Thermal Migration Behavior of Na+, Cu2+ and Li+ in Montmorillonite
Abstract
:1. Introduction
2. Experimental Section
2.1. Sample Preparation
2.2. Characterization
3. Results and Discussion
3.1. XRD Analysis
3.2. Exchangeable Cation Content
3.3. FTIR Analysis
3.3.1. OH Stretching Vibrations
3.3.2. OH Bending Vibrations
3.3.3. Si-O Vibrations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alshameri, A.; He, H.; Xin, C.; Zhu, J.; Xinghu, W.; Zhu, R.; Wang, H. Understanding the role of natural clay minerals as effective adsorbents and alternative source of rare earth elements: Adsorption operative parameters. Hydrometallurgy 2019, 185, 149–161. [Google Scholar] [CrossRef]
- Alshameri, A.; He, H.; Zhu, J.; Xi, Y.; Zhu, R.; Ma, L.; Tao, Q. Adsorption of ammonium by different natural clay minerals: Characterization, kinetics and adsorption isotherms. Appl. Clay Sci. 2018, 159, 83–93. [Google Scholar] [CrossRef]
- Bhattacharyya, K.G.; Gupta, S.S. Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. Adv. Colloid Interface Sci. 2007, 140, 114–131. [Google Scholar] [CrossRef]
- Komadel, P.; Madejova, J.; Bujdak, J. Preparation and properties of reduced-charge smectites—A review. Clays Clay Miner. 2005, 53, 313–334. [Google Scholar] [CrossRef]
- Pitteloud, C.; Powell, D.H.; Fischer, H.E. The hydration structure of the Ni2+ ion intercalated in montmorillonite clay: A neutron diffraction with isotopic substitution study. Phys. Chem. Chem. Phys. 2001, 3, 5567–5574. [Google Scholar] [CrossRef]
- Adams, J.M. Synthetic organic chemistry using pillared, cation-exchanged and acid-treated montmorillonite catalysts—A review. Appl. Clay Sci. 1987, 2, 309–342. [Google Scholar] [CrossRef]
- Haimovich, A.; Goldbourt, A. Characterization of lithium coordination sites with magic-angle spinning NMR. J. Magn. Reson. 2015, 254, 131–138. [Google Scholar] [CrossRef]
- Seiffarth, T.; Kaps, C. Structural characterization of (Cu2+, Na+)- and (Cu2+, NH4+)-exchanged bentonites upon thermal treatment. Clays Clay Miner. 2009, 57, 40–45. [Google Scholar] [CrossRef]
- Hofmann, U.; Klemen, R. Verlust der austauschfähigkeit von lithiumionen an bentonit durch erhitzung. Ztschrift Anorg. Und Allgemne Chem. 1950, 262, 95–99. [Google Scholar] [CrossRef]
- Emmerich, K.; Madsen, F.T.; Kahr, G. Dehydroxylation behavior of heat-treated and stream-treated homoionic Cis-vacant montmorillonites. Clays Clay Miner. 1999, 47, 591–604. [Google Scholar] [CrossRef]
- Alba, M.D.; Alvero, R.; Becerro, A.I.; Castro, M.A.; Trillo, J.M. Chemical behavior of lithium Ions in reexpanded Li-montmorillonites. J. Phys. Chem. B 1998, 102, 2207–2213. [Google Scholar] [CrossRef]
- Bodart, P.R.; Delmotte, L.; Rigolet, S.; Brendlé, J.; Gougeon, R.D. 7Li{19F} TEDOR NMR to observe the lithium migration in heated montmorillonite. Appl. Clay Sci. 2018, 157, 204–211. [Google Scholar] [CrossRef]
- Luca, V.; Cardile, C.M. Thermally induced cation migration in Na and Li montmorillonite. Phys. Chem. Miner. 1988, 16, 98–103. [Google Scholar] [CrossRef]
- Gournis, D.; Lappas, A.; Karakassides, M.A.; Többens, D.; Moukarika, A. A neutron diffraction study of alkali cation migration in montmorillonites. Phys. Chem. Miner. 2008, 35, 49–58. [Google Scholar] [CrossRef]
- Ebina, T.; Iwasaki, T.; Jee, A.C. XPS and DFT study on the migration of lithium in montmorillonite. Clay Sci. 2011, 10, 569–581. [Google Scholar]
- Huve, L.; Delmotte, L.; Martin, P.; Dred, R.L.; Baron, J.; Saehr, D. 19F MAS-NMR study of structural fluorine in some natural and synthetic 2:1 layer silicates. Clays Clay Miner. 1992, 40, 186–191. [Google Scholar] [CrossRef]
- Mosser, C.; Michot, L.J.; Villieras, E.; Romeo, M. Migration of cations in copper(II); exchanged montmorillonite and laponite upon heating. Clays Clay Miner. 1997, 45, 789–802. [Google Scholar] [CrossRef]
- Sato, T. Effects of layer charge, charge location, and energy change on expansion properties of dioctahedral smectites. Clays Clay Miner. 1992, 40, 103–113. [Google Scholar] [CrossRef]
- Madejová, J.; Arvaiová, B.; Komadel, P. FTIR spectroscopic characterization of thermally treated Cu2+, Cd2+, and Li+ montmorillonites. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1999, 55, 2467–2476. [Google Scholar] [CrossRef]
- Madejová, J.; Pálková, H.; Komadel, P. Behaviour of Li+ and Cu2+ in heated montmorillonite: Evidence from far-, mid-, and near-IR regions. Vib. Spectrosc. 2006, 40, 80–88. [Google Scholar] [CrossRef]
- Cao, Z.; Jia, Y.; Wang, Q.; Cheng, H. High-efficiency photo-Fenton Fe/g-C3N4/kaolinite catalyst for tetracycline hydrochloride degradation. Appl. Clay Sci. 2021, 212, 106213. [Google Scholar] [CrossRef]
- Madejová, J. FTIR techniques in clay mineral studies. Vib. Spectrosc. 2003, 31, 1–10. [Google Scholar] [CrossRef]
- Steudel, A.; Heinzmann, R.; Indris, S.; Emmerich, K. CEC and 7Li MAS NMR study of interlayer Li+ in the montmorillonite-beidellite series at room temperature and after heating. Clays Clay Miner. 2015, 63, 337–350. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, H.; Hu, Q.; Liu, L.; Jia, L.; Gao, S.; Wang, Y. Pore structure heterogeneity of Wufeng-Longmaxi shale, Sichuan Basin, China: Evidence from gas physisorption and multifractal geometries. J. Pet. Sci. Eng. 2022, 208, 109313. [Google Scholar] [CrossRef]
- Alvero, R.; Alba, M.D.; Castro, M.A.; Trillo, J.M. Reversible migration of lithium in montmorillonites. Russ. J. Phys. Chem. 1994, 98, 7848–7853. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, J.; Xie, F.; Tuo, B.; Zhang, Y. Application and properties of organic emulsion coated phosphogypsum in aluminous rock based mineral polymer composite. J. Wuhan Univ. Technol. Mater. Sci. 2021, 36, 830–838. [Google Scholar] [CrossRef]
- Wang, X.; Xu, X.; Ye, Y.; Wang, C.; Liu, D.; Shi, X.; Wang, S.; Zhu, X. In-situ high-temperature XRD and FTIR for calcite, dolomite and magnesite: Anharmonic contribution to the thermodynamic properties. J. Earth Sci. 2019, 30, 964–976. [Google Scholar] [CrossRef]
- Hui, H.; Xu, Y.; Pan, M.E. On water in nominally anhydrous minerals from mantle peridotites and magmatic rocks. Sci. China Earth Sci. 2016, 59, 1157–1172. [Google Scholar] [CrossRef]
- Ling, K.; Wen, H.; Zhang, Q.; Luo, C.; Gu, H.; Du, S.; Yu, W. Super-enrichment of lithium and niobium in the upper Permian Heshan Formation in Pingguo, Guangxi, China. Sci. China Earth Sci. 2021, 64, 753–772. [Google Scholar] [CrossRef]
- Hrobáriková, J.; Madejová, J.; Komadel, P. Effect of heating temperature on Li-fixation, layer charge and properties of fine fractions of bentonites. J. Mater. Chem. 2001, 11, 1452–1457. [Google Scholar] [CrossRef]
- Ma, L.; Zhu, J.; He, H.; Xi, Y.; Zhu, R.; Tao, Q.; Liu, D. Thermal analysis evidence for the location of zwitterionic surfactant on clay minerals. Appl. Clay Sci. 2015, 112–113, 62–67. [Google Scholar] [CrossRef]
- Chouikhi, N.; Cecilia, J.A.; Vilarrasa-García, E.; Besghaier, S.; Chlendi, M.; Duro, F.I.F.; Castellon, E.R.; Bagane, M. CO2 adsorption of materials synthesized from clay minerals: A review. Minerals 2019, 9, 514. [Google Scholar] [CrossRef] [Green Version]
- Gao, X. Clay Mineralogy; Chemical Industry Press: Beijing, China, 2017. [Google Scholar]
- Gates, W.P.; Komadel, P.; Madejová, J.; Bujdák, J.; Stucki, J.W.; Kirkpatrick, R.J. Electronic and structural properties of reduced-charge montmorillonites. Appl. Clay Sci. 2000, 16, 257–271. [Google Scholar] [CrossRef]
- Skoubris, E.N.; Chryssikos, G.D.; Christidis, G.E.; Gionis, V. Structural characterization of reduced-charge montmorillonites. Evidence based on FTIR spectroscopy, thermal behavior, and layer-charge systematics. Clay Clay Miner. 2013, 61, 83–97. [Google Scholar]
- Madejová, J.; Bujdák, J.; Petit, S.; Komadel, P. Effects of chemical composition and temperature of heating on the infrared spectra of Li-saturated dioctahedral smectites. (I) Mid-infrared region. Clay Miner. 2000, 35, 739–751. [Google Scholar]
- Xia, L.; Zhong, H.; Liu, G.; Huang, Z.; Chang, Q.; Li, X. Comparative studies on flotation of illite, pyrophyllite and kaolinite with Gemini and conventional cationic surfactants. Trans. Nonferrous Met. Soc. China 2009, 19, 446–453. [Google Scholar] [CrossRef]
- Karakassides, M.A.; Madejová, J.; Arvaiová, B.; Bourlinos, A.; Petridis, D.; Komadel, P. Location of Li(I), Cu(II) and Cd(II) in heated montmorillonite: Evidence from specular reflectance infrared and electron spin resonance spectroscopies. J. Mater. Chem. 1999, 9, 1553–1558. [Google Scholar] [CrossRef]
- Clementz, D.M. Properties of reduced charge montmorillonite: Tetra-alkylammonium ion exchange forms. Clays Clay Miner. 1974, 22, 223–229. [Google Scholar] [CrossRef]
d001 (Å) | |||
---|---|---|---|
Heating Temperature (°C) | Cu-Mt | Na-Mt | Li-Mt |
unheated | 14.1 | 14.4 | 13.1 |
100 °C | 12.5 | 12.6 | 12.5 |
200 °C | 9.7 | 12.6 | 9.9 |
300 °C | 9.6 | 12.6 | 9.5 |
Concentration (mg/L) | |||
---|---|---|---|
Heating Temperature (°C) | Cu-Mt | Na-Mt | Li-Mt |
unheated | 374.0 | 162.5 | 66.9 |
100 °C | 324.5 | 151.4 | 59.2 |
200 °C | 307.4 | 142.9 | 50.4 |
300 °C | 296.4 | 139.5 | 39.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Zhao, H.; Zhou, X.; Wang, Y.; Zuo, K.; Cheng, H. Thermal Migration Behavior of Na+, Cu2+ and Li+ in Montmorillonite. Minerals 2022, 12, 477. https://doi.org/10.3390/min12040477
Wu Z, Zhao H, Zhou X, Wang Y, Zuo K, Cheng H. Thermal Migration Behavior of Na+, Cu2+ and Li+ in Montmorillonite. Minerals. 2022; 12(4):477. https://doi.org/10.3390/min12040477
Chicago/Turabian StyleWu, Zhenxiao, Hao Zhao, Xuanping Zhou, Yang Wang, Kesheng Zuo, and Hongfei Cheng. 2022. "Thermal Migration Behavior of Na+, Cu2+ and Li+ in Montmorillonite" Minerals 12, no. 4: 477. https://doi.org/10.3390/min12040477
APA StyleWu, Z., Zhao, H., Zhou, X., Wang, Y., Zuo, K., & Cheng, H. (2022). Thermal Migration Behavior of Na+, Cu2+ and Li+ in Montmorillonite. Minerals, 12(4), 477. https://doi.org/10.3390/min12040477