Long-Term Leaching Effects on CaO-Modified Iron Silicate Slag
Abstract
:1. Introduction
2. Experimental Methods
2.1. Materials
2.2. Characterization
2.3. Leaching Studies
2.3.1. Dynamic Leaching Test
2.3.2. Static pH-Titration Test
2.4. Leaching Analyses
3. Results
3.1. Sample Characterization
3.2. Dynamic Leaching Test
3.3. Static pH-Titration Test
4. Discussion
4.1. Characterization
4.2. Leaching Trends
4.3. Secondary Phases and Leaching Precipitates
4.4. Long-Term Leaching Effects
5. Conclusions
- The 0.3–0.6 mm fractions of the CaO-modified samples exhibit an amorphous XRD pattern and, hence, indicate that CaO has dissolved into the slag matrix.
- The CaO-modified slags demonstrated limited long-term leachability of Cu, Zn, As, and Sb, whereby the leaching decreases with the increasing CaO content in the slag, unrelated to dilution by CaO.
- Secondary phases (Cu–S-containing) formed on the surfaces of the slag inclusions (matte and speiss) during the dynamic leaching experiments according to SEM–EDS analysis.
- Compared to the dynamic leaching method, static pH titration at pH 5 and oxidating conditions increase the leaching of the slag inclusion elements (Cu, Ni, As, and Sb) to a greater extent.
- Limiting access to external factors such as acidification and oxidation agents (CO2 and O2) minimizes the potential leaching contribution from slag inclusions in an application.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tian, H.; Guo, Z.; Pan, J.; Zhu, D.; Yang, C.; Xue, Y.; Li, S.; Wang, D. Comprehensive review on metallurgical recycling and cleaning of copper slag. Resour. Conserv. Recycl. 2021, 168, 105366. [Google Scholar] [CrossRef]
- Gorai, B.; Jana, R.K.; Premchand. Characteristics and utilisation of copper slag—A review. Resour. Conserv. Recycl. 2003, 39, 299–313. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, M.; Yang, B.; Feng, Q.; Liu, D. Enhanced sulfidization flotation mechanism of smithsonite in the synergistic activation system of copper–ammonium species. Miner. Eng. 2022, 187, 107796. [Google Scholar] [CrossRef]
- Dhir, O.B.E.R.K.; de Brito, J.; Mangabhai, R.; Lye, C.Q. Sustainable Construction Materials: Copper Slag; Woodhead Publishing: Sawston, UK, 2016. [Google Scholar]
- Ali, M.B.; Saidur, R.; Hossain, M.S. A review on emission analysis in cement industries. Renew. Sustain. Energy Rev. 2011, 15, 2252–2261. [Google Scholar] [CrossRef]
- Al-Jabri, K.S.; Taha, R.A.; Al-Hashmi, A.; Al-Harthy, A.S. Effect of copper slag and cement by-pass dust addition on mechanical properties of concrete. Constr. Build. Mater. 2006, 20, 322–331. [Google Scholar] [CrossRef]
- Kongoli, F.; McBow, I.; Yazawa, A. Phase relations of ferrous calcium silicate slag and its possible application in the industrial practice. High Temp. Mater. Process. 2011, 30, 491–504. [Google Scholar] [CrossRef]
- Feng, Y.; Yang, Q.; Chen, Q.; Kero, J.; Andersson, A.; Ahmed, H.; Engström, F.; Samuelsson, C. Characterization and evaluation of the pozzolanic activity of granulated copper slag modified with CaO. J. Clean. Prod. 2019, 232, 1112–1120. [Google Scholar] [CrossRef]
- Piatak, N.M.; Parsons, M.B.; Seal, R.R. Characteristics and environmental aspects of slag: A review. Appl. Geochem. 2015, 57, 236–266. [Google Scholar] [CrossRef]
- Vítková, M.; Ettler, V.; Mihaljevič, M.; Šebek, O. Effect of sample preparation on contaminant leaching from copper smelting slag. J. Hazard. Mater. 2011, 197, 417–423. [Google Scholar] [CrossRef]
- Potysz, A.; van Hullebusch, E.D.; Kierczak, J.; Grybos, M.; Lens, P.N.L.; Guibaud, G. Copper metallurgical slags—Current knowledge and fate: A review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 2424–2488. [Google Scholar] [CrossRef]
- Król, A.; Mizerna, K.; Bożym, M. An assessment of pH-dependent release and mobility of heavy metals from metallurgical slag. J. Hazard. Mater. 2020, 384, 121502. [Google Scholar] [CrossRef] [PubMed]
- Ettler, V.; Johan, Z.; Kříbek, B.; Šebek, O.; Mihaljevič, M. Mineralogy and environmental stability of slags from the Tsumeb smelter, Namibia. Appl. Geochem. 2009, 24, 1–15. [Google Scholar] [CrossRef]
- Kero Andertun, J.; Samuelsson, C.; Peltola, P.; Engström, F. Characterisation and leaching behaviour of granulated iron silicate slag constituents. Can. Metall. Q. 2022, 61, 14–23. [Google Scholar] [CrossRef]
- Kero Andertun, J.; Vikström, T.; Peltola, P.; Samuelsson, C.; Engström, F. Characterisation and leaching behavior of CaO-modified iron-silicate slag produced in laboratory and industrial scales. Can. Metall. Q. 2021, 60, 294–305. [Google Scholar] [CrossRef]
- Jarošíková, A.; Ettler, V.; Mihaljevič, M.; Kříbek, B.; Mapani, B. The pH-dependent leaching behavior of slags from various stages of a copper smelting process: Environmental implications. J. Environ. Manag. 2017, 187, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Koizumi, S.; Gao, X.; Sukenaga, S.; Kanehashi, K.; Takahashi, T.; Ueda, S.; Kitamura, S.-Y. Influence of Glass Structure on the Dissolution Behavior of Fe from Glassy Slag of CaO–SiO2–FeOx System. J. Sustain. Metall. 2021, 7, 583–596. [Google Scholar] [CrossRef]
- Kubuki, S.; Akagi, K.; Sakka, H.; Homonnay, Z.; Sinkó, K.; Kuzmann, E.; Kurimoto, H.; Nishida, T. Dissolution behaviour of iron silicate glass. Hyperfine Interact. 2009, 192, 31–36. [Google Scholar] [CrossRef]
- Moudilou, E.; Bellotto, M.; Defosse, C.; Serclerat, I.; Baillif, P.; Touray, J. A dynamic leaching method for the assessment of trace metals released from hydraulic binders. Waste Manag. 2002, 22, 153–157. [Google Scholar] [CrossRef]
- Potysz, A.; Kierczak, J.; Fuchs, Y.; Grybos, M.; Guibaud, G.; Lens, P.N.L.; van Hullebusch, E.D. Characterization and pH-dependent leaching behaviour of historical and modern copper slags. J. Geochem. Explor. 2016, 160, 1–15. [Google Scholar] [CrossRef]
- Cappuyns, V.; Swennen, R. The application of pHstat leaching tests to assess the pH-dependent release of trace metals from soils, sediments and waste materials. J. Hazard. Mater. 2008, 158, 185–195. [Google Scholar] [CrossRef]
- Lotfian, S.; Vikström, T.; Lennartsson, A.; Björkman, B.; Ahmed, H.; Samuelsson, C. Plastic-containing materials as alternative reductants for base metal production. Can. Metall. Q. 2019, 58, 164–176. [Google Scholar] [CrossRef] [Green Version]
- Gražulis, S.; Daškevič, A.; Merkys, A.; Chateigner, D.; Lutterotti, L.; Quirós, M.; Serebryanaya, N.R.; Moeck, P.; Downs, R.T.; Le Bail, A. Crystallography Open Database (COD): An open-access collection of crystal structures and platform for world-wide collaboration. Nucleic Acids Res. 2012, 40, D420–D427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellemans, I.; de Wilde, E.; Moelans, N.; Verbeken, K. Metal losses in pyrometallurgical operations—A review. Adv. Colloid Interface Sci. 2018, 255, 47–63. [Google Scholar] [CrossRef] [PubMed]
- Ku, J.; Zhang, L.; Fu, W.; Wang, S.; Yin, W.; Chen, H. Mechanistic study on calcium ion diffusion into fayalite: A step toward sustainable management of copper slag. J. Hazard. Mater. 2021, 410, 124630. [Google Scholar] [CrossRef]
- Lidelöw, S.; Mácsik, J.; Carabante, I.; Kumpiene, J. Leaching behaviour of copper slag; construction and demolition waste and crushed rock used in a full-scale road construction. J. Environ. Manag. 2017, 204, 695–703. [Google Scholar] [CrossRef]
- Piatak, N.M. Environmental Characteristics and Utilization Potential of Metallurgical Slag. In Environmental Geochemistry: Site Characterization, Data Analysis and Case Histories, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 487–519. [Google Scholar]
- Huang, H.H. The Eh-pH diagram and its advances. Metals 2016, 6, 23. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Kawashima, N.; Li, J.; Chandra, A.P.; Gerson, A.R. A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite. Adv. Colloid Interface Sci. 2013, 197–198, 1–32. [Google Scholar] [CrossRef]
- Griffioen, J. Enhanced weathering of olivine in seawater: The efficiency as revealed by thermodynamic scenario analysis. Sci. Total Environ. 2017, 575, 536–544. [Google Scholar] [CrossRef] [Green Version]
- Hong, M.; Liu, S.; Huang, X.; Yang, B.; Zhao, C.; Yu, S.; Liu, Y.; Qiu, G.; Wang, J. A review on bornite (bio)leaching. Min. Eng. 2021, 174, 107245. [Google Scholar] [CrossRef]
- Meshram, P.; Bhagat, L.; Prakash, U.; Pandey, B.D.; Abhilash. Organic acid leaching of base metals from copper granulated slag and evaluation of mechanism. Can. Metall. Q. 2017, 56, 168–178. [Google Scholar] [CrossRef]
- Xie, J.; Wu, S.; Lin, J.; Cai, J.; Chen, Z.; Wei, W. Recycling of basic oxygen furnace slag in asphalt mixture: Material characterization & moisture damage investigation. Constr. Build. Mater. 2012, 36, 467–474. [Google Scholar] [CrossRef]
Oxide/Element | RF02 | F06 | F13 |
---|---|---|---|
wt.% | |||
Al2O3 | 4.35 | 4.06 | 3.38 |
CaO | 3.30 | 6.88 | 14.3 |
FeO * | 51.2 | 49.4 | 40.1 |
K2O | 0.59 | 0.49 | 0.66 |
MgO | 1.4 | 1.4 | 1.3 |
MnO | 0.34 | 0.33 | 0.43 |
Na2O | 0.65 | 0.58 | 0.66 |
P2O5 | 0.14 | 0.12 | 0.14 |
SiO2 | 35.3 | 33.8 | 31.2 |
TiO2 | 0.20 | 0.20 | 0.21 |
ZnO | 1.13 | 1.06 | 1.15 |
As | 0.019 | 0.005 | 0.005 |
Ba | 0.22 | 0.21 | 0.18 |
Co | 0.071 | 0.067 | 0.032 |
Cu | 0.69 | 0.56 | 0.52 |
Mo | 0.24 | 0.21 | 0.20 |
Ni | 0.052 | 0.035 | 0.018 |
Pb | 0.044 | 0.025 | 0.014 |
S | 0.57 | 0.46 | 0.42 |
Sb | 0.024 | 0.007 | 0.011 |
Sn | 0.138 | 0.110 | 0.062 |
LOI 1000 °C | −3.67 | −5.06 | −4.40 |
BET (m2/g) | 0.10 | 0.10 | 0.09 |
Sample | Reactor | Boiler | ||||
---|---|---|---|---|---|---|
RF02 | F06 | F13 | RF02 | F06 | F13 | |
pH | 7.1 | 6.4 | 6.9 | 8.1 | 8.3 | 9.1 |
EC, µS/cm | 1.7 | 1.3 | 2.2 | 81.2 | 19.3 | 72.8 |
Redox, V | 0.10 | 0.00 | 0.03 | 0.13 | −0.02 | −0.01 |
Elements, wt.% | RF02 | F06 | F13 |
---|---|---|---|
Al | 2 | 9 | 8 |
As | <1 | <1 | <1 |
Ca | <1 | 2 | 18 |
Co | <1 | <1 | <1 |
Cu | 8 | 34 | 2 |
Fe | 6 | 11 | 7 |
Mo | <1 | <1 | <1 |
Ni | <1 | 3 | <1 |
Pb | <1 | <1 | <1 |
Zn | 1 | 9 | 4 |
Sb | <1 | <1 | <1 |
Si | 83 | 26 | 52 |
S | ND * | ND | 3 |
Others | ND | 5 | 6 |
mg/kg | ||||||
---|---|---|---|---|---|---|
Average | SD * | |||||
Sample | RF02 | F06 | F13 | RF02 | F06 | F13 |
Al | 0.62 | 1.50 | 0.66 | 0.02 | 0.09 | 0.10 |
As | 1.62 | 0.64 | 0.22 | 0.30 | 0.01 | 0.02 |
Ca | 5.18 | 10.7 | 31.2 | 0.17 | 0.4 | 1.9 |
Co | 0.19 | 0.22 | 0.07 | 0.00 | 0.00 | 0.01 |
Cu | 57.6 | 28.0 | 26.5 | 1.8 | 0.9 | 0.3 |
Fe | 24.1 | 41.3 | 31.7 | - | 0.1 | 3.8 |
Mo | 0.14 | 0.13 | 0.08 | 0.01 | 0.01 | 0.00 |
Ni | 4.23 | 2.25 | 0.62 | 0.04 | 0.15 | 0.01 |
Pb | 0.75 | 1.15 | 0.24 | 0.00 | 0.02 | 0.01 |
Zn | 11.6 | 6.68 | 7.49 | - | 0.05 | 0.11 |
Sb | 1.70 | 0.84 | 0.27 | 0.06 | 0.04 | 0.01 |
Method | Unit | DL1 | DL4 | DL30 | DL Max Value (Day) | pH-Stat | Batch Leaching [15] |
---|---|---|---|---|---|---|---|
Time | hours | 24 | 96 | 720 | - | 24 | 24 |
Time | days | 1 | 4 | 30 | - | 1 | 1 |
L/S | 126 | 437 | 3136 | - | 10 | 10 | |
pH | - | - | - | - | 5 | - | |
Unit | mg/kg | ||||||
As | RF02 | 0.13 | 0.54 | 1.84 | 1.84 (30) | 1.62 | 0.05 |
F06 | 0.08 | 0.20 | 0.50 | 0.55 (28) | 0.64 | 0.04 | |
F13 | 0.04 | 0.04 | 0.07 | 0.09 (24) | 0.22 | 0.01 | |
Ca | RF02 | 8.35 | 8.88 | <25 | <25 (30) | 5.20 | 3.87 |
F06 | 8.07 | 9.22 | 18.0 | 18.0 (30) | 10.7 | 3.53 | |
F13 | 34.0 | 24.5 | 227 | 227 (30) | 31.2 | 7.65 | |
Cu | RF02 | 1.50 | 2.28 | 0.12 | 2.58 (2) | 57.6 | 0.07 |
F06 | 1.97 | 1.98 | 0.54 | 2.55 (2) | 28.0 | 0.06 | |
F13 | 0.64 | 0.11 | 0.10 | 1.48 (16) | 26.5 | <0.10 | |
Fe | RF02 | <0.10 | <0.10 | 0.14 | 5.88 (16) | 24.1 | 0.06 |
F06 | <0.13 | <0.11 | <0.10 | 0.16 (16) | 41.3 | <0.10 | |
F13 | <0.10 | <0.10 | 0.85 | 3.30 (20) | 31.7 | <0.10 | |
Ni | RF02 | 1.44 | 2.25 | 0.03 | 2.25 (4) | 4.23 | 1.09 |
F06 | 0.85 | 0.62 | 0.06 | 0.93 (2) | 2.25 | 0.61 | |
F13 | 0.22 | 0.03 | 0.02 | 0.22 (2) | 0.62 | 0.04 | |
Sb | RF02 | 0.51 | 1.28 | 3.90 | 3.90 (30) | 1.70 | 0.40 |
F06 | 0.32 | 0.60 | 1.29 | 1.29 (30) | 0.84 | 0.22 | |
F13 | 0.08 | 0.13 | 0.25 | 0.25 (30) | 0.27 | 0.06 | |
Zn | RF02 | 7.90 | 6.63 | 0.05 | 9.33 (2) | 11.6 | 1.38 |
F06 | 4.15 | 2.97 | 0.18 | 4.35 (2) | 6.68 | 1.38 | |
F13 | 2.70 | 0.31 | 0.52 | 2.70 (1) | 7.49 | 0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kero Andertun, J.; Peltola, P.; Samuelsson, C.; Engström, F. Long-Term Leaching Effects on CaO-Modified Iron Silicate Slag. Minerals 2022, 12, 1442. https://doi.org/10.3390/min12111442
Kero Andertun J, Peltola P, Samuelsson C, Engström F. Long-Term Leaching Effects on CaO-Modified Iron Silicate Slag. Minerals. 2022; 12(11):1442. https://doi.org/10.3390/min12111442
Chicago/Turabian StyleKero Andertun, Jakob, Pasi Peltola, Caisa Samuelsson, and Fredrik Engström. 2022. "Long-Term Leaching Effects on CaO-Modified Iron Silicate Slag" Minerals 12, no. 11: 1442. https://doi.org/10.3390/min12111442
APA StyleKero Andertun, J., Peltola, P., Samuelsson, C., & Engström, F. (2022). Long-Term Leaching Effects on CaO-Modified Iron Silicate Slag. Minerals, 12(11), 1442. https://doi.org/10.3390/min12111442