Experimental Study on the Influence of Confining Pressure and Bedding Angles on Mechanical Properties in Coal
Abstract
:1. Introduction
2. Samples and Experiments
2.1. Preparation of Samples
2.2. Experimental Equipment
2.3. Experimental Procedure
3. Mechanical Test Results
3.1. Coal Deformation Properties Analysis
3.2. Coal Strength Properties Analysis
3.3. Coal Failure Properties Analysis
4. Mechanical Test Results of Different Bedding Angles of Coal
4.1. The Deformation Failure Properties of Coal with Different Bedding Angles
4.2. Analysis of Strength Properties of Coal with Different Bedding Angles
5. Numerical Simulation
5.1. Numerical Modeling
5.2. Evolution of the Microcracks
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ju, M.H.; Li, J.C.; Li, J.; Zhao, J. Loading rate effects on anisotropy and crack propagation of weak bedding plane-rich rocks. Eng. Fract. Mech. 2020, 230, 106983. [Google Scholar] [CrossRef]
- Wen, Z.J.; Wang, X.; Tan, Y.L.; Zhang, H.L.; Huang, W.P.; Li, Q.H. A study of rockburst hazard evaluation method in coal mine. Shock Vib. 2016, 2016, 8740868. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.B.; Fei, D.Y.; Yu, Y.L.; Cui, Y.L.; Yan, C.G.; Bao, H.; Lan, H.X. Research on crack evolution law and macroscopic failure mode of joint phyllite under uniaxial compression. Sci. Rep. 2021, 11, 4196. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Kaiser, P.K.; Tasaka, Y.; Maejima, T.; Morioka, H.; Minami, M. Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations. Int. J. Rock Mech. Min. Sci. 2004, 41, 833–847. [Google Scholar] [CrossRef]
- Yan, L.H.; Wu, J.W. Test and analysis of tensile strength of coal in Huaibei Yangzhuang coal mine. Coal Sci. Technol. 2002, 30, 39–41. [Google Scholar]
- Zhang, Z.T.; Zhang, R.; Li, G.; Li, H.G.; Liu, J.F. The effect of bedding structure on mechanical property of coal. Adv. Mater. Sci. Eng. 2014, 2014, 952703. [Google Scholar] [CrossRef] [Green Version]
- Hao, X.J.; Du, W.S.; Jiang, Y.D.; Tannant, D.; Zhao, Y.X.; Guo, Y.D. Influence of bedding and cleats on the mechanical properties of a hard coal. Arab. J. Geosci. 2018, 11, 200. [Google Scholar] [CrossRef]
- Jiang, T.T.; Zhang, J.H.; Huang, G.; Song, S.X.; Wu, H. Experimental study on the mechanical property of coal and its application. Geomech. Eng. 2018, 14, 9–17. [Google Scholar]
- Liu, J.J.; Yang, M.; Wang, D.; Zhang, J.H. Different bedding loaded coal mechanics properties and acoustic emission. Environ. Earth Sci. 2018, 77, 322. [Google Scholar] [CrossRef]
- Liu, H.F.; Zhang, J.X.; Zhou, N.; Sun, Q.; Li, M.; Cui, Z.Z. Experimental investigation into the bedding plane slip effect on the overlying strata behavior in longwall top coal caving of soft coal seam. Adv. Civ. Eng. 2019, 2019, 1718751. [Google Scholar] [CrossRef] [Green Version]
- Pan, R.K.; Fu, D.; Yu, M.G.; Chen, L. Directivity effect of unloading bedding coal induced fracture evolution and its application. Int. J. Min. Sci. Technol. 2017, 27, 825–829. [Google Scholar]
- Chen, Y.L.; Zhang, Y.N.; Li, X.L. Experimental study on influence of bedding angle on gas permeability in coal. J. Pet. Sci. Eng. 2019, 179, 173–179. [Google Scholar] [CrossRef]
- Lee, H.; Jeon, S. An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression. Int. J. Solids Struct. 2011, 48, 979–999. [Google Scholar] [CrossRef] [Green Version]
- Meng, Y.Y.; Hong, W.J.; Liu, X.W.; Yin, Q.; Zhang, L.; Liu, H.X. Experimental and numerical investigation on the effect of bedding plane properties on fracture behaviour of sandy mudstone. Theor. Appl. Fract. Mech. 2021, 114, 102989. [Google Scholar] [CrossRef]
- Yang, S.Q.; Dai, Y.H.; Han, L.J.; Jin, Z.Q. Experimental study on mechanical behavior of brittle marble samples containing different flaws under uniaxial compression. Eng. Fract. Mech. 2009, 76, 1833–1845. [Google Scholar] [CrossRef]
- Yin, Q.; Jing, H.W.; Su, H.J. Investigation on mechanical behavior and crack coalescence of sandstone specimens containing fissure-hole combined flaws under uniaxial compression. Geosci. J. 2018, 22, 825–842. [Google Scholar] [CrossRef]
- Mughieda, O.; Omar, M.T. Stress analysis for rock mass failure with offset joints. Geotech. Geol. Eng. 2008, 26, 543–552. [Google Scholar] [CrossRef]
- Liu, T.; Lin, B.Q.; Zou, Q.L.; Zhu, C.J.; Yan, F.Z. Mechanical behaviors and failure processes of precracked specimens under uniaxial compression a perspective from microscopic displacement patterns. Tectonophysics 2016, 672–673, 104–120. [Google Scholar] [CrossRef]
- Lv, H.Y.; Tang, Y.S.; Zhang, L.F.; Cheng, Z.B.; Zhang, Y.N. Analysis for mechanical characteristics and failure models of coal specimens with non-penetrating single crack. Geomech. Eng. 2019, 17, 355–365. [Google Scholar]
- Bahaaddini, M.; Hagan, P.C.; Mitra, R.; Hebblewhite, B.K. Scale effect on the shear behaviour of rock joints based on a numerical study. Eng. Geol. 2014, 181, 212–223. [Google Scholar] [CrossRef]
- Eberhardt, E.; Stead, D.; Stimpson, B.; Read, R.S. Identifying crack initiation and propagation thresholds in brittle rock. Can. Geotech. J. 1998, 35, 222–233. [Google Scholar] [CrossRef]
- Renani, H.R.; Martin, C.D. Slope stability analysis using equivalent Mohr–Coulomb and Hoek-Brown criteria. Rock Mech. Rock Eng. 2020, 53, 13–21. [Google Scholar] [CrossRef]
- Hoek, E.; Brown, E.T. Empirical strength criterion for rock masses. J. Geotech. Eng. Div. 1980, 106, 1013–1035. [Google Scholar] [CrossRef]
- Bieniawski, Z.T. Estimating the strength of rock materials. J. S. Afr. Inst. Min. Metall. 1974, 74, 312–320. [Google Scholar] [CrossRef]
- Jaeger, J.C. Shear Failure of Anistropic Rocks. Geol. Mag. 1960, 97, 65. [Google Scholar] [CrossRef]
- Hao, X.J.; Wang, S.H.; Xu, Q.S.; Yang, D.Q.; Zhang, Q.; Jin, D.X.; Wei, Y.N. Influences of confining pressure and bedding angles on the deformation, fracture and mechanical characteristics of slate. Constr. Build. Mater. 2020, 243, 118255. [Google Scholar] [CrossRef]
- Liu, W.R.; Wang, X.; Li, C.M. Numerical study of damage evolution law of coal mine roadway by particle flow code (PFC) model. Geotech. Geol. Eng. 2019, 37, 2883–2891. [Google Scholar] [CrossRef]
- Yoon, J. Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation. Int. J. Rock Mech. Min. Sci. 2007, 44, 871–889. [Google Scholar] [CrossRef]
- Song, H.H.; Jiang, Y.D.; Elsworth, D.; Zhao, Y.X.; Wang, J.H.; Liu, B. Scale effects and strength anisotropy in coal. Int. J. Coal Geol. 2018, 195, 37–46. [Google Scholar] [CrossRef]
- You, M.Q. Study of Mathematical equation and parameter determination of strength criteria for rock. Chin. J. Rock Mech. Eng. 2010, 29, 2172–2184. [Google Scholar]
- Peng, J.; Rong, G.; Cai, M.; Wang, X.J.; Zhou, C.B. An Empirical Failure Criterion for Intact Rocks. Rock Mech. Rock Eng. 2014, 47, 347–356. [Google Scholar] [CrossRef]
- Shi, X.C.; Meng, Y.F.; Li, G. Comparative analyses of several rock strength criteria. Rock Soil Mech. 2011, 32, 209–216. [Google Scholar]
- Zhao, B.Y.; Li, Y.F.; Huang, W.; Wang, X.P.; Chen, C. Experimental study on mechanical properties of shale rock and its strength criterion. Arab. J. Geosci. 2021, 14, 264. [Google Scholar] [CrossRef]
- Cong, T.Z.; Zhai, C.; Sun, Y.; Xu, J.Z.; Tang, W.; Zheng, Y.F.; Zhu, X.Y.; Yang, L. Study on transient boiling heat transfer of coal with different bedding angles quenched by liquid nitrogen. Case Stud. Therm. Eng. 2021, 28, 101463. [Google Scholar] [CrossRef]
- Cheng, Y.F.; Jiang, L.; Wang, H.D.; Ansari, U.; Han, Z.Y.; Ding, J.P. Experimental Study on Pore Structure and Mechanical Properties of Stratified Coal. Int. J. Geomech. 2017, 17, 04017116. [Google Scholar] [CrossRef]
- Jin, Y.; Yao, W.; Duan, K.; Liu, X.Y.; Zhu, Y.L. Experimental study and discrete element method modeling of compression and permeability behaviors of weakly anisotropic sandstones. Int. J. Rock Mech. Mini. Sci. 2020, 134, 104437. [Google Scholar]
- Wang, Y.P.; Liu, X.J.; Liang, L.X. Influences of bedding planes on mechanical properties and prediction method of brittleness index in shale. Lithol. Reserv. 2018, 30, 12. [Google Scholar]
- Yang, S.Q.; Huang, Y.H.; Jing, H.W.; Liu, X.R. Discrete element modeling on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression. Eng. Geol. 2014, 178, 28–48. [Google Scholar] [CrossRef]
- Zhou, Z.L.; Tan, L.H.; Cao, W.Z.; Zhou, Z.Y.; Cai, X. Fracture evolution and failure behaviour of marble specimens containing rectangular cavities under uniaxial loading. Eng. Fract. Mech. 2017, 184, 183–201. [Google Scholar] [CrossRef]
- Tan, L.H.; Ren, T.; Yang, X.H.; He, X.Q. A numerical simulation study on mechanical behaviour of coal with bedding planes under coupled static and dynamic load. Int. J. Min. Sci. Technol. 2018, 28, 791–797. [Google Scholar] [CrossRef]
Sample No. | Diameter /D (mm) | Height /H (mm) | Density /ρ (g/cm3) | Confining Pressure /σ3 (MPa) | Bedding Angle /θ (°) |
---|---|---|---|---|---|
D1-1 | 25.05 | 52.04 | 1.331 | 0 | 0 |
S3 | 25.12 | 50.85 | 1.742 | 3 | |
S6 | 25.33 | 52.77 | 1.589 | 6 | |
S9 | 25.35 | 52.43 | 1.323 | 9 | |
S12 | 25.04 | 51.30 | 1.405 | 12 | |
B1-1 | 25.38 | 52.28 | 1.366 | 9 | 0 |
B1-2 | 25.11 | 52.40 | 1.316 | 30 | |
B1-3 | 25.16 | 51.94 | 1.300 | 45 | |
B1-4 | 25.34 | 52.16 | 1.279 | 60 | |
B1-5 | 24.97 | 52.39 | 1.372 | 75 | |
B1-6 | 25.06 | 52.34 | 1.303 | 90 |
Sample No. | Confining Pressure /σ3 (MPa) | Peak Deviatoric Stress /σcm (MPa) | Peak Axial Strain /ε1m (mm/mm) | Peak Radial Strain /ε3m (mm/mm) | Peak Volumetric Strain /εvm (mm/mm) | Elastic Modulus /E (GPa) | Poisson Ratio /μ |
---|---|---|---|---|---|---|---|
D1-1 | 0 | 10.27 | 3.28 | −1.87 | −0.45 | 1.83 | 0.43 |
S3 | 3 | 31.47 | 6.75 | −4.94 | −3.13 | 2.41 | 0.36 |
S6 | 6 | 41.08 | 12.87 | −14.47 | −16.08 | 2.57 | 0.31 |
S9 | 9 | 46.88 | 7.02 | −5.35 | −3.67 | 2.63 | 0.27 |
S12 | 12 | 55.25 | 8.32 | −4.43 | −0.55 | 2.75 | 0.25 |
Sample No. | Bedding Angle /θ (°) | Peak Deviatoric Stress /σcm (MPa) | Peak Axial Strain /ε1m (mm/mm) | Peak Radial Strain /ε3m (mm/mm) | Peak Volumetric Strain /εvm (mm/mm) | Elastic Modulus /E (GPa) | Poisson Ratio /μ |
---|---|---|---|---|---|---|---|
B1-1 | 0 | 47.68 | 2.10 | −1.11 | −0.11 | 2.63 | 0.27 |
B1-2 | 30 | 36.71 | 4.66 | −2.90 | −1.14 | 1.82 | 0.26 |
B1-3 | 45 | 29.58 | 6.96 | −4.96 | −2.96 | 1.64 | 0.25 |
B1-4 | 60 | 18.40 | 4.53 | −2.55 | −0.56 | 1.91 | 0.27 |
B1-5 | 75 | 26.15 | 1.93 | −1.24 | −0.54 | 2.44 | 0.35 |
B1-6 | 90 | 44.56 | 1.77 | −1.60 | −1.44 | 2.76 | 0.39 |
Minimum Particle Radius /mm | Particle Density /kg·m−3 | Stiffness Ratio of Particles | Friction Coefficient of Particles | Normal Strength of Contact Bonding /MPa | Tangential Strength of Contact Bonding /MPa |
---|---|---|---|---|---|
0.24 | 1360 | 1.5 | 0.57 | 4.0 | 2.0 |
Particle Normal Stiffness/ Gpa·m−1 | Particle Tangential Stiffness /Gpa·m−1 | Friction Coefficient of Particles | Normal Strength of Contact Bonding /MPa | Tangential Strength of Contact Bonding /MPa |
---|---|---|---|---|
660 | 560 | 2.9 | 1.0 | 3.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhao, B.; Yang, J.; Sun, J.; Huang, W.; Li, Z.; Wang, B. Experimental Study on the Influence of Confining Pressure and Bedding Angles on Mechanical Properties in Coal. Minerals 2022, 12, 345. https://doi.org/10.3390/min12030345
Li Y, Zhao B, Yang J, Sun J, Huang W, Li Z, Wang B. Experimental Study on the Influence of Confining Pressure and Bedding Angles on Mechanical Properties in Coal. Minerals. 2022; 12(3):345. https://doi.org/10.3390/min12030345
Chicago/Turabian StyleLi, Yongfei, Baoyun Zhao, Jiaosheng Yang, Junchang Sun, Wei Huang, Ziyun Li, and Bingyuan Wang. 2022. "Experimental Study on the Influence of Confining Pressure and Bedding Angles on Mechanical Properties in Coal" Minerals 12, no. 3: 345. https://doi.org/10.3390/min12030345
APA StyleLi, Y., Zhao, B., Yang, J., Sun, J., Huang, W., Li, Z., & Wang, B. (2022). Experimental Study on the Influence of Confining Pressure and Bedding Angles on Mechanical Properties in Coal. Minerals, 12(3), 345. https://doi.org/10.3390/min12030345