RETRACTED: Phytoremediation of Heavy-Metals-Contaminated Soils: A Short-Term Trial Involving Two Willow Species from Gloucester WillowBank in the UK
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Plant Species
2.2. Preparation of Soils Samples
2.3. Experimental Design and Analytical Methods
3. Results
3.1. Biomass Levels
3.1.1. Heavy Metals Concentration in Plant Samples
Lead
Zinc
Cadmium
3.1.2. Heavy Metals Concentration in Soil Samples
4. Discussion
4.1. Zinc
4.2. Cadmium
4.3. Lead
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Environment Agency of Wales. Metal Mine Strategy for Wales; Environment Agency of Wales: Cardiff, UK, 2002; p. 138. [Google Scholar]
- Sas-Nowosielska, A.; Kucharski, R.; Malowski, E.; Pogrzeba, M.; Kuperberg, J.M.; Kryński, K. Phytoextraction crop disposal–an unsolved problem. Environ. Pollut. 2004, 128, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Raskin, I.; Smith, R.D.; Salt, D.E. Phytoremediation of metals: Using plants to remove pollutants from the environment. Curr. Opin. Biotechnol. 1997, 8, 221–226. [Google Scholar] [CrossRef]
- Lee, J.; Kaunda, R.B.; Sinkala, T.; Workman, C.F.; Bazilian, M.D.; Clough, G. Phytoremediation and phytoextraction in Sub-Saharan Africa: Addressing economic and social challenges. Ecotoxicol. Environ. Saf. 2021, 226, 112864. [Google Scholar] [CrossRef] [PubMed]
- Ginneken, L.V.; Meers, E.; Guisson, R.; Ruttens, A.; Elst, K.; Tack, F.M.G.; Vangronsveld, J.; Diels, L.; Dejonghe, W. Phytoremediation for heavy metal-contaminated soils combined with bioenergy production. J. Environ. Eng. Landsc. Manag. 2007, 14, 227–236. [Google Scholar] [CrossRef]
- Panagos, P.; Van Liedekerke, M.; Yigini, Y.; Montanarella, L. Contaminated Sites in Europe: Review of the Current Situation Based on Data Collected through a European Network. J. Environ. Public Health 2013, 2013, 158764. [Google Scholar] [CrossRef]
- Suman, J.; Uhlik, O.; Viktorova, J.; Macek, T. Phytoextraction of Heavy Metals: A Promising Tool for Clean-Up of Polluted Environment? Front. Plant Sci. 2018, 9, 1476. [Google Scholar] [CrossRef]
- Crawford, D.L.; Crawford, R.L. Bioremediation, Principles and Applications; Cambridge University Press: Cambridge, UK, 1996; p. 400. [Google Scholar]
- Cunningham, S.D.; Ow, D.W. Promises and prospects of phytoremediation. Plant Physiol. 1996, 110, 715–719. [Google Scholar] [CrossRef]
- Pulford, I.D.; Watson, C. Phytoremediation of heavy metal-contaminated land by trees–a review. Environ. Int. 2003, 29, 529–540. [Google Scholar] [CrossRef]
- Baker, A.J.M.; Whiting, S.N. In search of the Holy Grail: A further step in understanding metal hyperaccumulation? New Phytol. 2002, 155, 1–4. [Google Scholar] [CrossRef]
- Singh, B.S.M.; Singh, D.; Dhal, N.K. Enhanced phytoremediation strategy for sustainable management of heavy metals and radionuclides. Case Stud. Therm. Eng. 2022, 5, 100176. [Google Scholar] [CrossRef]
- Arsenov, D.; Župunski, M.; Borišev, M.; Nikolić, N.; Pilipovic, A.; Orlovic, S.; Kebert, M.; Pajevic, S. Citric acid as soil amendment in cadmium removal by Salix viminalis L., alterations on biometric attributes and photosynthesis. Int. J. Phytoremediation 2020, 22, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Tingwey, I.G.; Nii-Annang, S.; Freese, D. Potential ofIgniscum sachalinensisL. andSalix viminalisL. for the Phytoremediation of Copper-Contaminated Soils. Appl. Environ. Soil Sci. 2014, 2014, 654671. [Google Scholar] [CrossRef]
- Kuzovkina, Y.A.; Quigley, M.F. Willows beyond wetlands: Uses of Salix L. species for environmental projects. Water Air Soil Pollut. 2005, 162, 183–204. [Google Scholar] [CrossRef]
- Janssen, J.; Weyens, N.; Croes, S.; Beckers, B.; Meiresonne, L.; Van Peteghem, P.; Carleer, R.; Vangronsveld, J. Phytoremediation of Metal Contaminated Soil Using Willow: Exploiting Plant-Associated Bacteria to Improve Biomass Production and Metal Uptake. Int. J. Phytoremediation 2015, 17, 1123–1136. [Google Scholar] [CrossRef]
- Chaney, R.L.; Malik, M.; Li, Y.M.; Brown, S.L.; Brewer, E.P.; Angle, J.S.; Baker, A.J.M. Phytoremediation of soil metals. Curr. Opin. Biotechnol. 1997, 8, 279–284. [Google Scholar] [CrossRef]
- Clemens, S.; Palmgren, M.G.; Krämer, U. A long way ahead: Understanding and engineering plant metal accumulation. Trends Plant Sci. 2002, 7, 309–315. [Google Scholar] [CrossRef]
- Dickinson, N.M.; Pulford, I.D. Cadmium phytoextraction using short-rotation coppice Salix: The evidence trail. Environ. Int. 2005, 31, 609–613. [Google Scholar] [CrossRef]
- Environment Agency. Soil Guidance Values for Cadmium in Soil; Environment Agency: Bristol, UK, 2009; p. 11. [Google Scholar]
- International Atomic Energy Agency. Reference Material IAEA 413: Major, Minor and Trace Elements in Algae; International Atomic Energy Agency: Vienna, Austria, 2010; p. 33. [Google Scholar]
- Ebbs, S.; Uchill, S. Cadmium and zinc induced chlorosis in Indian mustard [Brassica juncea (L.) Czern] involves preferential loss of chlorophyll b. Photosynthetica 2008, 46, 49–55. [Google Scholar] [CrossRef]
- Perkins, W.T. A Guide to the Chemical Analytical Facilities in IGES; Department of Geography and Earth Sciences, University of Aberystwyth: Wales, UK, Unpublished; 2010. [Google Scholar]
- Lachapelle, A.; Yavari, S.; Pitre, F.E.; Courchesne, F.; Brisson, J. Co-planting of Salix interior and Trifolium pratense for phytoremediation of trace elements from wood preservative contaminated soil. Int. J. Phytoremediation 2021, 23, 632–640. [Google Scholar] [CrossRef]
- Yu, G.; Wang, X.; Liu, J.; Jiang, P.; You, S.; Ding, N.; Guo, Q.; Lin, F. Applications of Nanomaterials for Heavy Metal Removal from Water and Soil: A Review. Sustainability 2021, 13, 713. [Google Scholar] [CrossRef]
- Meers, E.; Vandecasteele, B.; Ruttens, A.; Vangronsveld, J.; Tack, F.M.G. Potential of five willow species (Salix spp.) for phytoextraction of heavy metals. Environ. Exp. Bot. 2007, 60, 57–68. [Google Scholar] [CrossRef]
- Máthé-Gáspár, G.; Anton, A. Study of phytoremediation by use of willow and rape, Proceedings of the 8th Hungarian Congress on Plant Physiology and the 6th Hungarian Conference on Photosynthesis. Acta Biol. Szeged. 2005, 49, 73–74. [Google Scholar]
- Cantle, J.E. Atomic Absorption Spectrometry; Elsevier: Amsterdam, The Netherlands, 1982; Volume 5, p. 448. [Google Scholar]
- Vysloužilová, M.; Tlustoš, P.; Száková, J. Cadmium and zinc phytoextraction potential of seven clones of Salix spp. planted on heavy metal contaminated soils. Plant Soil Environ. 2003, 49, 542–547. [Google Scholar]
- Vinhal, R.A.; Zalesny, R.S.; DeBauche, B.S.; Rogers, E.R.; Pilipović, A.; Soolanayakanahally, R.Y.; Wiese, A.H. Establishment of willows using the novel DeValix technique: Ecological restoration mats designed for phytotechnologies. Int. J. Phytoremediation 2021, 1–14. [Google Scholar] [CrossRef]
- Vervaeke, P.; Luyassaert, S.; Mertens, J.; Meers, E.; Tack, F.M.G.; Lust, N. Phytoremediation prospects of willow stands on contaminated sediment: A field trial. Environ. Pollut. 2003, 126, 275–282. [Google Scholar]
- Kanwar, V.S.; Sharma, A.; Srivastav, A.L.; Rani, L. Phytoremediation of toxic metals present in soil and water environment: A critical review. Environ. Sci. Pollut. Res. 2020, 27, 44835–44860. [Google Scholar] [CrossRef]
- Witters, N.; Slycken, S.V.; Ruttens, A.; Adriaensen, K.; Meers, A.; Meiresonne, L.; Tack, F.M.G.; Thewys, T.; Laes, E.; Vangronsveld, J. Short-rotation coppice of willow for phytoremediation of a metal-contaminated agricultural area: A sustainability assessment. Bioenergy Res. 2009, 2, 144–152. [Google Scholar]
- Mertens, J.; Luyssaert, S.; Verheyen, K. Use and abuse of trace metal concentrations in plant tissue for biomonitoring and phytoextraction. Environ. Pollut. 2005, 138, 1–4. [Google Scholar] [CrossRef]
- Meers, E.; Samson, R.; Tack, F.M.G.; Ruttens, A.; Vandegehuchte, M.; Vangronsveld, J.; Verloo, M.G. Phytoavailability assessment of heavy metals in soils by single extractions and accumulation by Phaseolus vulgaris. Environ. Exp. Bot. 2007, 60, 385–396. [Google Scholar] [CrossRef]
- Hammer, D.; Kayser, A.; Keller, C. Phytoextraction of Cd and Zn with Salix viminalis in field trials. Soil Use Manag. 2003, 19, 187–192. [Google Scholar]
- Heinsoo, K.; Merilo, E.; Petrovits, M.; Koppel, A. Fine root biomass and production in a Salix viminalis and Salix dasyclados plantation. Est. J. Ecol. 2009, 58, 27–37. [Google Scholar] [CrossRef]
- Hetland, M.D.; Gallagher, J.R.; Daly, D.J.; Hassett, D.J.; Heebink, L.V. Processing of plants used to phytoremediate lead-contaminated sites. In Proceedings of the Sixth International In Situ and On Site Bioremediation Symposium, San Diego, CA, USA, 4–7 June 2001; pp. 129–136. [Google Scholar]
- Punshon, T.; Dickinson, N.M. Mobilisation of heavy metals using short-rotation coppice. Asp. Appl. Biol. 1997, 49, 285–292. [Google Scholar]
- Schnoor, J.L.; Licht, L.A.; McCutcheon, S.C.; Wolfe, N.L.; Carreira, L.H. Phytoremediation of contaminated soils and sediments. Environ. Sci. Technol. 1995, 29, 318–323. [Google Scholar] [CrossRef]
- Wong, M.H. Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 2003, 50, 775–780. [Google Scholar] [CrossRef]
- Alloway, B.J. Heavy Metals in Soils; Blackie and Son Ltd.: London, UK, 1990. [Google Scholar]
- ADAS. Bioenergy Crops and Bioremediation–A Review; Department for Food, Environment and Rural Affairs: London, UK, 2002; p. 134.
- Alexander, M. Biodegradation and Bioremediation, 2nd ed.; Academic Press: London, UK, 1999. [Google Scholar]
- Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils and Plants, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1992. [Google Scholar]
- Keller, C.; Ludwig, C.; Davoli, F.; Wochele, J. Thermal treatment of metal-enriched biomass produced from heavy metal phytoextraction. Environ. Sci. Technol. 2005, 39, 3359–3367. [Google Scholar] [CrossRef]
- Lievens, C.; Yperman, J.; Vangronsveld, J.; Carleer, R. Study of the potential valorisation of heavy metal contaminated biomass via phytoremediation by fast pyrolysis: Part I. Influence of temperature, biomass species and solid heat carrier on the behaviour of heavy metals. Fuel 2008, 87, 1894–1905. [Google Scholar] [CrossRef]
- Christensen, T.H. Cadmium soil sorption at low concentrations: V. Evidence of competition by other heavy metals. Water Air Soil Pollut. 1986, 34, 293–303. [Google Scholar] [CrossRef]
- Narodoslawski, M.; Obernberger, I. From waste to raw material—the route from biomass to wood ash for cadmium and other heavy metals. J. Hazard. Mater. 1996, 50, 157–168. [Google Scholar] [CrossRef]
- Lamine, S.; Pandey, M.K.; Petropoulos, G.P.; Brewer, P.A.; Srivastava, P.K.; Manevski, K.; Toulios, L.; Bachari, N.-E.-I.; Macklin, M.G. Spectroradiometry as a tool for monitoring soil contamination by heavy metals in a floodplain site. In Hyperspectral Remote Sensing: Theory and Applications; Srivastava, P.K., Pandey, P.C., Balzter, H., Bhattacharya, B., Petropoulos, G., Eds.; Elsevier: London, UK, 2020; Volume 1, pp. 249–268. [Google Scholar]
- Lamine, S.; Petropoulos, G.; Brewer, P.; Bachari, N.-E.-I.; Srivastava, P.; Manevski, K.; Kalaitzidis, C.; Macklin, M. Heavy Metal Soil Contamination Detection Using Combined Geochemistry and Field Spectroradiometry in the United Kingdom. Sensors 2019, 19, 762. [Google Scholar] [CrossRef]
- Lin, C.; Liu, J.; Liu, L.; Zhu, T.; Sheng, L.; Wang, D. Soil amendment application frequency contributes to phytoextraction of lead by sunflower at different nutrient levels. Environ. Exp. Bot. 2009, 65, 410–416. [Google Scholar] [CrossRef]
- Stals, M.; Thijssen, E.; Vangronsveld, J.; Carleer, R.; Schruers, S.; Yperman, J. Flash pyrolysis of heavy metal contaminated biomass from phytoremediation: Influence of temperature, entrained flow and wood/leaves blended pyrolysis on the behaviour of heavy metals. J. Anal. Appl. Pyrolysis 2010, 87, 1–7. [Google Scholar] [CrossRef]
Zn Content (mg/kg) | Cd Content (mg/kg) | Pb Content (mg/kg) | ||||
---|---|---|---|---|---|---|
Soil | <2 mm | <120 µm | <2 mm | <120 µm | <2 mm | <120 µm |
1 | 503 | 778 | 2.04 | 3.00 | 90 | 110 |
2 | 1163 | 1482 | 4.07 | 5.03 | 138 | 141 |
3 | 2401 | 2734 | 7.86 | 9.14 | 154 | 192 |
4 | 3660 | 4411 | 12.58 | 16.07 | 182 | 249 |
Zn Content (mg/kg) | Cd Content (mg/kg) | Pb Content (mg/kg) | ||||
---|---|---|---|---|---|---|
Sample | <2 mm | <120 µm | <2 mm | <120 µm | <2 mm | <120 µm |
Soil 4.a | 4440 | 3871 | 14.02 | 13.74 | 187.9 | 254.9 |
Soil 4.b | 2777 | 4528 | 9.36 | 16.64 | 162.4 | 253.7 |
Soil 4.c | 4637 | 4545 | 15.08 | 15.14 | 193.1 | 256.7 |
Soil 4.d | 3795 | 4586 | 13.40 | 17.57 | 171.7 | 249.7 |
Soil 4.e | 2650 | 4525 | 11.03 | 17.25 | 195.2 | 231.6 |
Mean | 3660 | 4411 | 12.58 | 16.07 | 182.1 | 249.3 |
SD | 794.8 | 285.8 | 2.29 | 1.53 | 13.16 | 10.01 |
CV (%) | 21.72 | 6.48 | 18.19 | 9.52 | 7.23 | 4.02 |
Soil Samples | Plant Samples | |||||
---|---|---|---|---|---|---|
Sample ID | Concentration mg/kg | Sample ID | Concentration (mg/kg) | |||
Zn | Cd | Pb | Zn | Cd | ||
V4.1 | 3805 | 9.18 | 292 | d4cL 9 | 758 | 3.40 |
V4.2 | 3909 | 9.04 | 294 | d4cL 25 | 883 | 3.63 |
V4.3 | 3808 | 8.64 | 294 | d4cL 26 | 918 | 3.70 |
d4cL 27 | 840 | 3.23 | ||||
Mean | 3841 | 8.95 | 293 | Mean | 849.75 | 3.49 |
SD | 62.2 | 0.33 | 1.05 | SD | 80.0 | 0.24 |
CV (%) | 1.62 | 3.65 | 0.36 | CV (%) | 9.42 | 6.74 |
Canmet Till 2 | IAEA 413 Algae | |||||
---|---|---|---|---|---|---|
Determinant | Published Con. mg/kg | Measured Con. mg/kg | Extraction Rate % | Published Con. mg/kg | Measured Con. mg/kg | Extraction Rate % |
Zn | 116 | 110 | 95 | 169 | 120 | 71 |
Cd | 0.3 | 0.76 | 252 | 204 | 142 | 70 |
Pb | 21 | 16 | 76 | 242 | 177 | 73 |
S. viminalis | S. dasyclados | |||||||
---|---|---|---|---|---|---|---|---|
Dry Weight (g) | Dry Weight (g) | |||||||
Roots | Shoots | Leaves | Total | Roots | Shoots | Leaves | Total | |
Soil 1 | ||||||||
Plant a | 1.07 | 16.80 | 5.96 | 23.83 | 2.95 | 28.17 | 10.72 | 41.84 |
Plant b | 1.35 | 16.66 | 5.99 | 24.00 | 4.16 | 39.48 | 14.22 | 57.86 |
Plant c | 1.13 | 13.75 | 7.53 | 22.41 | 1.82 | 29.64 | 13.35 | 44.81 |
Mean | 1.18 | 15.74 | 6.49 | 23.41 | 2.98 | 32.43 | 12.76 | 48.17 |
Soil 2 | ||||||||
Plant a | 1.56 | 23.88 | 13.13 | 38.57 | 1.41 | 9.34 | 7.05 | 17.80 |
Plant b | 0.91 | 5.81 | 3.87 | 10.59 | 1.73 | 32.98 | 17.39 | 52.10 |
Plant c | 0.74 | 2.77 | 0.60 | 4.11 | 1.42 | 19.03 | 9.95 | 30.40 |
Mean | 1.07 | 10.82 | 5.87 | 17.76 | 1.52 | 20.45 | 11.46 | 33.43 |
Soil 3 | ||||||||
Plant a | 0.58 | 2.77 | 0.96 | 4.31 | 1.89 | 24.19 | 13.39 | 39.47 |
Plant b | 0.31 | 3.25 | 2.41 | 5.97 | 2.77 | 33.08 | 17.60 | 53.45 |
Plant c | 0.57 | 3.32 | 0.72 | 4.61 | 2.75 | 31.27 | 14.57 | 48.59 |
Mean | 0.49 | 3.11 | 1.36 | 4.96 | 2.47 | 29.51 | 15.19 | 47.17 |
Soil 4 | ||||||||
Plant a | 0.65 | 4.25 | 0.96 | 5.86 | 1.57 | 7.41 | 6.29 | 15.27 |
Plant b | 1.46 | 4.56 | 1.69 | 7.71 | 6.48 | 45.75 | 23.57 | 75.80 |
Plant c | 1.12 | 2.86 | 1.13 | 5.11 | 5.81 | 36.68 | 17.26 | 59.75 |
Mean | 1.08 | 3.89 | 1.26 | 6.23 | 4.62 | 29.95 | 15.71 | 50.27 |
S. viminalis | S. dasyclados | |||||
---|---|---|---|---|---|---|
Pb Concentration (mg/kg) | Pb Concentration (mg/kg) | |||||
Roots | Shoots | Leaves | Roots | Shoots | Leaves | |
Soil 1 | ||||||
Plant a | 0.315 | 0.109 | 0.284 | nd | nd | nd |
Plant b | 0.147 | 0.010 | 0.184 | nd | 0.464 | 0.278 |
Plant c | 0.227 | 0.075 | 0.279 | 0.041 | nd | nd |
Soil 2 | ||||||
Plant a | 0.195 | 0.005 | 0.243 | nd | nd | 0.085 |
Plant b | 0.219 | 0.042 | 0.305 | nd | nd | 0.085 |
Plant c | 0.246 | 0.126 | 0.333 | 0.012 | nd | nd |
Soil 3 | ||||||
Plant a | 0.262 | 0.001 | 0.178 | 0.022 | nd | nd |
Plant b | 0.318 | 0.037 | 0.216 | nd | nd | nd |
Plant c | 0.279 | 0.003 | 0.283 | nd | nd | 0.049 |
Soil 4 | ||||||
Plant a | 0.332 | 0.078 | 0.278 | nd | nd | 0.131 |
Plant b | 0.248 | nd | 0.435 | nd | nd | 0.032 |
Plant c | 0.448 | nd | 0.292 | 0.246 | nd | 0.029 |
S. viminalis | S. dasyclados | |||||
---|---|---|---|---|---|---|
Zn Concentration (mg/kg) | Zn Concentration (mg/kg) | |||||
Roots | Shoots | Leaves | Roots | Shoots | Leaves | |
Soil 1 | ||||||
Plant a | 302 | 112 | 613 | 56 | 207 | 400 |
Plant b | 133 | 129 | 718 | 36 | 190 | 325 |
Plant c | 302 | 240 | 1408 | 74 | 182 | 303 |
Mean | 245 | 160 | 913 | 55 | 193 | 343 |
Soil 2 | ||||||
Plant a | 488 | 136 | 1730 | 134 | 338 | 623 |
Plant b | 293 | 366 | 2250 | 140 | 335 | 488 |
Plant c | 314 | 408 | 3477 | 143 | 295 | 588 |
Mean | 365 | 303 | 2486 | 139 | 323 | 566 |
Soil 3 | ||||||
Plant a | 592 | 396 | 3375 | 208 | 368 | 948 |
Plant b | 564 | 401 | 2100 | 164 | 325 | 640 |
Plant c | 543 | 423 | 3289 | 152 | 320 | 580 |
Mean | 566 | 407 | 2921 | 174 | 338 | 723 |
Soil 4 | ||||||
Plant a | 819 | 500 | 4050 | 245 | 545 | 1340 |
Plant b | 405 | 371 | 5300 | 173 | 390 | 1035 |
Plant c | 348 | 479 | 2825 | 132 | 460 | 849 |
Mean | 524 | 450 | 4058 | 183 | 465 | 1075 |
S. viminalis | S. dasyclados | |||||
---|---|---|---|---|---|---|
Cd Concentration (mg/kg) | Cd Concentration (mg/kg) | |||||
Roots | Shoots | Leaves | Roots | Shoots | Leaves | |
Soil 1 | ||||||
Plant a | 1.13 | 0.39 | 1.33 | 0.53 | 1.25 | 1.48 |
Plant b | 0.74 | 0.59 | 1.38 | 0.38 | 1.18 | 1.38 |
Plant c | 1.25 | 0.76 | 2.13 | 0.40 | 1.13 | 0.90 |
Mean | 1.04 | 0.58 | 1.61 | 0.43 | 1.18 | 1.25 |
Soil 2 | ||||||
Plant a | 2.45 | 0.81 | 3.88 | 1.08 | 3.90 | 2.58 |
Plant b | 1.52 | 1.66 | 4.88 | 0.68 | 2.23 | 1.65 |
Plant c | 2.75 | 2.49 | 11.61 | 0.85 | 2.58 | 1.85 |
Mean | 2.24 | 1.65 | 6.79 | 0.87 | 2.90 | 2.03 |
Soil 3 | ||||||
Plant a | 4.76 | 2.56 | 8.63 | 0.98 | 3.50 | 4.23 |
Plant b | 3.57 | 2.54 | 4.03 | 0.98 | 2.85 | 2.55 |
Plant c | 4.51 | 2.89 | 8.26 | 0.73 | 2.50 | 1.83 |
Mean | 4.28 | 2.66 | 6.97 | 0.89 | 2.95 | 2.87 |
Soil 4 | ||||||
Plant a | 5.59 | 3.00 | 11.00 | 2.53 | 5.15 | 6.73 |
Plant b | 2.05 | 2.56 | 10.58 | 0.78 | 3.38 | 3.48 |
Plant c | 1.45 | 3.73 | 7.48 | 0.75 | 4.55 | 3.49 |
Mean | 3.03 | 3.10 | 9.68 | 1.35 | 4.36 | 4.56 |
Soil | S. viminalis | S. dasyclados | ||||
---|---|---|---|---|---|---|
Final Zn Conc. (mg/kg) | Final Cd Conc. (mg/kg) | Final Pb Conc. (mg/kg) | Final Zn Conc. (mg/kg) | Final Cd Conc. (mg/kg) | Final Pb Conc. (mg/kg) | |
1 | 519 | 1.65 | 79 | 566 | 1.85 | 83 |
2 | 919 | 2.80 | 93 | 1061 | 3.27 | 113 |
3 | 2301 | 6.59 | 167 | 2216 | 5.83 | 195 |
4 | 3841 | 8.95 | 293 | 3467 | 9.79 | 189 |
Bioaccumulation Factor (BAF) Range and (Mean) for Zn | ||
---|---|---|
S. viminalis | S. dasyclados | |
Soil 1 | 0.79–1.81 (1.17) | 0.39–0.51 (0.44) |
Soil 2 | 1.17–2.35 (1.68) | 0.33–0.42 (0.38) |
Soil 3 | 0.77–1.23 (1.07) | 0.21–0.35 (0.26) |
Soil 4 | 0.64–1.20 (0.92) | 0.19–0.30 (0.24) |
S. viminalis | |||||
---|---|---|---|---|---|
Soil | Initial Conc. (mg/kg) | Final Conc. (mg/kg) | Conc. Decrease (%) | Total Extracted (mg) | Implied Initial Zn (mg) |
1 | 779 | 519 | 33.4 | 26.7 | 80 |
2 | 1482 | 919 | 38.0 | 41.3 | 109 |
3 | 2734 | 2301 | 15.8 | 15.3 | 97 |
4 | 4411 | 3841 | 12.9 | 22.7 | 176 |
S. dasyclados | |||||
Soil | Initial Conc. (mg/kg) | Final Conc. (mg/kg) | Conc. Decrease (%) | Total Extracted (mg) | Implied Initial Zn (mg) |
1 | 779 | 566 | 27.4 | 32.1 | 117 |
2 | 1482 | 1061 | 28.4 | 39.2 | 138 |
3 | 2734 | 2216 | 18.9 | 63.3 | 334 |
4 | 4411 | 3467 | 21.4 | 88.5 | 414 |
Bioaccumulation Factor (BAF) Range and (Mean) for Cd | ||
---|---|---|
S. viminalis | S. dasyclados | |
Soil 1 | 0.44–0.71 (0.54) | 0.30–0.49 (0.42) |
Soil 2 | 0.77–2.31 (1.35) | 0.33–0.51 (0.40) |
Soil 3 | 0.44–0.94 (0.76) | 0.20–0.46 (0.31) |
Soil 4 | 0.47–0.68 (0.60) | 0.22–0.42 (0.28) |
S. viminalis | |||||
---|---|---|---|---|---|
Soil | Initial Conc. (mg/kg) | Final Conc. (mg/kg) | Conc. Decrease (%) | Total Extracted (mg) | Implied Initial Cd (mg) |
1 | 3.00 | 1.65 | 45.1 | 0.06 | 0.1 |
2 | 5.03 | 2.80 | 44.4 | 0.12 | 0.3 |
3 | 9.14 | 6.59 | 27.9 | 0.06 | 0.2 |
4 | 16.07 | 8.95 | 44.3 | 0.08 | 0.2 |
S. dasyclados | |||||
Soil | Initial Conc. (mg/kg) | Final Conc. (mg/kg) | Conc. Decrease (%) | Total Extracted (mg) | Implied Initial Cd (mg) |
1 | 3.00 | 1.85 | 38.5 | 0.16 | 0.4 |
2 | 5.03 | 3.27 | 35.1 | 0.22 | 0.6 |
3 | 9.14 | 5.83 | 36.2 | 0.39 | 1.1 |
4 | 16.07 | 9.79 | 39.1 | 0.54 | 1.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamine, S.; Saunders, I. RETRACTED: Phytoremediation of Heavy-Metals-Contaminated Soils: A Short-Term Trial Involving Two Willow Species from Gloucester WillowBank in the UK. Minerals 2022, 12, 519. https://doi.org/10.3390/min12050519
Lamine S, Saunders I. RETRACTED: Phytoremediation of Heavy-Metals-Contaminated Soils: A Short-Term Trial Involving Two Willow Species from Gloucester WillowBank in the UK. Minerals. 2022; 12(5):519. https://doi.org/10.3390/min12050519
Chicago/Turabian StyleLamine, Salim, and Ian Saunders. 2022. "RETRACTED: Phytoremediation of Heavy-Metals-Contaminated Soils: A Short-Term Trial Involving Two Willow Species from Gloucester WillowBank in the UK" Minerals 12, no. 5: 519. https://doi.org/10.3390/min12050519
APA StyleLamine, S., & Saunders, I. (2022). RETRACTED: Phytoremediation of Heavy-Metals-Contaminated Soils: A Short-Term Trial Involving Two Willow Species from Gloucester WillowBank in the UK. Minerals, 12(5), 519. https://doi.org/10.3390/min12050519