Sediment Characteristics—A Key Factor for Fish Farm Site Selection: Examples from Croatia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Sampling
2.1.1. Ilova River Site
2.1.2. Krka River Site
2.1.3. Pelješac Study Site
2.2. Sediment Analyses
2.2.1. Grain Size Analysis
2.2.2. Carbonate Content
2.2.3. Mineral Composition
2.2.4. Organic Matter (OM) Content
2.2.5. Statistical Analysis
3. Results
3.1. Grain Size Analysis
3.1.1. Ilova River Site
3.1.2. Krka River Site
3.1.3. Pelješac Site
3.2. Carbonate Content
3.3. Mineral Composition
3.4. Organic Matter
3.5. Statistical Analysis
4. Discussion
4.1. OM Content in Sediment
4.2. OM in Relation to Carbonate Content, Grain Size, and Mineral Composition
4.2.1. Ilova River Site
4.2.2. Krka River Site
4.2.3. Pelješac Site
4.2.4. Role of Mineral Composition and Grain Size at all Study Sites
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Available online: http://www.fao.org/home/en/ (accessed on 11 November 2020).
- Bascuro, B. Mediterranean Aquaculture: Marine Fish Farming Development. Report. Available online: http://hdl.handle.net/1834/544 (accessed on 9 November 2020).
- Croatian Ministry of Agriculture. Available online: https://ribarstvo.mps.hr/default.aspx?id=14 (accessed on 11 November 2020).
- Kaiser, M.J.; Laing, I.; Utting, S.D.; Burnell, G.M. Environmental impacts of bivalve mariculture. J. Shellfish Res. 1998, 17, 59–66. [Google Scholar]
- Perez, O.M.; Telfer, T.C.; Ross, L.G. Geographical information systems-based models for offshore floating marine fish cage aquaculture site selection in Tenerife, Canary Islands. Aquac. Res. 2005, 36, 946–961. [Google Scholar] [CrossRef]
- Dapueto, G.; Massa, F.; Costa, S.; Cimoli, L.; Olivari, E.; Chiantore, M.; Federici, B.; Povero, P. A spatial multi-criteria evaluation for site selection of offshore marine fish farm in the Ligurian Sea, Italy. Ocean Coast. Manag. 2015, 116, 64–77. [Google Scholar] [CrossRef]
- Alvarado-Flores, C.; Encina-Montoya, F.; Tucca, F.; Vega-Aguayo, R.; Nimptsch, J.; Oberti, C.; Carmona, E.R.; Luders, C. Assessing the ecological risk of active principles used currently by freshwater fish farms. Sci. Total Environ. 2021, 775, 144716. [Google Scholar] [CrossRef]
- Hornick, K.M.; Buschmann, A.H. Insights into the diversity and metabolic function of bacterial communities in sediments from Chilean salmon aquaculture sites. Ann. Microbiol. 2018, 68, 63–77. [Google Scholar] [CrossRef]
- Quinones, R.A.; Fuentes, M.; Montes, R.M.; Soto, D.; Leon-Munoz, J. Environmental issues in Chilean salmon farming: A review. Rev. Aquac. 2019, 11, 375–402. [Google Scholar] [CrossRef]
- Kamjunke, N.; Nimptsch, J.; Harir, M.; Herzsprung, P.; Schmitt-Kopplin, P.; Neu, T.R.; Graeber, D.; Osorio, S.; Valenzuela, J.; Carlos Reyes, J.; et al. Land-based salmon aquacultures change the quality and bacterial degradation of riverine dissolved organic matter. Sci. Rep. 2017, 7, 43739. [Google Scholar] [CrossRef]
- Tett, P. Fish Farm Wastes in the Ecosystem. In Aquaculture in the Ecosystem; Holmer, M., Black, K., Duarte, C.M., Marbà, N., Karakassis, I., Eds.; Springer: New York, NY, USA, 2008; pp. 1–46. [Google Scholar]
- Giménez-Aguado, F.; Ruiz-Fernández, J.M. Influence of an experimental fish farm on the spatio-temporal dynamic of a Mediterranean maërl algae community. Mar. Environ. Res. 2012, 74, 47–55. [Google Scholar] [CrossRef]
- Brooks, K.M.; Mahnken, C.V.W. Interactions of Atlantic salmon in the Pacific northwest environment: II. Organic wastes. Fish. Res. 2003, 62, 255–293. [Google Scholar] [CrossRef]
- Karakassis, I.; Tsapakis, M.; Hatziyanni, E.; Papadopoulou, K.N.; Plaiti, W. Impact of cage farming of fish on the sea bed in three Mediterranean coastal areas. ICES J. Mar. Sci. 2000, 57, 1462–1471. [Google Scholar] [CrossRef] [Green Version]
- Serpa, D.; Duarte, P. Impacts of Aquaculture and Mitigation Measures. Dyn. Biochem. Process Biotechnol. Mol. Biol. 2008, 2, 1–20. [Google Scholar]
- Wu, R.S.S. The environmental impact of marine fish culture: Towards a sustainable future. Mar. Pollut. Bull. 1995, 31, 159–166. [Google Scholar] [CrossRef]
- Holmer, M.; Marbà, N.; Díaz-Almela, E.; Duarte, C.M.; Tsapakis, M.; Danovaro, R. Sedimentation of organic matter from fish farms in oligotrophic Mediterranean assessed through bulk and stable isotope (δδ13C and δ15N) analyses. Aquaculture 2007, 262, 268–280. [Google Scholar] [CrossRef] [Green Version]
- Dalsgaard, T.; Krause-Jensen, D. Monitoring nutrient release from fish farms with macroalgal and phytoplankton bioasays. Aquaculture 2006, 256, 302–310. [Google Scholar] [CrossRef]
- Tovar, T.; Moreno, C.; Mánuel-Vez, M.P.; Garcia-Vargas, M. Environmental implications of intensive marine aquaculture in earthen ponds. Mar. Pollut. Bull. 2000, 40, 981–988. [Google Scholar] [CrossRef]
- Tovar, A.; Moreno, C.; Manuel-Vez, M.; Garcia-Vargas, M. Environmental impacts of intensive aquaculture in marine waters. Water Res. 2000, 34, 334–342. [Google Scholar] [CrossRef]
- Giménez-Aguado, F.; García-García, B. Assessment of some chemical parameters in marine sediments exposed to offshore cage fish farming influence: A pilot study. Aquaculture 2004, 242, 283–296. [Google Scholar] [CrossRef]
- Sutherland, R.A. Loss-on-ignition estimates for organic matter and relationships to organic carbon in fluvial bed sediments. Hydrobiologia 1998, 389, 153–167. [Google Scholar] [CrossRef]
- Horowitz, A.J.A. Primer on Sediment-Trace Element Chemistry, 2nd ed.; Lewis Publishers: Chelsea, MI, USA, 1991; p. 136. [Google Scholar]
- Schorer, M. Pollutant and organic matter content in sediment particle size fractions. IAHS 1997, 243, 59–67. [Google Scholar]
- Evans, K.M.; Gill, R.A.; Robotham, P.W.J. The PAH and organic content of sediment particle size fractions. Water Air Soil Pollut. 1990, 51, 13–31. [Google Scholar] [CrossRef]
- Nordvarg, L.; Hakanson, L. Predicting the environmental response of fish farming in coastal areas of the Aland archipelago (Baltic Sea) using management models for coastal water planning. Aquaculture 2002, 206, 217–243. [Google Scholar] [CrossRef]
- Klaoudatos, S.D.; Klaoudatos, D.S.; Smith, J.; Bogdanos, K.; Papageorgiou, E. Assessment of site specific benthic impact of floating cage farming in the eastern Hios island, Eastern Aegean Sea, Greece. J. Exp. Mar. Biol. Ecol. 2006, 338, 96–111. [Google Scholar] [CrossRef]
- Burdige, D.J. Geochemistry of Marine Sediments; Princeton University Press: Princeton, NJ, USA, 2006; p. 609. [Google Scholar]
- Kalantzi, I.; Karakassis, I. Benthic impacts of fish farming: Meta-analysis of community and geochemical data. Mar. Pollut. Bull. 2006, 52, 484–493. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Gallego, L.; Meerhoff, E.; Poersch, L.; Aubriot, L.; Fagetti, C.; Vitancurt, J.; Conde, D. Establishing limits to aquaculture in a protected coastal lagoon: Impact of Farfantepenaeus paulensis pens on water quality, sediment and benthic biota. Aquaculture 2008, 277, 30–38. [Google Scholar] [CrossRef]
- Apostolaki, E.T.; Tsagaraki, T.; Tsapakis, M.; Karakassis, I. Fish farming impact on sediments and macrofauna associated with seagrass meadows in the Mediterranean. Estuar. Coast Shelf Sci. 2007, 75, 408–416. [Google Scholar] [CrossRef]
- Official Gazette of the Republic of Croatia No 106/2018. Available online: https://narodne-novine.nn.hr/clanci/sluzbeni/2018_11_106_2070.html (accessed on 23 September 2020).
- Zaninović, K.; Gajić-Čapka, M.; Perčec Tadić, M.; Vučetić, M.; Milković, J.; Bajić, A.; Cindrić, K.; Cvitan, L.; Katušin, Z.; Kaučić, D.; et al. Climate Atlas of Croatia 1961–1990, 1971–2000; Croatian Meteorological and Hydrological Service: Zagreb, Croatia, 2008; p. 141. [Google Scholar]
- EUROSTAT. Available online: https://ec.europa.eu/eurostat/web/degree-of-urbanisation/background (accessed on 15 January 2022).
- CGS. Geological Map of Republic of Croatia, M 1:300000; Croatian Geological Institute: Zagreb, Croatia, 2009. [Google Scholar]
- Velić, I.; Vlahović, I. Geological Map Interpreter M 1:300000; Croatian Geological Institute: Zagreb, Croatia, 2009; p. 141. [Google Scholar]
- Micromeritics SediGraph 5100 Particle Size Analysis System Operator’ Manual; Micromeritics Instrument Corporation: Norcross, GA, USA, 2002; Available online: https://www.micromeritics.com/pdf/products/sedigraph_5100_brochure.pdf (accessed on 4 December 2020).
- Blott, S.J.; Pye, K. GRADISTAT: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Process. Landf. 2001, 26, 1237–1248. [Google Scholar] [CrossRef]
- Folk, R.L. The distinction between grain size and mineral composition in sedimentary rock nomenclature. J. Geol. 1954, 62, 344–359. [Google Scholar] [CrossRef]
- Folk, R.L.; Ward, W.C. Brazos river bar: A study in the significance of grain size parameters. J. Sediment. Petrol. 1957, 27, 3–26. [Google Scholar] [CrossRef]
- Puhr, K.; Pikelj, K. The effect of in situ shading on a Posidonia oceanica meadow situated within a fish farm induced moderately nutrient enriched environment. Mar. Pollut. Bull. 2012, 64, 1537–1548. [Google Scholar] [CrossRef]
- Puhr, K.; Pikelj, K.; Fiket, Ž. Can multiple fish farms be integrated within a semi-enclosed bay without causing acute ecosystem degradation? Oceanologia 2017, 59, 318–330. [Google Scholar] [CrossRef] [Green Version]
- Heiri, O.; Lotter, A.F.; Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. J. Paleolimnol. 2001, 25, 101–110. [Google Scholar] [CrossRef]
- Rashid, M.A.; Reinson, G.E. Organic matter in surficial sediments of the Miramichi Estuary, New Brunswick, Canada. Estuar. Coast. Mar. Sci. 1979, 8, 23–36. [Google Scholar] [CrossRef]
- Hossain, M.B.; Marshall, D.J.; Venkatramanan, S. Sediment granulometry and organic matter content in the intertidal zone of the Sungai Brunei estuarine system, northwest coast of Borneo. Carpath. J. Earth Environ. Sci. 2014, 9, 231–239. [Google Scholar]
- Vdović, N.; Lučić, M.; Mikac, N.; Bačić, N. Partitioning of Metal Contaminants between Bulk and Fine-Grained Fraction in Freshwater Sediments: A Critical Appraisal. Minerals 2021, 11, 603. [Google Scholar] [CrossRef]
- Hadžija, O.; Juračić, M.; Luić, M.; Tonković, M.; Jeričević, B. The carbohydrates in relation to mineralogic and granulometric composition of surface sediments in the karst estuary (River Krka Estuary, Yugoslavia). Estuar. Coast. Shelf Sci. 1985, 21, 701–709. [Google Scholar] [CrossRef]
- Matijević, S.; Kušpilić, G.; Kljaković-Gašpić, Z.; Bogner, D. Impact of fish farming on the distribution of phosphorus in sediments in the middle Adriatic area. Mar. Pollut. Bull. 2008, 56, 535–548. [Google Scholar] [CrossRef]
- Matijević, S.; Bogner, D.; Morović, M.; Tičina, V.; Grbec, B. Characteristics of the Sediment Along the Eastern Adriatic Coast (Croatia). Fresenius Environ. Bull. 2008, 17, 1763–1772. [Google Scholar]
- Jurina, I.; Ivanić, M.; Vdović, N.; Troskot-Čorbić, T.; Lojen, S.; Mikac, N.; Sondi, I. Deposition of trace metals in sediments of the deltaic plain and adjacent coastal area (the Neretva River, Adriatic Sea). J. Geochem. Explor. 2015, 157, 120–131. [Google Scholar] [CrossRef]
- Jamičić, D. Geological Map of Republic of Croatia, M 1:100000 Daruvar Sheet L33-95; Geološki Zavod: Zagreb, Croatia; Savezni Geološki Institut: Belgrade, Serbia, 1989. [Google Scholar]
- Lyday, J.R. Atokan (Pennsylvanian) Berlin Field: Genesis of Recycled Detrital Dolomite Reservoir, Deep Anadarko Basin, Oklahoma. Am. Assoc. Pet. Geol. Bull. 1985, 69, 1931–1949. [Google Scholar]
- Radwan, O.; Bu Khamsin, A.; Al-Ramadan, K. Detrital dolomite: Characterization and characteristics. Geol. Q. 2018, 62, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Krka River National Park. Available online: http://np-krka.hr (accessed on 27 January 2021).
- Pikelj, K.; Žigić, V.; Juračić, M. Origin and distribution of surface sediments in the Grgur Channel, Adriatic Sea, Croatia. Geol. Croat. 2009, 62, 95–105. [Google Scholar] [CrossRef]
- Pikelj, K. Composition and Origin of Seabed Sediments of the Eastern Part of the Adriatic Sea. Ph.D. Thesis, University of Zagreb, Zagreb, Croatia, 29 June 2010. (In Croatian). [Google Scholar]
- Pikelj, K.; Juračić, M. Eastern Adriatic Coast (EAC): Geomorphology and coastal vulnerability of a karstic coast. J. Coast. Res. 2013, 29, 944–957. [Google Scholar] [CrossRef]
- Phillips, S.C.; Johnson, J.E.; Miranda, E.; Disenhof, C. Improving CHN measurements in carbonate-rich marine sediments. Limnol. Oceanogr. Methods 2011, 9, 194–203. [Google Scholar] [CrossRef]
- Pikelj, K.; Jakšić, L.; Aščić, Š.; Juračić, M. Characterization of the fine-grained fraction in the surface sediment of the eastern Adriatic channel areas. Acta Adriat. 2016, 57, 195–208. [Google Scholar]
- Nelson, C.S.; James, N.P. Marine cements in mid-Tertiary cool-water shelf limestones of New Zealand and southern Australia. Sedimentology 2000, 47, 609–629. [Google Scholar] [CrossRef]
- Vdović, N.; Juračić, M. Sedimentological and surface characteristics of the Northern and Central Adriatic sediments. Geol. Croat. 1993, 46, 157–163. [Google Scholar]
- Aloupi, M.; Angelidis, M.O. Normalization to lithium for the assessment of metal contamination in coastal sediment cores from the Aegean Sea, Greece. Mar. Environ. Res. 2001, 52, 1–12. [Google Scholar] [CrossRef]
- Rubio, B.; Nombela, M.A.; Vilas, F. Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain): An assessment of metal pollution. Mar. Pollut. Bull. 2000, 44, 968–980. [Google Scholar] [CrossRef]
Sample | Date | Gravel (%) | Sand (%) | Mud (%) | Texture | Md (mm) | Mz (mm) | So (ϕ) |
---|---|---|---|---|---|---|---|---|
IF | Feb 2016 | NS | NS | NS | NS | NS | NS | NS |
IF | Jun 2016 | 61.8 | 10.6 | 27.6 | mG | 4.39 | 0.63 | 4.33 |
IF | Sep 2016 | 22.5 | 19 | 58.5 | gM | 0.03 | 0.06 | 4.85 |
IF | Nov 2016 | 39.2 | 15.3 | 51.8 | mG | 0.24 | 0.17 | 4.61 |
IR | Feb 2016 | NS | NS | NS | NS | NS | NS | NS |
IR | Jun 2016 | 0 | 13.1 | 86.9 | sM | 0.006 | 0.007 | 2.71 |
IR | Sep 2016 | 0 | 2.2 | 97.8 | M | 0.003 | 0.008 | 2.13 |
IR | Nov 2016 | 0 | 12.4 | 87.6 | sM | 0.005 | 0.008 | 2.7 |
Sample | Date | Gravel (%) | Sand (%) | Mud (%) | Texture | Md (mm) | Mz (mm) | So (ϕ) |
---|---|---|---|---|---|---|---|---|
KF | Feb 2017 | NS | NS | NS | NS | NS | NS | NS |
KF | Jun 2017 | 21.2 | 70.1 | 8.7 | gmS | 1.09 | 0.81 | 2,03 |
KF | Sep 2017 | 35.8 | 62.8 | 1.4 | sG | 0.43 | 0.76 | 2.13 |
KF | Nov 2017 | 56.7 | 41.6 | 1.7 | sG | 4.32 | 1.75 | 2.16 |
KR | Feb 2017 | 0.5 | 96.4 | 3.1 | (g)S | 0.19 | 0.20 | 0.77 |
KR | Jun 2017 | 32.8 | 66.2 | 1 | sG | 0.55 | 0.91 | 1.90 |
KR | Sep 2017 | 54.1 | 44.2 | 1.7 | sG | 2.46 | 1.74 | 1.84 |
KR | Nov 2017 | 40 | 58.5 | 1.4 | sG | 1.06 | 1.16 | 1.91 |
Sample | Date | Gravel (%) | Sand (%) | Mud (%) | Texture | Md (mm) | Mz (mm) | So (ϕ) |
---|---|---|---|---|---|---|---|---|
PF | Feb 2017 | 12.6 | 81.6 | 5.8 | (g)S | 0.73 | 0.64 | 1.73 |
PF | Jun 2017 | 9.7 | 85.6 | 4.8 | (g)S | 0.59 | 0.57 | 1.63 |
PF | Sep 2017 | 35.9 | 10.9 | 53.1 | mG | 0.02 | 0.05 | 5.16 |
PF | Nov 2017 | 41 | 55 | 4 | sG | 1.54 | 1.48 | 1.7 |
PR | Feb 2017 | 56 | 39.7 | 4.3 | sG | 2.54 | 2.1 | 1.69 |
PR | Jun 2017 | 50.2 | 46.8 | 3 | sG | 2.02 | 1.7 | 1.82 |
PR | Sep 2017 | 14.2 | 82.6 | 3.2 | (g)S | 0.74 | 0.73 | 1.47 |
PR | Nov 2017 | 50.3 | 47.4 | 2.3 | sG | 2.04 | 1.93 | 1.58 |
Sample | Date | Carbonates (%) | Sample | Date | Carbonates (%) |
---|---|---|---|---|---|
IF | Feb 2016 | NS | IR | Feb 2016 | NS |
IF | Jun 2016 | 18.53 | IR | Jun 2016 | 0 |
IF | Sep 2016 | 23.03 | IR | Sep 2016 | 6.17 |
IF | Nov 2016 | 46.57 | IR | Nov 2016 | 0 |
KF | Feb 2017 | NS | KR | Feb 2017 | 95.32 |
KF | Jun 2017 | 97.33 | KR | Jun 2017 | 88.68 |
KF | Sep 2017 | 87.57 | KR | Sep 2017 | 90.98 |
KF | Nov 2017 | 81.65 | KR | Nov 2017 | 91.7 |
PF | Feb 2017 | 95.2 | PR | Feb 2017 | 92.17 |
PF | Jun 2017 | 92.9 | PR | Jun 2017 | 95.47 |
PF | Sep 2017 | 56.33 | PR | Sep 2017 | 95.33 |
PF | Nov 2017 | 94.52 | PR | Nov 2017 | 90.2 |
Study Site | Quartz | Calcite | Mg-Calcite | Dolomite | Aragonite | Plagioclase | Mica | Clay Minerals |
---|---|---|---|---|---|---|---|---|
Ilova | +++ | (+) | - | + | - | ++ | ++ | + |
Krka | (+) | +++ | - | +++ | - | - | - | - |
Pelješac | (+) | +++ | +++ | (+) | ++ | - | - | - |
Sample | Date | OM (%) | Sample | Date | OM (%) |
---|---|---|---|---|---|
IF | Feb 2016 | NS | IR | Feb 2016 | NS |
IF | Jun 2016 | 4.55 | IR | Jun 2016 | 5.72 |
IF | Sep 2016 | 4.32 | IR | Sep 2016 | 6.55 |
IF | Nov 2016 | 3.87 | IR | Nov 2016 | 6.84 |
KF | Feb 2017 | NS | KR | Feb 2017 | 1.8 |
KF | Jun 2017 | 4.19 | KR | Jun 2017 | 1.08 |
KF | Sep 2017 | 4.07 | KR | Sep 2017 | 1.49 |
KF | Nov 2017 | 4.05 | KR | Nov 2017 | 1.39 |
PF | Feb 2017 | 11.46 | PR | Feb 2017 | 5.96 |
PF | Jun 2017 | 3.67 | PR | Jun 2017 | 3.77 |
PF | Sep 2017 | 4.73 | PR | Sep 2017 | 3.28 |
PF | Nov 2017 | 2.85 | PR | Nov 2017 | 8.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pikelj, K.; Uroš, A.; Kolda, A.; Gavrilović, A.; Kapetanović, D. Sediment Characteristics—A Key Factor for Fish Farm Site Selection: Examples from Croatia. Minerals 2022, 12, 696. https://doi.org/10.3390/min12060696
Pikelj K, Uroš A, Kolda A, Gavrilović A, Kapetanović D. Sediment Characteristics—A Key Factor for Fish Farm Site Selection: Examples from Croatia. Minerals. 2022; 12(6):696. https://doi.org/10.3390/min12060696
Chicago/Turabian StylePikelj, Kristina, Anita Uroš, Anamarija Kolda, Ana Gavrilović, and Damir Kapetanović. 2022. "Sediment Characteristics—A Key Factor for Fish Farm Site Selection: Examples from Croatia" Minerals 12, no. 6: 696. https://doi.org/10.3390/min12060696
APA StylePikelj, K., Uroš, A., Kolda, A., Gavrilović, A., & Kapetanović, D. (2022). Sediment Characteristics—A Key Factor for Fish Farm Site Selection: Examples from Croatia. Minerals, 12(6), 696. https://doi.org/10.3390/min12060696