Late Mesozoic Granitoid Magmatism in the Evolution of the Eastern Flank of the Mongol-Okhotsk Orogenic Belt (Russia)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Petrological and Geochemical Studies
2.2. Isotope-Geochemical Studies
3. Results
3.1. Magmatism of the First Stage: 149–38 Ma
3.1.1. Magmatism of the First Stage of the Southern Framing EF MOOB
3.1.2. Magmatism of the First Stage of the Northern Framing EF MOOB
3.1.3. Magmatism of the Second Stage Framed by EF MOOB (140–122 Ma): Differentiated Calc-Alkaline Complexes
- 1.
- Plutonic formations of differentiated calc-alkaline complexes (140–128 Ma).
- 2.
- Hypabyssal formations of differentiated calc-alkaline complexes (130–124 Ma).
- 3.
- Volcanic formations of differentiated calc-alkaline complexes (128–122 Ma).
4. Discussion
5. Conclusions
- In the interval of 149–138 Ma, granitoids were formed comparable in their material characteristics to the rocks of the adakite series. What is typical for the initial stage of subduction processes. In the range of 140–122 Ma, suprasubduction rocks of the calc-alkaline series begin to form. The formation of these formations occurred both in the northern and southern framing of the belt at the same time.
- The material composition of rocks reflects not only the specifics of the continental crust, which was involved in melting during their formation, but also the architecture of subduction processes.
- In this case, it was a synchronous subduction: the oceanic crust of the MOB subsided under the southern edge of the Siberian Craton and the northern edge of the North China Craton. These processes marked the beginning of the final closure of the Mongolian-Okhotsk basin and the formation of an orogen.
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khanchuk, A.I. (Ed.) Geodynamics, Magmatism and Metallogeny of the Russian East; Book 1; Dalauka Press: Vladivostok, Russia, 2006; p. 572. [Google Scholar]
- Parfenov, L.M.; Popeko, L.I.; Tomurtogoo, O. The problems of tectonics of the Mongol-Okhotsk orogene. Russ. J. Pac. Geol. 1999, 18, 24–43. [Google Scholar]
- Krasnyi, L.I.; Peng, Y.B. (Eds.) Geological Map of Amur Region and Adjacent Scale 1:2,500,000; Roskomnedra: Blagoveshchensk, Russia; VSEGEI: Sankt-Petersburg, Russia; MG&MR: Harbin, China, 1996. [Google Scholar]
- Natalin, B.A. Mesozoic accretion and collision tectonics of the Far East south of the USSR. Russ. J. Pac. Geol. 1991, 5, 3–23. [Google Scholar]
- Derbeko, I.; Kichanova, V. Post-Mesozoic Evolution of the Eastern Flank of the Mongol–Okhotsk Orogenic Belt. In Advances in Geophysics, Tectonics and Petroleum Geosciences; Springer: Cham, Switzerland, 2022; pp. 577–581. [Google Scholar] [CrossRef]
- Kozyrev, S.K.; Volkova, Y.R.; Ignatenko, N.N. State Map of the Russian Federation-Scale 1: 200 000; Series Zeya; Sheet N-51-XXIV; Explanatory note; Chepygin, V.E., Ed.; Moscow branch of FSBI”VSEGEI”: Moscow, Russia, 2016. [Google Scholar]
- Kozyrev, S.K.; Volkova, Y.R.; Ignatenko, N.N. State Map of the Russian Federation-Scale 1: 200 000; Series Zeya; Sheet N-51-XXIII; Explanatory note; Chepygin, V.E., Ed.; Moscow branch of FSBI”VSEGEI”: Moscow, Russia, 2016. [Google Scholar]
- Larin, A.A.; Kotov, A.B.; Salnikova, E.B.; Kovach, V.P.; Sergeeva, N.A.; Yakovleva, S.Z. Mesozoic granites of the Chubachinsky massif of the Tukuringra complex (Dzhugdzhur-Stanovaya folded region): New geochemical, geochronological and isotope-geochemical data. Petrology 2001, 9, 417–432. [Google Scholar]
- Antonov, A.Y. Geochemistry and Petrology of Meso-Cenozoic Magmatic Formations and Mantle Diapirism; Academic Publishing House Geo, Ltd.: Novosibirsk, Russia, 2008; p. 250. [Google Scholar]
- Strikha, V.E. Mesozoic Granitoids of Gold-Bearing Regions of the Upper Amur Region; AmSU Publishing House: Blagoveshchenck, Russia, 2012; p. 188. [Google Scholar]
- Timashkov, A.N.; Shatova, N.V.; Berezhnaya, N.G.; Balashova, Y.S.; Morozova, A.B.; Lvov, P.A.; Shokalsky, S.P.; Plekhanov, A.O.; Molchanov, A.V.; Radkov, A.V. Geochronological studies of granitoids of the Stanovoi folded region. Reg. Geol. Metallog. 2015, 61, 35–50. [Google Scholar]
- Sorokin, A.A.; Ponomarchuk, V.A.; Kozyrev, S.K.; Sorokin, A.P.; Voropaeva, M.S. Geochronology and correlation of Mesozoic magmatic formations of the Northern edge of Amur superterrain. Stratigr. Geol. Correl. 2004, 12, 36–52. [Google Scholar]
- Didenko, A.N.; Efimov, A.S.; Nelyubov, P.A.; Salnikov, A.S. Structure and evolution of the Earth’s crust in the region of junction of the Central Asian fold belt and the Siberian platform: Skovorodino–Tommot profile. Russ. J. Geol. Geoph. 2013, 54, 1236–1249. [Google Scholar] [CrossRef]
- Didenko, A.N.; Kaplun, V.B.; Malyshev, Y.F.; Shevchenko, B.F. Lithospheric structure and mesozoic geodynamics of the Eastern Central Asian orogen. Russ. J. Geol. Geoph. 2010, 51, 492–506. [Google Scholar] [CrossRef]
- Shevchenko, B.F.; Popeko, L.I.; Didenko, A.N. Tectonics and volution of the lithosphere of the eastern fragment of the Mongol-Okhotsk orogenic belt. Geodyn. Tectonoph. 2014, 5, 667–682. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.-J.; Yan, L.-L.; Chen, J. Switch of NE Asia from extension to contraction at the mid-Cretaceous: A tale of the Okhotsk oceanic plateau from initiation by the Perm Anomaly to extrusion in the Mongol–Okhotsk ocean? Earth Sci. Rev. 2019, 198, 102941. [Google Scholar] [CrossRef]
- Bouysse, P. Geological Map of the World, Scale 1:50 000 000. 2009. Available online: http://www.ccgm.org (accessed on 22 August 2022).
- Velikoslavinsky, S.D.; Kotov, A.B.; Salnikova, E.B.; Larin, A.M.; Sorokin, A.A.; Sorokin, A.P.; Kovach, V.P.; Tolmacheva, E.V.; Yakovleva, S.Z.; Anisimova, I.V. On the age of the Ustygilyuya stratum of the Mill Selenga-Stanovoy superterrane complex of the Central Asian fold belt. Dokl. Earth Sci. 2012, 444, 402–406. [Google Scholar]
- Derbeko, I.M.; Agafonenko, S.G.; Kozyrev, S.K.; Vyunov, D.L. The Umlekan-Ogodzha volcanic belt (the problem bodily separation). Lithosphere 2010, 3, 70–77. [Google Scholar]
- Derbeko, I.M.; Ponomarchuk, V.A.; Chugaev, A.V.; Travin, A.V.; Ponomarchuk, A.V. Correlation of the andesite complexes of the southern edge of Mongol-Okhotsk orogenic belt Eastern frame according to its geochronological, geochemical and isotope-geochemical data. Russ. J. Geol. Geoph. 2020, 61, 1109–1120. [Google Scholar] [CrossRef]
- Derbeko, I.M. Bimodal volcano-plutonic complexes in the frames of Eastern member of Mongol-Okhotsk orogenic belt, as a proof of the time of final closure of Mongol-Okhotsk basin. In Updates in Volcanology–A Comprehensive Approach to Volcanological Problems; Stoppa, F., Ed.; InTech: Rijeka, Croatia, 2012; pp. 99–124. [Google Scholar]
- Derbeko, I.M.; Markevich, V.S. Late Mezozoic subalkai volcanism of the south framing of the eastern link of Mongol-Okhotsk orogenic belt. Nat. Tech. Sci. 2013, 2, 135–143. [Google Scholar]
- Derbeko, I.M.; Chugaev, A.V. Late Mesozoic adakite granites of the southern frame of the eastern flank of the Mongol-Okhotsk orogenic belt: Material composition and geodynamic conditions of formation. Geodyn. Tectonophys. 2020, 11, 474–490. [Google Scholar] [CrossRef]
- Derbeko, I.M. Mesozoic adakite volcano-plutonic complex of the Upper Amur region (Russia). In Petrography of Igneous and Metamorphic Rocks; Golubev, A.I., Shchiptsov, V.V., Eds.; Karelian Scientific Center of the Russian Academy of Sciences: Petrozavodsk, Russia, 2015; pp. 153–155. [Google Scholar]
- Bogaticov, O.A. Magmatic Rocks; Nauka: Moscow, Russia, 1983; p. 367. [Google Scholar]
- Le Bas, M.; Le Maitre, R.W.; Streckeisen, A.; Zanettin, B. A chemical classification of volcanic rocks based on the total-silica diagram. J. Petrol. 1986, 27, 745–750. [Google Scholar] [CrossRef] [Green Version]
- Frost, B.R.; Barnes, C.G.; Collins, W.J.; Arculus, R.G.; Ellis, D.J.; Frost, C.D. A geochemical classification for granitic rocks. J. Petrol. 2001, 42, 2033–2048. [Google Scholar] [CrossRef] [Green Version]
- Zen, E.-A.N. Aluminum enrichment in silicate melts by fractional crustallization: Some mineralogic and petrographic constraints. J. Petrol. 1986, 27, 1095–1117. [Google Scholar] [CrossRef]
- Chappell, B.W.; White, A.J.R. I- and S-type granites in the Lachlan Fold Belt. Trans. R. Soc. Edinb. 1992, 83, 1–26. [Google Scholar]
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A-Type Granites–Geochemical Characteristics, Discrimination and Petrogenesis. Contrib. Mineral. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Sun, S.-S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In Magmatism in the Ocean Basins; Sounders, A.D., Norry, M.J., Eds.; The Geologial Society Special Publication: London, UK, 1989; Volume 42, pp. 313–345. [Google Scholar] [CrossRef]
- Defant, M.J.; Drummond, M.S. Derivations of some modern are magmas by melting of young subducted lithosphere. Nature 1990, 347, 662–665. [Google Scholar] [CrossRef]
- Kay, R.W. Aleutian magnesian andesites: Melts from subducted Pacific Ocean crust. J. Volcan. Geotherm. Res. 1978, 4, 117–132. [Google Scholar] [CrossRef]
- Sajona, F.G.; Maury, R.C.; Bellon, H.; Cotton, J.; Defant, M.J. Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines. Geology 1993, 21, 1007–1010. [Google Scholar] [CrossRef]
- Muir, R.J.; Weaver, S.D.; Bradshaw, J.D.; Eby, G.N.; Evans, J.A. Geochemistry of the Cretaceous Separation Point Batholith, New Zealand: Granitoid magmas formed by melting of mafic lithosphere. J. Geol. Soc. 1995, 152, 689–701. [Google Scholar] [CrossRef]
- Petford, N.; Atherton, M. Na-rich partial melts from newly underplated basaltic crust: The Cordillera Blanca Batholith, Peru. J. Petrol. 1996, 37, 1491–1521. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; McDermott, F.; Xu, J.-F.; Bellon, H.; Zhu, Y.T. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: Lower-crustal melting in an intracontinental setting. Geology 2005, 33, 465–468. [Google Scholar] [CrossRef] [Green Version]
- Wen, D.R.; Chung, S.L.; Song, B.; Iizuku, Y.; Yang, H.J.; Ji, J.Q.; Liu, D.Y.; Sylvain, G. Late Cretaceous intrusions of adakitic geochemical characteristics, SE Tibet: Petrogenesis andtectonic implications. Lithos 2008, 105, 1–11. [Google Scholar] [CrossRef]
- Topuz, G.; Okay, A.I.; Altherr, R.; Schwarz, W.H.; Siebel, W.; Zack, T. Post-collisional adakite-like magmatism in the Agvanis Massif and implications for the evolution of the Eocene magmatism in the Eastern Pontides (NE Turkey). Lithos 2011, 125, 131–150. [Google Scholar] [CrossRef]
- Bogatikov, O.A.; Kovalenko, V.I. Types of Magmas and Their Sources in the History of the Earth; Part 1; Nauka: Moscow, Russia, 2006; p. 395. [Google Scholar]
- Karsakov, L.P. Stanovaya folded system, its boundaries, structural-material complexes. In Modern Tectonic Concepts and Regional Tectonics of the East of the USSR; Yakutsk branch of the Siberian Branch of the USSR Academy of Sciences: Yakutsk, Russia, 1980; pp. 142–144. [Google Scholar]
- Petruk, N.N.; Belikova, T.V.; Derbeko, I.M. Geological Map of Amur Region. Scale 1:500 000; Amurgeologiya: Blagoveshchensk, Russia, 2002; p. 263. [Google Scholar]
- Defant, M.J.; Jackson, T.E.; Drummond, M.S.; Bellon, H.; Feigenson, M.D.; Maury, R.C.; Stewart, R.H. The geochemistry of young volcanism throughout western Panama and south-eastern Costa Rica: An overview. J. Geol. Soc. 1992, 149, 569–579. [Google Scholar] [CrossRef]
- Martin, H. The mechanisms of petrogenesis of the Archaean continental crust-comparison with modern processes. Lithos 1993, 46, 373–388. [Google Scholar] [CrossRef]
- Martin, H. Adakitic magmas: Modern analogues of Archaean granitoids. Lithos 1999, 46, 411–429. [Google Scholar] [CrossRef]
- Martin, H.; Smithies, R.H.; Rapp, R.; Moyen, J.-F.; Champion, D. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos 2005, 79, 1–24. [Google Scholar] [CrossRef]
- Ma, Q.; Zheng, J.P.; Xu, Y.G.; Griffin, W.L.; Zhang, R.S. Are continental “adakites” derived from thickened or foundered lower crust? Earth Plan. Sci. Lett. 2015, 419, 125–133. [Google Scholar] [CrossRef]
- Shaw, J.E.; Baker, J.A.; Menzies, M.A.; Thirlwall, M.F.; Ibrahim, K.M. Petrogenesis of the largest intraplatevolcanic field on theArabian Plate (Jordan): Amixed lithosphere–astenosphere source active by lithospheric extension. J. Petrol. 2003, 44, 1657–1679. [Google Scholar] [CrossRef] [Green Version]
- Barbarian, B. Granitoids: Main petrogenetic classifications in relation to origin and tectonic setting. Geo. J. 1990, 25, 227–238. [Google Scholar] [CrossRef]
- Patiño-Douce, A.E.; Beard, J.S. Dehydration -melting of Biotite Gneiss and Quartz Amphibole from 3 to 15 Kbar. J. Petrol. 1995, 36, 707738. [Google Scholar]
- Patiño-Douce, A.E. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? In Understanding Granites: Integrating New and Classical Techniques; Castro, A., Fernandez, C., Vigneresse, J.L., Eds.; Geological Society: London, UK, 1999; Volume 168, pp. 55–75. [Google Scholar]
- Thorkelson, D.J.; Breitsprecher, K. Partial melting of slab window margins: Genesis of adakitic and non adakitic magmas. Lithos 2005, 79, 25–41. [Google Scholar] [CrossRef]
- Arevalo, R., Jr.; McDonough, W.F. Chemical variations and regional diversity observed in MORB. Chem. Geol. 2010, 271, 70–85. [Google Scholar] [CrossRef]
- Arkhangelskaya, V.V.; Kazansky, V.I.; Prokhorov, K.V.; Sobachenko, V.N. Geological structure, zoning and formation conditions of the Katuginsky Ta-Nb-Zr deposit, Russian. Russ. J. Geol. Geoph. 1993, 54, 115–131. [Google Scholar]
- Lomize, M.G. The initial phase of subduction on the continental margins. Geotectonics 2003, 5, 73–88. [Google Scholar]
- Avdeiko, G.P.; Palueva, A.A.; Kuvikas, O.V. Adakites in subduction zones of the Pacific ring: Review and analysis of geodynamic conditions of formation. Bulletin Kamchatka Bering State University. J. Earth Sci. 2011, 1, 45–60. [Google Scholar]
- Stern, C.R.; Kilian, R. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contrib. Mineral. Petrol. 1996, 123, 263–281. [Google Scholar] [CrossRef]
- Tommasini, S.; Conticelli, S.; Avanzinelli, R. The Th/La and Sm/La conundrum of the Tethyan realm lamproites. Earth Planet Sci. Lett. 2011, 301, 469–478. [Google Scholar] [CrossRef] [Green Version]
- Plank, T.; Langmuir, C.H. The chemical composition of subducting sediments: Implications for the crust and mantle. Chem. Geol. 1998, 145, 325–394. [Google Scholar] [CrossRef]
- Mohan, M.; Kamber, B.S.; Piercey, S.J. Boron and arsenic in highly evolved Archean felsic rocks: Implications for Archean subduction processes. Earth Planet Sci. Lett. 2008, 274, 479–488. [Google Scholar] [CrossRef]
- Zonenshain, L.P.; Kuzmin, M.I.; Natapov, L.M. Tectonics of Lithospheric Plates in the Territory of the USSR; Book 1; Nedra: Moscow, Russia, 1990; p. 328. [Google Scholar]
- Zhang, K.J. Genesis of the Late Mesozoic Great Xing’an Range Large Igneous Province: A Mongol–Okhotsk slab window model. Int. Geol. Rev. 2014, 56, 1557–1583. [Google Scholar] [CrossRef]
- Liu, C.; Zhou, Z.; Tang, Y.; Wu, C.; Li, H.; Zhu, Y.; Jiang, T.; Liu, W.; Ye, B. Geochronology and tectonic settings of Late Jurassic—Early Cretaceous intrusive rocks in the Ulanhot region, central and southern Da Xingan Range. Geol. Mag. 2017, 154, 923–945. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Derbeko, I.M. Late Mesozoic Granitoid Magmatism in the Evolution of the Eastern Flank of the Mongol-Okhotsk Orogenic Belt (Russia). Minerals 2022, 12, 1374. https://doi.org/10.3390/min12111374
Derbeko IM. Late Mesozoic Granitoid Magmatism in the Evolution of the Eastern Flank of the Mongol-Okhotsk Orogenic Belt (Russia). Minerals. 2022; 12(11):1374. https://doi.org/10.3390/min12111374
Chicago/Turabian StyleDerbeko, Inna M. 2022. "Late Mesozoic Granitoid Magmatism in the Evolution of the Eastern Flank of the Mongol-Okhotsk Orogenic Belt (Russia)" Minerals 12, no. 11: 1374. https://doi.org/10.3390/min12111374
APA StyleDerbeko, I. M. (2022). Late Mesozoic Granitoid Magmatism in the Evolution of the Eastern Flank of the Mongol-Okhotsk Orogenic Belt (Russia). Minerals, 12(11), 1374. https://doi.org/10.3390/min12111374