Investigation of the Distribution of Heavy Metals in the Soil of the Dahuangshan Mining Area of the Southern Junggar Coalfield, Xinjiang, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Tests
2.3. Soil Quality Assessments
2.4. Data Sources of the Factors and Processing Methods
3. Results and Discussions
3.1. Statistical Analysis of the Physical and Chemical Properties, and Heavy Metal Contents of the Soil
3.1.1. General Physical and Chemical Properties of the Soil
3.1.2. General Contents of Soil Heavy Metals
3.2. The Spatial Distribution of the Physical and Chemical Properties and the Heavy Metal Elements of the Soil in Different Directions
3.2.1. The Spatial Distribution of the Physical and Chemical Properties of the Soil
3.2.2. Spatial Distribution of the Heavy Metal Content in the Soil
3.3. Pollution Evaluation of Heavy Metal Elements in the Soil
3.4. Correlation Analysis between Physical and Chemical Properties and Heavy Metal Elements of the Soil
3.5. Other Factors Affecting Heavy Metal Pollution of the Soil in Mining Areas
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turan, V. Potential of pistachio shell biochar and dicalcium phosphate combination to reduce Pb speciation in spinach, improved soil enzymatic activities, plant nutritional quality, and antioxidant defense system. Chemosphere 2020, 245, 125611. [Google Scholar] [CrossRef] [PubMed]
- Turan, V.; Ramzani, P.M.A.; Ali, Q.; Abbas, F.; Iqbal, M.; Irum, A.; Khan, W.-u.-D. Alleviation of nickel toxicity and an improvement in zinc bioavailability in sunflower seed with chitosan and biochar application in pH adjusted nickel contaminated soil. Arch. Agron. Soil Sci. 2018, 64, 1053–1067. [Google Scholar] [CrossRef]
- Zeng, Q.; Shen, L.; Yang, J. Potential impacts of mining of super-thick coal seam on the local environment in arid Eastern Junggar coalfield, Xinjiang region, China. Environ. Earth Sci. 2020, 79, 88. [Google Scholar] [CrossRef]
- Kang, Y.; Liu, G.; Chou, C.-L.; Wong, M.H.; Zheng, L.; Ding, R. Arsenic in Chinese coals: Distribution, modes of occurrence, and environmental effects. Sci. Total. Environ. 2011, 412–413, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V.M. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Yoon, J.; Cao, X.; Zhou, Q.; Ma, L.Q. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci. Total Environ. 2006, 368, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Duruibe, J.O.; Ogwuegbu, M.O.C.; Egwurugwu, J.N. Heavy metal pollution and human biotoxic effects. Int. J. Phys. Sci. 2007, 2, 112–118. [Google Scholar] [CrossRef]
- Li, Z.Y.; Ma, Z.W.; van der Kuijp, T.J.; Yuan, Z.W.; Huang, L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 2014, 468–469, 843–853. [Google Scholar] [CrossRef]
- Turhan, Ş.; Garad, A.M.K.; Hanerlioullar, A.; Kurnaz, A.; Gören, E.; Duran, C.; Karataşlı, M.; Altıkulaç, A.; Savacı, G.; Aydın, A. Ecological assessment of heavy metals in soil around a coal-fired thermal power plant in Turkey. Environ. Earth Sci. 2020, 79, 134. [Google Scholar] [CrossRef]
- Liu, X.; Bai, Z.; Shi, H.; Zhou, W.; Liu, X. Heavy metal pollution of soils from coal mines in China. Nat. Hazards 2019, 99, 1163–1177. [Google Scholar] [CrossRef]
- Zhuang, P.; McBride, M.B.; Xia, H.; Li, N.; Li, Z. Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Sci. Total Environ. 2009, 407, 1551–1561. [Google Scholar] [CrossRef] [PubMed]
- Raj, D.; Chowdhury, A.; Maiti, S.K. Ecological risk assessment of mercury and other heavy metals in soils of coal mining area: A case study from the eastern part of a Jharia coal field, India. Hum. Ecol. Risk Assess. Int. J. 2017, 23, 767–787. [Google Scholar] [CrossRef]
- Yan, T.; Zhao, W.; Yu, X.; Li, H.; Gao, Z.; Ding, M.; Yue, J. Evaluating heavy metal pollution and potential risk of soil around a coal mining area of Tai’an City, China. Alex. Eng. J. 2022, 61, 2156–2165. [Google Scholar] [CrossRef]
- Facchinelli, A.; Sacchi, E.; Mallen, L. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ. Pollut. 2001, 114, 313–324. [Google Scholar] [CrossRef]
- Turan, V. Confident performance of chitosan and pistachio shell biochar on reducing Ni bioavailability in soil and plant plus improved the soil enzymatic activities, antioxidant defense system and nutritional quality of lettuce. Ecotoxicol. Environ. Saf. 2019, 183, 109594. [Google Scholar] [CrossRef] [PubMed]
- Turan, V.; Khan, S.A.; Mahmood-ur-Rahman; Iqbal, M.; Ramzani, P.M.A.; Fatima, M. Promoting the productivity and quality of brinjal aligned with heavy metals immobilization in a wastewater irrigated heavy metal polluted soil with biochar and chitosan. Ecotoxicol. Environ. Saf. 2018, 161, 409–419. [Google Scholar] [CrossRef]
- Yang, J.; Wang, J.; Qiao, P.; Zheng, Y.; Yang, J.; Chen, T.; Lei, M.; Wan, X.; Zhou, X. Identifying factors that influence soil heavy metals by using categorical regression analysis: A case study in Beijing, China. Front. Environ. Sci. Eng. 2020, 14, 37. [Google Scholar] [CrossRef]
- Zhong, X.; Chen, Z.; Li, Y.; Ding, K.; Liu, W.; Liu, Y.; Yuan, Y.; Zhang, M.; Baker, A.J.M.; Yang, W.; et al. Factors influencing heavy metal availability and risk assessment of soils at typical metal mines in Eastern China. J. Hazard. Mater. 2020, 400, 123289. [Google Scholar] [CrossRef]
- Penido, E.S.; Martins, G.C.; Mendes, T.B.M.; Melo, L.C.A.; do Rosário Guimarães, I.; Guilherme, L.R.G. Combining biochar and sewage sludge for immobilization of heavy metals in mining soils. Ecotoxicol. Environ. Saf. 2019, 172, 326–333. [Google Scholar] [CrossRef]
- Luo, C.; Routh, J.; Dario, M.; Sarkar, S.; Wei, L.; Luo, D.; Liu, Y. Distribution and mobilization of heavy metals at an acid mine drainage affected region in South China, a post-remediation study. Sci. Total Environ. 2020, 724, 138122. [Google Scholar] [CrossRef]
- Dubé, J.-S.; Galvez-Cloutier, R. Applications of data on the mobility of heavy metals in contaminated soil to the definition of site-specific remediation criteria. J. Environ. Eng. Sci. 2005, 4, 399–411. [Google Scholar] [CrossRef]
- Karaca, O.; Cameselle, C.; Reddy, K.R. Mine tailing disposal sites: Contamination problems, remedial options and phytocaps for sustainable remediation. Rev. Environ. Sci. Bio/Technol. 2017, 17, 205–228. [Google Scholar] [CrossRef]
- Zeng, Q.; Dong, J.; Zhao, L. Investigation of the potential risk of coal fire to local environment: A case study of Daquanhu coal fire, Xinjiang region, China. Sci. Total Environ. 2018, 640–641, 1478–1488. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Shi, H.; Bai, Z.; Zhou, W.; Liu, K.; Wang, M.; He, Y. Heavy metal concentrations of soils near the large opencast coal mine pits in China. Chemosphere 2019, 244, 125360. [Google Scholar] [CrossRef] [PubMed]
- Mazurek, R.; Kowalska, J.; Gąsiorek, M.; Zadrożny, P.; Józefowska, A.; Zaleski, T.; Kępka, W.; Tymczuk, M.; Orłowska, K. Assessment of heavy metals contamination in surface layers of Roztocze National Park forest soils (SE Poland) by indices of pollution. Chemosphere 2017, 168, 839–850. [Google Scholar] [CrossRef]
- De Reu, J.; Bourgeois, J.; Bats, M.; Zwertvaegher, A.; Gelorini, V.; De Smedt, P.; Chu, W.; Antrop, M.; De Maeyer, P.; Finke, P.; et al. Application of the topographic position index to heterogeneous landscapes. Geomorphology 2013, 186, 39–49. [Google Scholar] [CrossRef]
- Ke, X.; Gui, S.; Huang, H.; Zhang, H.; Wang, C.; Guo, W. Ecological risk assessment and source identification for heavy metals in surface sediment from the Liaohe River protected area, China. Chemosphere 2017, 175, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Turan, V. Calcite in combination with olive pulp biochar reduces Ni mobility in soil and its distribution in chili plant. Int. J. Phytoremediat. 2021, 24, 166–176. [Google Scholar] [CrossRef]
- Pandey, B.; Mukherjee, A.; Agrawal, M.; Singh, S. Assessment of Seasonal and Site-Specific Variations in Soil Physical, Chemical and Biological Properties Around Opencast Coal Mines. Pedosphere 2019, 29, 642–655. [Google Scholar] [CrossRef]
- Lv, J.; Liu, Y.; Zhang, Z.; Dai, J. Factorial kriging and stepwise regression approach to identify environmental factors influencing spatial multi-scale variability of heavy metals in soils. J. Hazard. Mater. 2013, 261, 387–397. [Google Scholar] [CrossRef]
- Ding, Q.; Cheng, G.; Wang, Y.; Zhuang, D. Effects of natural factors on the spatial distribution of heavy metals in soils surrounding mining regions. Sci. Total Environ. 2017, 578, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Rasool, B.; Mahmood-ur-Rahman; Zubair, M.; Khan, M.A.; Ramzani, P.M.A.; Dradrach, A.; Turan, V.; Iqbal, M.; Khan, S.A.; Tauqeer, H.M.; et al. Synergetic Efficacy of Amending Pb-Polluted Soil with P-Loaded Jujube (Ziziphus mauritiana) Twigs Biochar and Foliar Chitosan Application for Reducing Pb Distribution in Moringa Leaf Extract and Improving Its Anti-cancer Potential. Water Air Soil Pollut. 2022, 233, 344. [Google Scholar] [CrossRef]
- Turan, V. Arbuscular mycorrhizal fungi and pistachio husk biochar combination reduces Ni distribution in mungbean plant and improves plant antioxidants and soil enzymes. Physiol. Plant. 2021, 173, 418–429. [Google Scholar] [CrossRef]
- Huang, B.; Yuan, Z.; Li, D.; Zheng, M.; Nie, X.; Liao, Y. Effects of soil particle size on the adsorption, distribution, and migration behaviors of heavy metal(loid)s in soil: A review. Environ. Sci. Process. Impacts 2020, 22, 1596–1615. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.-m.; Hao, X.-z.; Tu, C.; Chen, H.-m.; Si, Y.-b. Speciation and fractionation of heavy metals in soil experimentally contaminated with Pb, Cd, Cu and Zn together and effects on soil negative surface charge. J. Environ. Sci. 2002, 14, 439–444. [Google Scholar] [CrossRef]
- Ai, S.; Liu, B.; Yang, Y.; Ding, J.; Yang, W.; Bai, X.; Naeem, S.; Zhang, Y. Temporal variations and spatial distributions of heavy metals in a wastewater-irrigated soil-eggplant system and associated influencing factors. Ecotoxicol. Environ. Saf. 2018, 153, 204–214. [Google Scholar] [CrossRef]
- You, M.; Huang, Y.; Lu, J.; Li, C. Fractionation characterizations and environmental implications of heavy metal in soil from coal mine in Huainan, China. Environ. Earth Sci. 2015, 75, 78. [Google Scholar] [CrossRef]
- Jiang, Y.; Gao, W.-W.; Zhao, J.-L.; Chen, Q.; Liang, N.; Xu, C.; Huang, L.-S.; Ruan, L.-M. Analysis of influencing factors on soil Zn content using generalized additive model. Sci. Rep. 2018, 8, 15567. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Yang, X.; Gong, L. Evaluating the influencing factors of urbanization in the Xinjiang Uygur Autonomous Region over the past 27 years based on VIIRS-DNB and DMSP/OLS nightlight imageries. PLoS ONE 2020, 15, e0235903. [Google Scholar] [CrossRef]
- Zeng, Q.; Nie, J.; Pu, Y. Characteristics of the distribution of typical heavy metals in the soils of underground coal fire. J. China Coal Soc. 2016, 41, 1989–1996. (In Chinese) [Google Scholar] [CrossRef]
Nemerow Comprehensive Pollution Index | Geo-Accumulation Index | Potential Ecological Risk Index | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Pi | Level | PN | Level | Igeo | Grading | Level | Eir | Level | RI | Level |
Pi ≤ 1 | Clean | 0 < PN ≤ 0.7 | Cleanly | Igeo ≤ 0 | 0 | Unpolluted | 0 < Eir < 40 | Low | 0 < RI ≤ 150 | Low |
1 < Pi ≤ 2 | Slightly | 0.7 < PN ≤ 1.0 | Cordon | 0 < Igeo ≤ 1 | 1 | Unpolluted to moderately polluted | 40 < Eir ≤ 80 | Medium-low | 150 < RI ≤ 300 | Medium |
2 < Pi ≤3 | Moderately | 1.0 < PN ≤ 2.0 | Slightly | 1 < Igeo ≤ 2 | 2 | Moderately polluted | 80 < Eir ≤ 160 | Medium | 300 < RI ≤ 600 | Medium-high |
Pi > 3 | Seriously | 2.0 < PN ≤ 3.0 | Moderately | 2 < Igeo ≤ 3 | 3 | Moderately to strongly polluted | 160 < Eir ≤ 320 | Medium-high | 600 < RI | High |
3.0 < PN | Seriously | 3 < Igeo ≤ 4 | 4 | Strongly polluted | 320 < Eir | High | ||||
4 < Igeo ≤ 5 | 5 | Strongly to extremely strongly polluted | ||||||||
5 < Igeo | 6 | Extremely polluted |
Element | Area | Thickness | Minimum | Maximum | Mean | SD | CV (%) | BV | IV | ESR | A-ESR |
---|---|---|---|---|---|---|---|---|---|---|---|
Cu | A | 0–10 cm | 12.44 | 38.23 | 20.15 | 11.51 | 57 | 26.70 | 35 | 33 | 11 |
10–20 cm | 12.43 | 25.30 | 18.40 | 5.72 | 31 | 0 | |||||
20–30 cm | 8.50 | 33.97 | 17.48 | 11.12 | 64 | 0 | |||||
B | 0–10 cm | 68.45 | 146.00 | 101.72 | 32.01 | 31 | 100 | 100 | |||
10–20 cm | 72.43 | 141.86 | 102.59 | 32.28 | 31 | 100 | |||||
20–30 cm | 71.93 | 162.36 | 111.01 | 38.85 | 35 | 100 | |||||
C | 0–10 cm | 29.47 | 85.42 | 57.60 | 29.96 | 52 | 40 | 73 | |||
10–20 cm | 42.46 | 64.97 | 53.39 | 12.61 | 24 | 100 | |||||
20–30 cm | 12.48 | 81.34 | 52.32 | 32.82 | 63 | 80 | |||||
Mn | A | 0–10 cm | 1447.37 | 2746.36 | 2153.98 | 523.40 | 24 | 688.00 | No | 100 | 100 |
10–20 cm | 1832.84 | 2895.83 | 2310.62 | 380.69 | 16 | 100 | |||||
20–30 cm | 1724.78 | 2224.78 | 1952.67 | 196.18 | 10 | 100 | |||||
B | 0–10 cm | 2534.50 | 2771.14 | 2623.60 | 90.16 | 3 | 100 | 100 | |||
10–20 cm | 2474.53 | 3127.87 | 2737.95 | 265.15 | 10 | 100 | |||||
20–30 cm | 2354.52 | 2949.15 | 2633.19 | 250.37 | 10 | 100 | |||||
C | 0–10 cm | 2743.76 | 3474.03 | 3033.45 | 310.60 | 10 | 100 | 100 | |||
10–20 cm | 2821.57 | 4626.87 | 3703.94 | 751.62 | 20 | 100 | |||||
20–30 cm | 2721.56 | 3901.60 | 3141.55 | 520.22 | 17 | 100 | |||||
Zn | A | 0–10 cm | 67.37 | 106.97 | 83.11 | 17.96 | 22 | 68.80 | 100 | 7 | 2 |
10–20 cm | 35.93 | 90.46 | 69.51 | 20.45 | 29 | 0 | |||||
20–30 cm | 36.46 | 67.27 | 55.13 | 13.32 | 24 | 0 | |||||
B | 0–10 cm | 80.00 | 173.65 | 121.02 | 37.74 | 31 | 67 | 55 | |||
10–20 cm | 79.92 | 126.87 | 99.20 | 17.68 | 18 | 33 | |||||
20–30 cm | 71.43 | 105.79 | 92.71 | 16.90 | 6 | 66 | |||||
C | 0–10 cm | 98.00 | 111.39 | 103.20 | 6.14 | 57 | 60 | 60 | |||
10–20 cm | 17.45 | 153.35 | 106.39 | 60.66 | 62 | 80 | |||||
20–30 cm | 45.91 | 195.80 | 103.26 | 64.52 | 32 | 40 | |||||
As | A | 0–10 cm | 15.16 | 32.84 | 22.33 | 7.21 | 20 | 11.20 | 15 | 100 | 94 |
10–20 cm | 10.99 | 26.94 | 18.51 | 6.62 | 20 | 83 | |||||
20–30 cm | 22.12 | 37.42 | 29.45 | 6.00 | 46 | 100 | |||||
B | 0–10 cm | 15.10 | 26.72 | 20.89 | 4.15 | 10 | 100 | 94 | |||
10–20 cm | 7.23 | 35.56 | 22.86 | 10.57 | 42 | 83 | |||||
20–30 cm | 16.63 | 21.20 | 18.21 | 1.77 | 10 | 100 | |||||
C | 0–10 cm | 16.53 | 42.18 | 26.54 | 11.15 | 42 | 100 | 93 | |||
10–20 cm | 18.42 | 23.64 | 21.30 | 2.16 | 10 | 100 | |||||
20–30 cm | 14.27 | 24.45 | 19.28 | 4.18 | 22 | 80 | |||||
Cd | A | 0–10 cm | 0.37 | 1.09 | 0.75 | 0.28 | 37 | 0.12 | 0.2 | 100 | 100 |
10–20 cm | 0.65 | 1.02 | 0.88 | 0.14 | 16 | 100 | |||||
20–30 cm | 0.74 | 1.33 | 0.91 | 0.25 | 27 | 100 | |||||
B | 0–10 cm | 0.76 | 1.14 | 1.04 | 0.16 | 15 | 100 | 100 | |||
10–20 cm | 0.95 | 1.24 | 1.08 | 0.11 | 10 | 100 | |||||
20–30 cm | 1.12 | 1.48 | 1.28 | 0.14 | 11 | 100 | |||||
C | 0–10 cm | 0.42 | 1.24 | 1.00 | 0.39 | 39 | 100 | 100 | |||
10–20 cm | 0.88 | 2.12 | 1.29 | 0.57 | 44 | 100 | |||||
20–30 cm | 0.94 | 1.37 | 1.21 | 0.18 | 15 | 100 |
Cu | Mn | Zn | As | Cd | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Index | Area | Value | Level | Value | Level | Value | Level | Value | Level | Value | Level |
PN | A | 1.00 | Slightly | 3.78 | Seriously | 1.11 | Slightly | 2.49 | Moderately | 7.54 | Seriously |
B | 2.47 | Moderately | 4.97 | Seriously | 1.82 | Slightly | 2.14 | Moderately | 11.21 | Seriously | |
C | 4.78 | Seriously | 4.05 | Seriously | 1.63 | Slightly | 2.04 | Moderately | 9.86 | Seriously | |
Average | 2.75 | Moderately | 4.26 | Seriously | 1.52 | Slightly | 2.22 | Moderately | 9.54 | Seriously | |
Igeo | A | −2.21 | Unpolluted | 0.12 | Unpolluted to moderately polluted | −1.54 | Unpolluted | −0.47 | Unpolluted | 1.12 | Moderately polluted |
B | 0.86 | Unpolluted to moderately polluted | 0.65 | Unpolluted to moderately polluted | −1.02 | Unpolluted | −0.73 | Unpolluted | 1.56 | Moderately polluted | |
C | 0.26 | Unpolluted to moderately polluted | 0.37 | Unpolluted to moderately polluted | −0.98 | Unpolluted | −0.70 | Unpolluted | 1.64 | Moderately polluted | |
Average | −0.36 | Unpolluted to moderately polluted | 0.38 | Unpolluted to moderately polluted | −1.18 | Unpolluted | −0.63 | Unpolluted | 1.44 | Moderately polluted | |
Eir | A | 21.55 | Low | 19.75 | Low | 6.21 | Low | 131.29 | Medium | 1200.81 | High |
B | 49.00 | Medium-low | 23.63 | Low | 7.73 | Low | 92.56 | Medium | 1364.64 | High | |
C | 112.78 | Medium | 23.27 | Low | 9.19 | Low | 112.19 | Medium | 1685.65 | High | |
Sum | 183.33 | Medium-high | 66.65 | Medium-low | 23.13 | Low | 336.03 | High | 4251.10 | High |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Q.; Shen, L.; Feng, T.; Hao, R. Investigation of the Distribution of Heavy Metals in the Soil of the Dahuangshan Mining Area of the Southern Junggar Coalfield, Xinjiang, China. Minerals 2022, 12, 1332. https://doi.org/10.3390/min12101332
Zeng Q, Shen L, Feng T, Hao R. Investigation of the Distribution of Heavy Metals in the Soil of the Dahuangshan Mining Area of the Southern Junggar Coalfield, Xinjiang, China. Minerals. 2022; 12(10):1332. https://doi.org/10.3390/min12101332
Chicago/Turabian StyleZeng, Qiang, Li Shen, Tong Feng, and Ruirui Hao. 2022. "Investigation of the Distribution of Heavy Metals in the Soil of the Dahuangshan Mining Area of the Southern Junggar Coalfield, Xinjiang, China" Minerals 12, no. 10: 1332. https://doi.org/10.3390/min12101332
APA StyleZeng, Q., Shen, L., Feng, T., & Hao, R. (2022). Investigation of the Distribution of Heavy Metals in the Soil of the Dahuangshan Mining Area of the Southern Junggar Coalfield, Xinjiang, China. Minerals, 12(10), 1332. https://doi.org/10.3390/min12101332