colour Collection
2.3. Structure and Composition Testing
3. Results
3.1. Colour Parameters
3.2. Characteristics of XRF
3.3. Characteristics of XRD
- Octahedral substitution of Al3+ is dominant: c/a = 0.991–0.998;
- Tetrahedral substitution of Be2+ is dominant: c/a = 0.999–1.003.
3.4. Characteristics of IR Spectroscopy
3.5. Characteristics of UV–vis Spectroscopy
4. Discussion
4.1. Existence Form and Position of Fe Ions in Beryl
4.2. Effect of Fe Ions on the Tone Angle of Blue-Green Beryl
4.3. Influence of Transition Metal Elements on the Chroma of Blue-Green Beryl
4.4. Influence of Transition Metal Elements on the Lightness of Blue-Green Beryl
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qi, L.; Ye, S.; Xiang, C.; Pei, J.; Luo, Y. Colour Center and Colouring Mechanism of Irradiated Beryl. Geol. Sci. Technol. Inf. 2001, 20, 68–72. [Google Scholar]
- Yang, S. Aquamarine Optimization Process and Mechanism. Master’s Thesis, Tong Ji University, Shanghai, China, 2014. [Google Scholar]
- Goldman, D.S.; Rossman, G.R.; Parkin, K.M. Channel constituents in beryl. Phys. Chem. Miner. 1978, 31, 225–235. [Google Scholar] [CrossRef]
- Loeffer, B.M.; Burns, R.G. Shedding light other colour of gems and minerals. Am. Sci. 1976, 64, 636–647. [Google Scholar]
- Hu, D. Colouration Mechanism and Positions of Impurities in Yellow Beryl from Wulateqianqi, Inner Mongolia. Master’s Thesis, China University of Geosciences, Beijing, China, 2010. [Google Scholar]
- Zhong, Q.; Liao, Z.; Zhou, Z. Gemmological Characteristic of Hydrothermal Synthetic Paraiba-Colour Beryl. J. Gems Gemmol. 2016, 18, 1–7. [Google Scholar]
- Jiang, Y.; Guo, Y.; Zhou, Y.; Li, X.; Liu, S. The Effects of Munsell Neutral Grey Backgrounds on the Colour of Chrysoprase and the Application of AP Clustering to Chrysoprase Colour Grading. Minerals 2021, 11, 1092. [Google Scholar] [CrossRef]
- Tang, J.; Guo, Y.; Xu, C. Colour effect of light sources on peridot based on CIE1976L*a*b*colour system and round RGB diagram system. Colour Res. Appl. 2019, 44, 932–940. [Google Scholar] [CrossRef]
- Yan, J.; Zhao, C. Survey on K-Means Clustering Algorithm. Comput. Eng. Appl. 2019, 55, 7–14. [Google Scholar]
- Ahmad, N.; Ayob, D.; Samad, N.; Vagudeh, R.; Hamid, P. A comprehensive study of clustering ensemble weighting based on cluster quality and diversity. Theor. Adv. 2019, 22, 133–145. [Google Scholar]
- Jiang, Y.; Guo, Y. Genesis and influencing factors of the colour of chrysoprase. Sci. Rep. 2021, 11, 9939. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y. Quality evaluation of tourmaline red based on uniform colour space. Clust. Comput. 2017, 20, 3393–3408. [Google Scholar] [CrossRef]
- Tang, J.; Guo, Y.; Xu, C. Metameric effects on peridot by changing background colour. J. Opt. Soc. Am. A 2019, 36, 2030–2039. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Wang, H.; Du, H. The foundation of a colour-chip evaluation system of jadeite-jade green with colour difference control of medical device. Multimed. Tools Appl. 2016, 75, 14491–14502. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, R.; Xu, S. A Study of the Structure of a Rare Tabular Crystal of Beryl. Geol. Rev. 2000, 46, 312–317. [Google Scholar]
- Xueding, W.; Ying, G. The impact of trace metal cations and absorbed water on colour transition of turquoise. R. Soc. Chem. 2021, 8, 201110. [Google Scholar]
- Qu, M. Mineralogical and Gemological Study of Aquamarine from Keketuohai in Aletai of Xinjiang. Master’s Thesis, China University of Geosciences, Beijing, China, 2014. [Google Scholar]
- Aurisicchio, C.; Grubessi, O.; Zecchini, P. Infrared spectroscopy and crystal chemistry of the beryl group. Can. Mineral. 1994, 32, 55–68. [Google Scholar]
- Chen, J. Characteristics of Mineralogy and Spectroscopy of the Emerald Deposit. Master’s Thesis, China University of Geosciences, Beijing, China, 2015. [Google Scholar]
- Lu, W. The Infrared Spectroscopy of Minerals; Chongqing University Press: Chongqing, China, 1988; pp. 71–77. [Google Scholar]
- Weng, S.; Xu, Y. Fourier Transform Infrared Spectroscopy Analysis; Chemical Industry Press: Beijing, China, 2016; p. 35. [Google Scholar]
- Qi, L.; Ye, S.; Xiang, C. Vibration Spectrum and Irradiation Splitting of Mixture in Beryl Channels. Geol. Sci. Technol. Inf. 2001, 20, 59–64. [Google Scholar]
- Feng, Y.; Jiang, X. A Study of the Pegmatitic-Pneumatolytic-Hypothermal Beryls and Aquamarines from the Arskartor Mine in Xinjiang. Acta Petrol. Mineral. 1987, 4, 344–351. [Google Scholar]
- Li, J. Gemological Characteristics of Morganite from Brazil. Master’s Thesis, China University of Geosciences, Beijing, China, 2020. [Google Scholar]
- Tang, S. Colourimetry; Beijing Institute of Technology Press: Beijing, China, 1990. [Google Scholar]
Orientation | Wavenumber (cm−1) | Standard Wavenumber (cm−1) | Cause |
---|---|---|---|
E ⊥ C | 1230 | 1195 | νasSi-O-Si |
1024 | 1020 | νasO-Si-O | |
968 | 950 | νsO-Si-O | |
808, 684 | 800, 680 | νsSi-O-Si | |
651 | 650 | νsBe-O | |
590, 530, 493 | 585, 515, 490 | δSi-O νM-O | |
E ∥ C | 1230 | 1195 | νasSi-O-Si |
1070, 1024 | 1020 | νasO-Si-O | |
968 | 950 | νsO-Si-O | |
808, 747, 684 | 800, 740, 680 | νsSi-O-Si | |
651 | 650 | νsBe-O | |
590, 530, 493, 450 | 585, 515, 490, 434 | δSi-O νM-O |
Scheme | Total Fe (wt %) | Hue Angle (°) | Simulation of Colour |
---|---|---|---|
2–3 | 3.673 | 159.34 | |
3–6 | 3.529 | 168.56 | |
3–3 | 3.408 | 185.28 | |
2–1 | 3.412 | 184.93 | |
3–2 | 2.773 | 143.95 | |
3–9 | 2.746 | 171.21 | |
3–7 | 2.706 | 172.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Guan, Q.; Liu, Y.; Guo, Y. Effects of Transition Metal Ions on the Colour of Blue-Green Beryl. Minerals 2022, 12, 86. https://doi.org/10.3390/min12010086
Wang H, Guan Q, Liu Y, Guo Y. Effects of Transition Metal Ions on the Colour of Blue-Green Beryl. Minerals. 2022; 12(1):86. https://doi.org/10.3390/min12010086
Chicago/Turabian StyleWang, Hui, Qiyun Guan, Yuchong Liu, and Ying Guo. 2022. "Effects of Transition Metal Ions on the Colour of Blue-Green Beryl" Minerals 12, no. 1: 86. https://doi.org/10.3390/min12010086
APA StyleWang, H., Guan, Q., Liu, Y., & Guo, Y. (2022). Effects of Transition Metal Ions on the Colour of Blue-Green Beryl. Minerals, 12(1), 86. https://doi.org/10.3390/min12010086