Investigating the Shallow to Mid-Depth (>100–300 °C) Continental Crust Evolution with (U-Th)/He Thermochronology: A Review
Abstract
:1. Introduction
2. The (U-Th)/He Thermochronometric Method
2.1. He Production, Ejection and Associated Radiation Damage
2.2. He Diffusion in Crystals
2.3. Thermal Sensitivity of He in Crystals and Impact on (U-Th)/He Ages
2.4. Reviewing the Origin of (U-Th)/He Date Variation
2.5. Analytical Subtleties
2.5.1. eU-Rich Mineral Phases
2.5.2. eU-Poor Mineral Phases
2.6. Subtleties of Thermochronological Ages and Interpretation
3. Recovering Thermal History through (U-Th)/He Data Inversion
3.1. On the Record of the Different Stages of Orogenesis in the Pyrenees by ZHe Dating and Subordinate Thermochronometric Systems
3.2. HP Ophiolite Thermal History Retrieved from MgHe Data Thermal Inversion
3.3. Revealing the Deep-Time Thermal History of the Brazilian Margin though ZHe Data Investigation
4. Recommendations
- (1)
- Careful selection of the crystals to be analyzed and use of adequate imaging protocols are mandatory to obtain geologically meaningful (U-Th)/He dates. Notably, these are critical steps for proper alpha ejection correction. In particular, selected grain crystals must be of a sufficient size and as euhedral as possible, especially in the case of zircon. eU-rich mineral inclusions must be identified, especially in low-eU mineral phases such as magnetite, spinel and rutile. This can be performed using optical characterization for transparent minerals, but new techniques such as CT scans [49] have the power to inspect the presence of inclusions for all types of crystals with an even better resolution.
- (2)
- For zircon, titanite and rutile, characterization of the degree of damage within crystals is a pre-requisite to interpret (U-Th)/He dates. Color-based selection of zircon crystals can promote considering crystals with a wide range of accumulated alpha doses [86]. In addition, Raman spectroscopy is a non-destructive and time-saving method for quantifying the amount of damage in crystals. Ultimately, analyzing crystals with different radiation damage contents helps document (U-Th)/He date–eU correlations and constrain thermal histories.
- (3)
- Regarding date interpretation, it must be stressed that (U-Th)/He data result from the net balance between the production, accumulation and loss of 4He atoms for a particular thermal history. We therefore recommend avoiding calculating and expressing (U-Th)/He results as mean ages, as this will remove pertinent information for the proper reconstruction of thermal histories. As presented in Figure 4, any source of date dispersion should be discussed with regard to the thermal history and geology. To do so, a first exploration of mineral phases surrounding the crystals selected for dating should be conducted to identify possible alpha implantation, especially when dealing with low-eU minerals. Analyzing dependencies of (U-Th)/He dates with the diffusion domain (Rs) and effective uranium content (eU) must also be routinely performed. These steps are mandatory to exclude data arising from implantation or analytical problems, and to focus only on the geological significance of (U-Th)/He data.
- (4)
- Constraining the thermal history of a sample from (U-Th)/He data can be achieved thanks to He diffusion models that take into account both the production and annealing of damage. As research is still exploring He diffusion in certain mineral phases, it is important to review available He diffusion algorithms periodically. For zircon, additional work needs to be conducted to better assess parameters influencing He diffusion as the current damage-dependent model of diffusion cannot explain all ZHe data. In particular, the model is able to reproduce only qualitatively, not quantitatively, the range of single-grain ZHe dates and both positive and negative age–eU correlations (see examples of Figure 7 and Figure 9). For titanite and rutile, no He radiation damage accumulation and annealing diffusion algorithms are currently available, limiting the interpretation of the information provided by those thermochronological systems. It is therefore of uttermost importance to be critical and cautious with data interpretation, in order not to overinterpret the data.
- (5)
- Finally, we recommend, when possible, combining (U-Th)/He thermochronometers with lower- or higher-temperature thermochronometers to extend time–temperature spaces consistent with (U-Th)/He data, thereby refining the reconstruction of the thermal history of a sample. In particular, (U-Th)/He date–eU correlations yielded by a sample are the result of its entire thermal history and are not only shaped by the most recent cooling event. While a combination of ZHe, THe or RHe dating with AFT or AHe analysis often reveals the late thermal history of a sample, apatite, rutile or titanite U/Pb dating has proved to help constrain the earlier history of samples. Methods such as (U-Th)/He baddeleyite [27], (U-Th)/He garnet [28] or (U-Th)/He monazite [29,30,136] show good promise for new applications and should be watched closely.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chew, D.M.; Spikings, R.A. Apatite U-Pb Thermochronology: A Review. Minerals 2021, 11, 1095. [Google Scholar] [CrossRef]
- Spikings, R.A.; Popov, D.V. Thermochronology of Alkali Feldspar and Muscovite at T > 150°C Using the 40Ar/39Ar Method: A Review. Minerals 2021, 11, 1025. [Google Scholar] [CrossRef]
- Zeitler, P.; Herczeg, A.; McDougall, I.; Honda, M. U-Th-He dating of apatite: A potential thermochronometer. Geochim. Cosmochim. Acta 1987, 51, 2865–2868. [Google Scholar] [CrossRef]
- Reiners, P.W.; Farley, K.A. Helium diffusion and (U-Th)/He thermochronology of titanite. Geochim. Cosmochim. Acta 1999, 63, 3845–3859. [Google Scholar] [CrossRef]
- Farley, K.A. (U-Th)/He dating: Techniques, calibrations, and applications. In Noble Gases in Geochemistry and Cosmochemistry; Porcelli, D.P., Ballentine, C.J., Wieler, R., Eds.; Walter de Gruyter GmbH: Berlin, Germany, 2002; pp. 819–844. [Google Scholar]
- Reiners, P.W. Zircon (U-Th)/He thermochronometry. Rev. Mineral. Geochem. 2005, 58, 151–179. [Google Scholar] [CrossRef]
- Reiners, P.W.; Brandon, M.T. Using thermochronology to understand orogenic erosion. Annu. Rev. Earth Planet. Sci. 2006, 34, 419–466. [Google Scholar] [CrossRef] [Green Version]
- Ternois, S.; Odlum, M.; Ford, M.; Pik, R.; Stockli, D.; Tibari, B.; Vacherat, A.; Bernard, V. Thermochronological Evidence of Early Orogenesis, Eastern Pyrenees, France. Tectonics 2019, 38, 1308–1336. [Google Scholar] [CrossRef]
- Tremblay, M.M.; Fox, M.; Schmidt, J.L.; Tripathy-Lang, A.; Wielicki, M.M.; Harrison, T.M.; Zeitler, P.K.; Shuster, D.L. Erosion in southern Tibet shut down at ∼10 Ma due to enhanced rock uplift within the Himalaya. Proc. Natl. Acad. Sci. USA 2015, 112, 12030–12035. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, K.; Brown, R.; Johnson, C. Fission track analysis and its applications to geological problems. Annu. Rev. Earth Planet. Sci. 1998, 26, 519–572. [Google Scholar] [CrossRef]
- Bernet, M. A field-based estimate of the zircon fission-track closure temperature. Chem. Geol. 2009, 259, 181–189. [Google Scholar] [CrossRef]
- Ehlers, T.A. Crustal Thermal Processes and the Interpretation of Thermochronometer Data. Rev. Miner. Geochem. 2005, 58, 315–350. [Google Scholar] [CrossRef]
- Braun, J.; van der Beek, P.; Batt, G. Quantitative Thermochronology: Numerical Methods for the Interpretation of Thermochronological Data; Cambridge University Press: Cambridge, MA, USA, 2006; p. 258. [Google Scholar]
- Ault, A.K.; Gautheron, C.; King, G.E. Innovations in (U-Th)/He, fission-track, and trapped-charge thermochronometry with applications to earthquakes, weathering, surface-mantle connections, and the growth and decay of mountains. Tectonics 2019, 38, 3705–3739. [Google Scholar] [CrossRef] [Green Version]
- Ehlers, T.A.; Farley, K.A. Apatite (U+Th)/He thermochronometry: Methods and applications to problems in tectonic and surface processes. Earth Planet. Sci. Lett. 2003, 206, 1–14. [Google Scholar] [CrossRef]
- Baughman, J.S.; Flowers, R.M.; Metcalf, J.R.; Dhansay, T. Infuence of radiation damage on titanite diffusion kinetics. Geochim. Cosmoch. Acta 2017, 205, 50–64. [Google Scholar] [CrossRef]
- Flowers, R. Exploiting radiation damage control on apatite (U-Th)/He dates in cratonic regions. Earth Planet. Sci. Lett. 2009, 277, 148–155. [Google Scholar] [CrossRef]
- Guenthner, W.R.; Reiners, P.W.; Drake, H.; Tilberg, M. Zircon, titanite, and apatite (U-Th)/He ages and age-eU correlations from the Fennoscandian Shield, southern Sweden. Tectonics 2017, 36, 1254–1274. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.E.; Flowers, R.M.; Baird, G.B.; Maham, K.M. “Inverted” zircon and apatite (U–Th)/He dates from the Front Range, Colorado: High-damage zircon as a low-temperature (< 50 °C) thermochronometer. Earth Planet. Sci. Lett. 2017, 466, 80–90. [Google Scholar] [CrossRef]
- Orme, D.A.; Guenthner, W.R.; Laskowski, A.K.; Reiners, P.W. Long-term tectonothermal history of Laramide basement from zircon–He age-eU correlations. Earth Planet. Sci. Lett. 2016, 453, 119–130. [Google Scholar] [CrossRef] [Green Version]
- Robinson, K.H.; Flowers, R.; Metcalf, J.R. Rutile (U-Th)/He Thermochronology: Temperature Sensitivity and Radiation Damage Effects. Geochem. Geophys. Geosyst. 2019, 20, 4737–4755. [Google Scholar] [CrossRef]
- Blackburn, T.J.; Stockli, D.F.; Walker, J.D. Magnetite (U-Th)/He dating and its application to the geochronology of intermediate to mafic volcanic rocks. Earth Planet. Sci. Lett. 2007, 259, 360–371. [Google Scholar] [CrossRef]
- Cooperdock, E.H.; Stockli, D.F. Dating exhumed peridotite with spinel (U–Th)/He chronometry. Earth Planet. Sci. Lett. 2018, 489, 219–227. [Google Scholar] [CrossRef]
- Cooperdock, E.H.; Stockli, D.F. Unraveling alteration histories in serpentinites and associated ultramafic rocks with magnetite (U-Th)/He geochronology. Geology 2016, 44, 967–970. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, S.; Gautheron, C.; Ketcham, R.A.; Brunet, F.; Corre, M.; Agranier, A.; Pinna Jamme, R.; Haurine, F.; Monvoisin, G.; Riel, N. Unraveling the exhumation history of high-pressure ophiolites using magnetite (U-Th-Sm)/He thermochronometry. Earth Planet. Sci. Lett. 2020, 543, 116359. [Google Scholar] [CrossRef]
- Stanley, J.R.; Flowers, R.M. Dating kimberlite emplacement with zircon and perovskite (U-Th)/He geochronology. Geochem. Geophys. Geosyst. 2016, 17, 4517–4533. [Google Scholar] [CrossRef] [Green Version]
- Metcalf, J.R.; Flowers, R.M. Initial development of baddeleyite (U-Th)/He thermochronology. In Geological Society of America Abstracts with Programs, Proceedings of the 125th Anniversary Annual Meeting and Expo, Denver, CO, USA, 27–30 October 2013; The Geological Society of America: Denver, CO, USA, 2013. [Google Scholar]
- Seman, S.; Stockli, D.F.; Smye, A.J.; Hernandez Goldstein, E.J. Garnet (U-Th)/He thermochronometry and its application to exhumed high-pressure low-temperature metamorphic rocks. In Proceedings of the Thermo 2014: 14th International Conference on Thermochronology, Chamonix, France, 8–12 September 2014. [Google Scholar]
- Boyce, J.W.; Hodges, K.V.; Olszewski, W.J.; Jercinovic, M.J. He diffusion in monazite: Implications for (U-Th)/He thermochronology. Geochem. Geophys. Geosyst. 2005, 6, 1–12. [Google Scholar] [CrossRef]
- Farley, K.A.; Stockli, D.F. (U-Th)/He Dating of Phosphates: Apatite, Monazite, and Xenotime. Rev. Mineral. Geochem. 2002, 48, 559–577. [Google Scholar] [CrossRef]
- Peterman, E.M.; Hourigan, J.K.; Grove, M. Experimental and geologic evaluation of monazite (U-Th)/He thermochronometry: Catnip Sill, Catalina Core Complex, Tucson, AZ. Earth Planet. Sci. Lett. 2014, 403, 48–55. [Google Scholar] [CrossRef]
- Farley, K. Helium diffusion from apatite: General behavior as illustrated by Durango fluorapatite. J. Geophys. Res. Earth Surf. 2000, 105, 2903–2914. [Google Scholar] [CrossRef] [Green Version]
- Shuster, D.L.; Flowers, R.M.; Farley, K.A. The influence of natural radiation damage on helium diffusion kinetics in apatite. Earth Planet. Sci. Lett. 2006, 249, 148–161. [Google Scholar] [CrossRef]
- Gerin, C.; Gautheron, C.; Oliviero, E.; Bachelet, C.; Djimbi, D.M.; Seydoux-Guillaume, A.-M.; Tassan-Got, L.; Sarda, P.; Roques, J.; Garrido, F. Influence of vacancy damage on He diffusion in apatite, investigated at atomic to mineralogical scales. Geochim. Cosmochim. Acta 2017, 197, 87–103. [Google Scholar] [CrossRef]
- Guenthner, W.; Reiners, P.W.; Ketcham, R.; Nasdala, L.; Giester, G. Helium diffusion in natural zircon: Radiation damage, anisotropy, and the interpretation of zircon (U-Th)/He thermochronology. Am. J. Sci. 2013, 313, 145–198. [Google Scholar] [CrossRef]
- Ziegler, J.F. Helium Stopping Powers and Ranges in All Elements; Pergamon Press: London, UK, 1977. [Google Scholar]
- Biersack, J.P.; Ziegler, J.F. The Stopping and Range of Ions in Solids. In Ion Implantation Techniques; Ryssel, H., Glawischnig, H., Eds.; Springer Series in Electrophysics; Springer: Berlin/Heidelberg, Germany, 1982; Volume 10. [Google Scholar] [CrossRef]
- Farley, K.A.; Wolf, R.A.; Silver, L.T. The effects of long alpha-stopping on (U-Th)/He ages. Geochim. Cosmochim. Acta 1996, 21, 4223–4229. [Google Scholar] [CrossRef]
- Ketcham, R.A.; Gautheron, C.; Tassan-Got, L. Accounting for long alpha-particle stopping distances in (U-Th-Sm)/He geochronology: Refinement of the baseline case. Geochim. Cosmochim. Acta 2011, 75, 7779–7791. [Google Scholar] [CrossRef]
- Gautheron, C.; Tassan-Got, L.; Ketcham, R.A.; Dobson, K.J. Accounting for long alpha-particle stopping distances in (U-Th-Sm)/He geochronology: 3D modeling of diffusion, zoning, implantation, and abrasion. Geochimica Cosmochimica Acta 2012, 96, 44–56. [Google Scholar] [CrossRef] [Green Version]
- Hourigan, J.K.; Reiners, P.W.; Brandon, M.T. U-Th zonation-dependent alpha-ejection in (U-Th)/He chronometry. Geochim. Cosmochim. Acta 2005, 69, 3349–3365. [Google Scholar] [CrossRef]
- Meesters, A.G.C.A.; Dunai, T.J. Solving the production-diffusion equation for finite diffusion domains of various shapes Part II. Apllication to cases with a-ejection and nonhomogeneous distribution of the source. Chem. Geol. 2002, 186, 347–363. [Google Scholar] [CrossRef]
- Stockli, D.; Farley, K.A. Empirical constraints on the titanite (U–Th)/He partial retention zone from the KTB drill hole. Chem. Geol. 2004, 207, 223–236. [Google Scholar] [CrossRef]
- Flowers, R.; Zeitler, P.K.; Danišík, M.; Reiners, P.W.; Gautheron, C.; Ketcham, R.A.; Metcalf, J.R.; Stockli, D.; Enkelmann, E.; Brown, R.W. (U-Th)/He chronology: Part 1. Data, uncertainty, and reporting. GSA Bull. 2022. [Google Scholar] [CrossRef]
- Ewing, R.; Weber, W.; Clinard, F. Radiation effects in nuclear waste forms for high-level radioactive waste. Prog. Nucl. Energy 1995, 29, 63–127. [Google Scholar] [CrossRef]
- Ríos, S.; Salje, E.; Zhang, M.; Ewing, R.C. Amorphization in zircon: Evidence for direct impact damage. J. Phys. Condens. Matter 2000, 12, 2401–2412. [Google Scholar] [CrossRef] [Green Version]
- Fleischer, R.; Price, P. Techniques for geological dating of minerals by chemical etching of fission fragment tracks. Geochim. Cosmochim. Acta 1964, 28, 1705–1714. [Google Scholar] [CrossRef]
- Tagami, T. Zircon Fission-Track Thermochronology and Applications to Fault Studies. Rev. Miner. Geochem. 2005, 58, 95–122. [Google Scholar] [CrossRef]
- Cooperdock, E.H.; Ketcham, R.A.; Stockli, D.F. Resolving the effects of 2D versus 3D grain measurements on (U-Th)/He age data and reproducibility. Geochronology 2019, 1, 17–41. [Google Scholar] [CrossRef] [Green Version]
- Gastil, R.G.; Delisle, M.; Morgan, J. Some Effects of Progressive Metamorphism on Zircons. GSA Bull. 1967, 78, 879–906. [Google Scholar] [CrossRef]
- Gautheron, C.; Djimbi, D.M.; Roques, J.; Balout, H.; Ketcham, R.A.; Simoni, E.; Pik, R.; Seydoux-Guillaume, A.-M.; Tassan-Got, L. A multi-method, multi-scale theoretical study of He and Ne diffusion in zircon. Geochim. Cosmochim. Acta 2020, 268, 348–367. [Google Scholar] [CrossRef]
- Nasdala, L.; Wenzel, M.; Vavra, G.; Irmer, G.; Wenzel, T.; Kober, B. Metamictisation of natural zircon: Accumulation versus thermal annealing of radioactivity-induced damage. Contrib. Miner. Pet. 2001, 141, 125–144. [Google Scholar] [CrossRef]
- Palenik, C.S.; Nasdala, L.; Ewing, R.C. Radiation damage in zircon. Am. Miner. 2003, 88, 770–781. [Google Scholar] [CrossRef]
- Beirau, T.; Bismayer, U.; Mihailova, B.; Paulmann, C.; Groat, L. Structural phenomena of metamict titanite: A synchrotron, X-ray diffraction and vibrational spectroscopic study. Phase Transit. 2010, 83, 694–702. [Google Scholar] [CrossRef]
- Zhang, M.; Salje, E.; Redfern, S.; Bismayer, U.; A Groat, L. Intermediate structures in radiation damaged titanite (CaTiSiO5): A Raman spectroscopic study. J. Phys. Condens. Matter 2013, 25, 115402. [Google Scholar] [CrossRef]
- Djimbi, D.M.; Gautheron, C.; Roques, J.; Tassan-Got, L.; Gerin, C.; Simoni, E. Impact of apatite chemical composition on (U-Th)/He thermochronometry: An atomistic point of view. Geochim. Cosmochim. Acta 2015, 167, 162–176. [Google Scholar] [CrossRef]
- Gautheron, C.; Tassan-Got, L. A Monte Carlo approach to diffusion applied to noble gas/helium thermochronology. Chem. Geol. 2010, 273, 212–224. [Google Scholar] [CrossRef]
- Meesters, A.G.C.A.; Dunai, T.J. Solving the production-diffusion equation for finite diffusion domains of various shapes Part I. Implications from low-temperature (U-Th)/He thermochronology. Chem. Geol. 2002, 186, 333–344. [Google Scholar] [CrossRef]
- McDannell, K.; Zeitler, P.K.; Janes, D.G.; Idelman, B.D.; Fayon, A.K. Screening apatites for (U-Th)/He thermochronometry via continuous ramped heating: He age components and implications for age dispersion. Geochim. Cosmochim. Acta 2018, 223, 90–106. [Google Scholar] [CrossRef]
- Devanathan, R.; Corrales, L.R.; Weber, W.J.; Chartier, A.; Meis, C. Molecular dynamics simulation of energetic uranium recoil damage in zircon. Mol. Simul. 2006, 32, 1069–1077. [Google Scholar] [CrossRef]
- Bassal, F.; Roques, J.; Corre, M.; Ketcham, R.A.; Brunet, F.; Schwartz, S.; Pinna Jamme, R.; Tassan-Got, L.; Gautheron, C. He diffusion in magnetite: Combining theoretical multi-scale and experimental studies. Submitt. Miner. 2022, in press. [Google Scholar]
- Ketcham, R.; Guenthner, W.R.; Reiners, P.W. Geometric analysis of radiation damage connectivity in zircon, and its implications for helium diffusion. Am. Miner. 2013, 98, 350–360. [Google Scholar] [CrossRef]
- Dodson, M.H. Closure temperature in cooling geochronological and petrological systems. Contrib. Miner. Pet. 1973, 40, 259–274. [Google Scholar] [CrossRef]
- Gautheron, C.; Zeitler, P.K. Noble Gases Deliver Cool Dates from Hot Rocks. Elements 2020, 16, 303–309. [Google Scholar] [CrossRef]
- Wolf, R.; Farley, K.A.; Kass, D. A sensitivity analysis of the apatite (U-Th)/He thermochronometer. Chem. Geol. 1998, 148, 105–114. [Google Scholar] [CrossRef]
- Cherniak, D.; Watson, E. Helium diffusion in rutile and titanite, and consideration of the origin and implications of diffusional anisotropy. Chem. Geol. 2011, 288, 149–161. [Google Scholar] [CrossRef]
- House, M.A.; Farley, K.A.; Stockli, D. Helium chronometry of apatite and titanite Nd-YAG laser heating. Earth Planet. Sci. Lett. 2000, 183, 365–368. [Google Scholar] [CrossRef]
- Gérard, B.; Robert, X.; Gautheron, C.; Grujic, D.; Audin, L.; Bernet, M.; Balvay, M. Zircon (U-Th)/He closure temperature lower than apatite ther-mochronometric systems: Reconciliation of a paradox. Minerals 2022, 12, 145. [Google Scholar] [CrossRef]
- Guenthner, W.R. Implementation of an Alpha Damage Annealing Model for Zircon (U-Th)/He Thermochronology With Comparison to a Zircon Fission Track Annealing Model. Geochem. Geophys. Geosyst. 2020, 22, e2019GC008757. [Google Scholar] [CrossRef]
- Stockli, D.; Wolfe, M.R.; Blackburn, T.J.; Zack, T.; Walker, J.D.; Luvizotto, G.L. He diffusion and (U-Th)/He thermochronometry of rutile. In American Geophysical Union, Fall Meeting; American Geophysical Union: Washington, DC, USA, 2007; Volume 2007, pp. V23C–1548. [Google Scholar]
- Heller, B.M.; Lünsdorf, N.K.; Dunkl, I.; Molnár, F.; Von Eynatten, H. Estimation of radiation damage in titanites using Raman spectroscopy. Am. Miner. 2019, 104, 857–868. [Google Scholar] [CrossRef]
- Danišík, M.; McInnes, B.I.A.; Kirkland, C.L.; McDonald, B.J.; Evans, N.J.; Becker, T. Seeing is believing: Visualization of He distribution in zircon and implications for thermal history reconstruction on single crystals. Sci. Adv. 2017, 3, e1601121. [Google Scholar] [CrossRef] [Green Version]
- Glotzbach, C.; Lang, K.A.; Avdievitch, N.N.; Ehlers, T. Increasing the accuracy of (U-Th(-Sm))/He dating with 3D grain modelling. Chem. Geol. 2019, 506, 113–125. [Google Scholar] [CrossRef]
- Herman, F.; Braun, J.; Senden, T.J.; Dunlap, W.J. (U-Th)/He chronometry: Mapping 3D geometry using micro-X-ray tomography and solving the associated production-diffusion equation. Chem. Geol. 2007, 242, 126–136. [Google Scholar] [CrossRef]
- Guenthner, W.R.; Reiners, P.W.; Chowdhury, U. Isotope dilution analysis of Ca and Zr in apatite and zircon (U-Th)/He chronometry. Geochem. Geophys. Geosyst. 2016, 17, 1623–1640. [Google Scholar] [CrossRef] [Green Version]
- Reiners, P.W.; Nicolescu, S. Measurement of parent nuclides for (U–Th)/He chronometry by solution sector ICP-MS. ARHDL Rep. 2007, 1, 1–33. [Google Scholar]
- Gautheron, C.; Pinna-Jamme, R.; Derycke, A.; Ahadi, F.; Sanchez, C.; Haurine, F.; Monvoisin, G.; Barbosa, D.; Delpech, G.; Maltese, J.; et al. Technical note: Analytical protocols and performance for apatite and zircon (U–Th)/He analysis on quadrupole and magnetic sector mass spectrometer systems between 2007 and 2020. Geochronology 2021, 3, 351–370. [Google Scholar] [CrossRef]
- Boyce, J.W.; Hodges, K.V.; Olszewski, W.J.; Jercinovic, M.J.; Carpenter, B.D.; Reiners, P.W. Laser microprobe (U-Th)/He geochronology. Geochim. Cosmochim. Acta 2006, 70, 3031–3039. [Google Scholar] [CrossRef]
- Evans, N.J.; Wilson, N.S.F.; Cline, J.S.; McInnes, B.I.A.; Byrne, J. Fluorite (U-Th)/He thermochronology: Constraints on the low temperature history of the Yucca Mountain, Nevada. Appl. Geochem. 2005, 20, 1099–1105. [Google Scholar] [CrossRef]
- Hacker, B.R.; Kelemen, P.B.; Rioux, M.; McWilliams, M.O.; Gans, P.B.; Reiners, P.W.; Layer, P.W.; Söderlund, U.; Vervoort, J.D. Thermochronology of the Talkeetna intraoceanic arc of Alaska: Ar/Ar, U-Th/He, Sm-Nd, and Lu-Hf dating. Tectonics 2011, 30. [Google Scholar] [CrossRef] [Green Version]
- Reiners, P.W.; Campbell, I.H.; Nicolescu, S.; Allen, C.M.; Hourigan, J.K.; Garver, J.I.; Mattinson, J.M.; Cowan, D.S. (U-Th)/(He-Pb) double dating of detrital zircons. Am. J. Sci. 2005, 305, 259–311. [Google Scholar] [CrossRef] [Green Version]
- Dobson, K.J.; Stuart, F.M.; Dempster, T.J. U and Th zonation in Fish Canyon Tuff zircons: Implications for a zircon (U-Th)/He standard. Geochem. Cosmochim. Acta 2008, 72, 4745–4755. [Google Scholar] [CrossRef] [Green Version]
- Kraml, M.; Pik, R.; Rahn, M.; Selbekk, R.; Carignan, J.; Keller, J. A new multi-mineral age reference material for 40Ar/39Ar, (U-Th)/He and fission track dating methods: The Limberg t3 tuff. Geostand. Geoanal. Res. 2006, 30, 73–86. [Google Scholar] [CrossRef]
- Schmitz, M.D.; Bowring, S.A. U-Pb zircon and titanite systematics of the Fish Canyon Tuff: An assessment of high-precision U-Pb geochronology and its application to young volcanic rocks. Geochim. Cosmochim. Acta 2001, 65, 2571–2587. [Google Scholar] [CrossRef]
- Vermeesch, P. HelioPlot, and the treatment of overdispersed (U-Th-Sm)/He data. Chem. Geol. 2010, 271, 108–111. [Google Scholar] [CrossRef]
- Ault, A.K.; Guenthner, W.R.; Moser, A.C.; Miller, G.H.; Refsnider, K.A. Zircon grain selection reveals (de)coupled metamictization, radiation damage, and He diffusivity. Chem. Geol. 2018, 490, 1–12. [Google Scholar] [CrossRef]
- Zhang, M.; Salje, E.; Farnan, I.; Graeme-Barber, A.; Daniel, P.; Ewing, R.C.; Clark, A.M.; Leroux, H. Metamictization of zircon: Raman spectroscopic study. J. Phys. Condens. Matter 2000, 12, 1915–1925. [Google Scholar] [CrossRef]
- Beirau, T.; Mihailova, B.; Matveeva, G.; Kolb, U.; Malcherek, T.; Groat, L.A.; Bismayer, U. Structural anisotropy and annealing-induced nanoscale atomic rearrangements in metamict titanite. Am. Miner. 2012, 97, 1354–1365. [Google Scholar] [CrossRef]
- Zhang, M.; Salje, E.K. Spectroscopic Characterization of Metamictization and Recrystallization in Zircon and Titanite. Phase Transitions 2003, 76, 117–136. [Google Scholar] [CrossRef]
- Váczi, T.; Nasdala, L. Electron-beam-induced annealing of natural zircon: A Raman spectroscopic study. Phys. Chem. Miner. 2017, 44, 389–401. [Google Scholar] [CrossRef] [Green Version]
- Härtel, B.; Jonckheere, R.; Wauschkuhn, B.; Hofmann, M.; Frölich, S.; Ratschbacher, L. Zircon Raman dating: Age equation and calibration. Chem. Geol. 2021, 579, 120351. [Google Scholar] [CrossRef]
- Härtel, B.; Jonckheere, R.; Wauschkuhn, B.; Ratschbacher, L. The closure temperature(s) of zircon Raman dating. Geochronology 2021, 3, 259–272. [Google Scholar] [CrossRef]
- Pidgeon, R. Zircon radiation damage ages. Chem. Geol. 2014, 367, 13–22. [Google Scholar] [CrossRef]
- Hueck, M.; Dunkl, I.; Heller, B.; Basei, M.A.S.; Siegesmund, S. (U-Th)/He Thermochronology and Zircon Radiation Damage in the South American Passive Margin: Thermal Overprint of the Paraná LIP? Tectonics 2018, 37, 4068–4085. [Google Scholar] [CrossRef]
- Spiegel, C.; Kohn, B.; Belton, D.; Berner, Z.; Gleadow, A. Apatite (U-Th-Sm)/He thermochronology of rapidly cooled samples: The effect of He implantation. Earth Planet. Sci. Lett. 2009, 285, 105–114. [Google Scholar] [CrossRef]
- Schwartz, S.; Lardeaux, J.M.; Tricart, P.; Guillot, S.; Labrin, E. Diachronous exhumation of HP?LT metamorphic rocks from south-western Alps: Evidence from fission-track analysis. Terra Nova 2007, 19, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Ketcham, R.A. Forward and inverse modelling of low-temperature thermochronology data. Rev. Mineral. Geochem. 2005, 58, 275–314. [Google Scholar] [CrossRef]
- Gallagher, K. Transdimensional inverse thermal history modeling for quantitative thermochronology. J. Geophys. Res. Earth Surf. 2012, 117, 16. [Google Scholar] [CrossRef] [Green Version]
- Braun, J. Pecube: A new finite element code to solve the heat transport equation in three dimensions in the Earth’s crust including the effects of a time-varying, finite amplitude surface topography. Comput. Geosci. 2003, 29, 787–794. [Google Scholar] [CrossRef]
- Ginster, U.; Reiners, P.W.; Nasdala, L.; Chanmuang, C. Annealing kinetics of radiation damage in zircon. Geochim. Cosmochim. Acta 2019, 249, 225–246. [Google Scholar] [CrossRef]
- Odlum, M.L.; Stockli, D.F. Thermotectonic Evolution of the North Pyrenean Agly Massif During Early Cretaceous Hyperextension Using Multi-mineral U-Pb Thermochronometry. Tectonics 2019, 38, 1509–1531. [Google Scholar] [CrossRef]
- Yelland, A. Fission track thermotectonics of the Iberian-Eurasian plate collection. Ph.D. Thesis, Birkbeck University of London, London, UK, 1991. [Google Scholar]
- Gunnell, Y.; Calvet, M.; Brichau, S.; Carter, A.; Aguilar, J.-P.; Zeyen, H. Low long-term erosion rates in high-energy mountain belts: Insights from thermo- and biochronology in the Eastern Pyrenees. Earth Planet. Sci. Lett. 2009, 278, 208–218. [Google Scholar] [CrossRef]
- Golberg, J.-M.; Maluski, H. Données nouvelles et mise au point sur l’âge du métamorphisme pyrénéen. Comptes Rendus De L’académie Des Sci. 1988, 306, 429–435. [Google Scholar]
- Poujol, M.; Boulvais, P.; Kosler, J. Regional-scale Cretaceous albitization in the Pyrenees: Evidence from in situ U–Th–Pb dating of monazite, titanite and zircon. J. Geol. Soc. 2010, 167, 751–767. [Google Scholar] [CrossRef]
- Debroas, E.J. Le flysch noir albo-cenomanien temoin de la structuration albienne a senonienne de la Zone nord-pyreneenne en Bigorre (Hautes-Pyrenees, France). Bull. Société Géologique Fr. 1990, 6, 273–285. [Google Scholar] [CrossRef]
- Debroas, E.J.; Debroas, E.J. Modele de bassin triangulaire a l’intersection de decrochements divergents pour le fosse albo-cenomanien de la Ballongue (zone nord-pyreneenne, France). Bull. Société Géologique Fr. 1987, 3, 887–898. [Google Scholar] [CrossRef]
- Ford, M.; Hemmer, L.; Vacherat, A.; Gallagher, K.; Christophoul, F. Retro-wedge foreland basin evolution along the ECORS line, eastern Pyrenees, France. J. Geol. Soc. 2016, 173, 419–437. [Google Scholar] [CrossRef] [Green Version]
- Waldner, M.; Bellahsen, N.; Mouthereau, F.; Bernet, M.; Pik, R.; Rosenberg, C.L.; Balvay, M. Central Pyrenees Mountain Building: Constraints From New LT Thermochronological Data From the Axial Zone. Tectonics 2021, 40, e2020TC006614. [Google Scholar] [CrossRef]
- Tricart, P.; Schwartz, S. A north-south section across the Queyras Schistes lustrés (Piedmont zone, Western Alps): Syn-collision refolding of a subduction wedge. Eclogae Geol. Helv. 2006, 99, 429–442. [Google Scholar] [CrossRef]
- Schwartz, S.; Guillot, S.; Reynard, B.; Lafay, R.; Debret, B.; Nicollet, C.; Lanari, P.; Auzende, A.L. Pressure–temperature estimates of the lizardite/antigorite transition in high pressure serpentinites. Lithosphere 2013, 178, 197–210. [Google Scholar] [CrossRef] [Green Version]
- Agard, P.; Monie, P.; Jolivet, L.; Goffe, B. Exhumation of the Schistes Lustres complex: In situ laser probe 40Ar/39Ar constraints and implications for the Western Alps. J. Metamorph. Geol. 2002, 20, 599–618. [Google Scholar] [CrossRef]
- Guenthner, W.R.; Reiners, P.W.; DeCelles, P.G.; Kendall, J. Sevier belt exhumation in central Utah constrained from complex zircon (U-Th)/He data sets: Radiation damage and He inheritance effects on partially reset detrital zircons. Geol. Soc. Am. Bull. 2015, 127, 323–348. [Google Scholar] [CrossRef]
- Baughman, J.S.; Flowers, R.M. Deciphering a 2 Gyr-Long Thermal History From a Multichronometer (U-Th)/He Study of the Phalaborwa Carbonatite, Kaapvaal Craton, South Africa. Geochem. Geophys. Geosyst. 2018, 19, 1581–1594. [Google Scholar] [CrossRef]
- DeLucia, M.S.; Guenthner, W.R.; Marshak, S.; Thomson, S.N.; Ault, A.K. Thermochronology links denudation of the Great Unconformity surface to the supercontinent cycle and snowball Earth. Geology 2018, 46, 167–170. [Google Scholar] [CrossRef]
- Dobson, K.J.; Persano, C.; Stuart, F. Quantitative constraints on mid- to shallow-crustal processes using the zircon (U–Th)/He thermochronometer. Geol. Soc. Lond. 2009, 324, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Ksienzyk, A.K.; Dunkl, I.; Jacobs, J.; Fossen, H.; Kohlmann, F. From orogen to passive margin: Constraints from fission track and (U-Th)/He analyses on Mesozoic uplift and fault reactivation in SW Norway. In New Perspectives on the Caledonides of Scandinavia and Related Areas; Corfu, F., Gasser, D., Chew, D.M., Eds.; The Geological Society of London: London, UK, 2014. [Google Scholar]
- Hueck, M.; Dunkl, I.; Oriolo, S.; Wemmer, K.; Basei, M.A.; Siegesmund, S. Comparing contiguous high-and low-elevation continental margins: New (U-Th)/He constraints from South Brazil and an integration of the thermochronological record of the southeastern passive margin of South America. Tectonophysics 2019, 770, 228222. [Google Scholar] [CrossRef]
- Cogné, N.; Gallagher, K.; Cobbold, P.R.; Riccomini, C.; Gautheron, C. Post-breakup tectonics in southeast Brazil from thermochronological data and combined inverse-forward thermal history modeling. J. Geophys. Res. Earth Surf. 2012, 117, 117–11413. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, K.; Hawkesworth, C.J.; Mantovani, M.S.M. The denudation history of the onshore continental margin of SE Brazil inferred from apatite fission track data. J. Geophys. Res. Earth Surf. 1994, 99, 18117–18145. [Google Scholar] [CrossRef]
- Hackspacher, P.; Ribeiro, L.; Ribeiro, M.; Fetter, A.; Neto, J.H.; Tello, C.; Dantas, E. Consolidation and Break-up of the South American Platform in Southeastern Brazil: Tectonothermal and Denudation Histories. Gondwana Res. 2004, 7, 91–101. [Google Scholar] [CrossRef]
- Karl, M.; Glasmacher, U.A.; Kollenz, S.; Franco-Magalhaes, A.O.; Stockli, D.F.; Hackspacher, P.C. Evolution of the South Atlantic passive continental margin in southern Brazil derived from zircon and apatite (U–Th–Sm)/He and fission-track data. Tectonophysics 2013, 604, 224–244. [Google Scholar] [CrossRef]
- Hueck, M.; Oriolo, S.; Dunkl, I.; Wemmer, K.; Oyhantçabal, P.; Schanofski, M.; Basei, M.; Ângelo, S.; Siegesmund, S. Phanerozoic low-temperature evolution of the Uruguayan Shield along the South American passive margin. J. Geol. Soc. Lond. 2017, 174, 609–626. [Google Scholar] [CrossRef] [Green Version]
- Machado, J.P.; Jelinek, A.R.; Bicca, M.M.; Stephenson, R.; Genezini, F.A. West Gondwana orogenies and Pangaea break-up: Thermotectonic effects on the southernmost Mantiqueira Province, Brazil. J. Geol. Soc. 2019, 176, 1056–1075. [Google Scholar] [CrossRef]
- Machado, J.P.; Jelinek, A.R.; Stephenson, R.; Gaucher, C.; Bicca, M.M.; Chiglino, L.; Genezini, F.A. Low-temperature thermochronology of the South Atlantic margin along Uruguay and its relation to tectonic events in West Gondwana. Tectonophysics 2020, 784, 228439. [Google Scholar] [CrossRef]
- Oliveira, C.H.E.; Jelinek, A.R.; Chemale, F., Jr.; Bernet, M. Evidence of post-Gondwana breakup in Southern Brazilian Shield: Insights from apatite and zircon fission track thermochronology. Tectonophysics 2016, 666, 173–187. [Google Scholar] [CrossRef]
- Basei, M.A.S.; Siga, O., Jr.; Masquelin, H.; Harara, O.M.; Reis Neto, J.M.; Preciozzi, F. The Dom Feliciano Belt of Brazil and Uruguay and its Foreland Domain the Rio de la Plata Craton: Framework, tectonic evolution and correlation with similar provinces of Southwestern Africa. In Tectonic Evolution of South America; Cordani, U.G., Milani, E.J., Thomaz Filho, A., Campos, D.A., Eds.; Brazilian Academy of Science: Rio de Janeiro, Brazil, 2000; pp. 311–334. [Google Scholar]
- Basei, M.; Neto, M.C.; Castro, N.; Nutman, A.; Wemmer, K.; Yamamoto, M.; Hueck, M.; Osako, L.; Siga, O.; Passarelli, C. Tectonic evolution of the Brusque Group, Dom Feliciano belt, Santa Catarina, Southern Brazil. J. South Am. Earth Sci. 2011, 32, 324–350. [Google Scholar] [CrossRef]
- Hueck, M.; Basei, M.A.S.; Wemmer, K.; Oriolo, S.; Heidelbach, F.; Siegesmund, S. Evolution of the Major Gercino Shear Zone in the Dom Feliciano Belt, South Brazil, and implications for the assembly of southwestern Gondwana. Int. J. Earth Sci. 2018, 108, 403–425. [Google Scholar] [CrossRef]
- Passarelli, C.R.; Basei, M.A.; Siga, O.; Mc Reath, I.; Neto, M.D.C.C. Deformation and geochronology of syntectonic granitoids emplaced in the Major Gercino Shear Zone, southeastern South America. Gondwana Res. 2010, 17, 688–703. [Google Scholar] [CrossRef]
- Powell, J.; Schneider, D.; Stockli, D.; Fallas, K. Zircon (U-Th)/He thermochronology of Neoproterozoic strata from the Mackenzie Mountains, Canada: Implications for the Phanerozoic exhumation and deformation history of the northern Canadian Cordillera. Tectonics 2016, 35, 663–689. [Google Scholar] [CrossRef] [Green Version]
- Janasi, V.A.; Freitas, V.A.; Heaman, L.H. The onset of flood basalt volcanism, Northern Paraná Basin, Brazil: A precise U–Pb baddeleyite/zircon age for a Chapecó-type dacite. Earth Planet. Sci. Lett. 2011, 302, 147–153. [Google Scholar] [CrossRef]
- Rossetti, L.; Lima, E.F.; Waichel, B.L.; Hole, M.; Simões, M.S.; Scherer, C.M. Lithostratigraphy and volcanology of the Serra Geral Group, Paraná-Etendeka Igneous Province in Southern Brazil: Towards a formal stratigraphical framework. J. Volcanol. Geotherm. Res. 2018, 355, 98–114. [Google Scholar] [CrossRef]
- Florisbal, L.M.; Heaman, L.M.; de Assis Janasi, V.; Bitencourt, M.F. Tectonic significance of the Florianópolis Dyke Swarm, Paraná–Etendeka Magmatic Province: A reappraisal based on precise U–Pb dating. J. Volcanol. Geotherm. Res. 2014, 289, 140–150. [Google Scholar] [CrossRef]
- Anderson, A.J.; Hanchar, J.M.; Hodges, K.V.; van Soest, M.C. Mapping radiation damage zoning in zircon using Raman spectroscopy: Implications for zircon chronology. Chem. Geol. 2020, 538, 119494. [Google Scholar] [CrossRef]
- Farley, K. He diffusion systematics in minerals: Evidence from synthetic monazite and zircon structure phosphates. Geochim. Cosmochim. Acta 2007, 71, 4015–4024. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gautheron, C.; Hueck, M.; Ternois, S.; Heller, B.; Schwartz, S.; Sarda, P.; Tassan-Got, L. Investigating the Shallow to Mid-Depth (>100–300 °C) Continental Crust Evolution with (U-Th)/He Thermochronology: A Review. Minerals 2022, 12, 563. https://doi.org/10.3390/min12050563
Gautheron C, Hueck M, Ternois S, Heller B, Schwartz S, Sarda P, Tassan-Got L. Investigating the Shallow to Mid-Depth (>100–300 °C) Continental Crust Evolution with (U-Th)/He Thermochronology: A Review. Minerals. 2022; 12(5):563. https://doi.org/10.3390/min12050563
Chicago/Turabian StyleGautheron, Cécile, Mathias Hueck, Sébastien Ternois, Beatrix Heller, Stéphane Schwartz, Philippe Sarda, and Laurent Tassan-Got. 2022. "Investigating the Shallow to Mid-Depth (>100–300 °C) Continental Crust Evolution with (U-Th)/He Thermochronology: A Review" Minerals 12, no. 5: 563. https://doi.org/10.3390/min12050563
APA StyleGautheron, C., Hueck, M., Ternois, S., Heller, B., Schwartz, S., Sarda, P., & Tassan-Got, L. (2022). Investigating the Shallow to Mid-Depth (>100–300 °C) Continental Crust Evolution with (U-Th)/He Thermochronology: A Review. Minerals, 12(5), 563. https://doi.org/10.3390/min12050563