Integration of Stress–Strain Maps in Mineral Systems Targeting for IOCG Mineralisation within the Mt. Woods Inlier, Gawler Craton, South Australia
Abstract
:1. Introduction
2. Regional Geological Setting
3. Geophysical Data Interpretation
3.1. Structural Re-Interpretation of the Mt. Woods Inlier
3.2. Description and Insights
3.2.1. Lithological Domains
3.2.2. Structural Architecture
3.2.3. Prominent Hill Area
4. Structural Preparation and Deformation Related to Hydrothermal Mineralisation
5. IOCG Deposit Structural Architecture
6. Stress Mapping
6.1. Finite Element Analysis—Model Parameters
6.2. Finite Element Analysis—Simulation Outputs
7. Targeting
- Within zones that exhibit rapid lateral changes or heterogeneity in differential stress, for instance along the strike of host lithologies around Prominent Hill, comprising approximately 1.5 km-wide N-S-trending corridors (Figure 8) (Plumbing Fluid System: Focused Fluid Flow in Relatively High-Strain Shear Zones). In terms of scoring this was treated as a binary (Table 2), whereby areas that exhibit rapid lateral changes or heterogeneity in differential stress >0.05 in the TRI (Figure 8) are considered important in weighting or scoring (Figure 11A);
- Proximity to major ENE-trending shear zones (Plumbing Fluid System: Deep Fluid Conduit: Crustal-Scale Shear Zone). Known or established polymetallic mineralisation occurs within a distance of approximately 12–16 km north of the Bulgunnia Fault Zone, along the Olympic Dam-trending structure. However, Prominent Hill is 6 km from the Bulgunnia Fault Zone, while Cairn Hill is 7 km from the Karari Shear Zone (Figure 1 and Figure 2). A multi-buffer of 10,500 m, 3240 m and 1800 m was selected for the Bulgunnia and Karari Fault/Shear Zones (Figure 11C). Consequently, a lower weighting was assigned to the 10,500 m buffer zone on either side of these shear zones, while buffer zones 3240 m and 1800 m attracted higher relative weightings or scores (Table 2);
- Proximity to the Olympic Dam-trending structures (Plumbing Fluid System: Deep Fluid Conduit: Crustal-Scale Shear Zone). Prominent Hill is situated between two deep-seated, NW-trending shear zone corridors, including the Southern Overthrust and Skylark Shear Zone (Figure 2), which are interpreted as extensions of the Elizabeth Creek Fault Zone. A buffer of 2000 m was selected for each shear, comprising multiple shears within a total width of up to 7.5 km (Figure 11D). In terms of scoring, this was treated as a binary (inside vs. outside) (Table 2);
- Within the host package or host units, also treated as a binary (inside vs. outside) (Trap: Chemical Trap) (Figure 11E). However, so as not to negatively bias areas outside of the Prominent Hill area, due to the fact that host units are restricted in their extent, this only attracts a relatively low score overall (Table 2);
- Contacts that comprise significantly contrasting competencies/rheologies, for example between the components of the host package around Prominent Hill and at the contact of the gabbro-gabbrodiorite body, as these have undergone dilation and extension (Depositional Site: Rheological Trap: High Rheological Contrast) (Figure 11F). A narrow or conservative buffer of 200 m was applied for these in terms of scoring. This was treated as a binary (Table 2) (inside vs. outside);
- Intersection points between pairs of structures that display an obtuse intersection angle (Figure 4 and Figure 11G) (Plumbing Fluid System: High-Damage Zones at Fault Intersections). These were manually identified in ArcView, and were selected where the NNW-SSE trend (direction of Dn+2 extension) bisected or approximately bisected a mutually obtuse angle. Buffers of 100 m, 250 m, 500 m and <1000 were applied and appropriately scored (Table 2).
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schodde, R.C. Discovery performances of the western world gold industry over the period 1985–2003. In Proceedings of the PACRIM 2004 Congress, Adelaide, Australia, 19–22 September 2004; AUSIMM: Melbourne, Australia; pp. 367–380. [Google Scholar]
- Hronsky, J.M.A.; Groves, D.I. Science of targeting: Definition, strategies, targeting and performance measurement. Aust. J. Earth Sci. 2008, 55, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Hrichi, S.; Chaabane-Banaoues, R.; Bayar, S.; Flamini, G.; Oulad El Majdoub, Y.; Mangraviti, D.; Mondello, L.; El Mzoughi, R.; Babba, H.; Mighri, Z.; et al. Botanical and Genetic Identification Followed by Investigation of Chemical Composition and Biological Activities on the Scabiosa atropurpurea L. Stem from Tunisian Flora. Molecules 2020, 25, 5032. [Google Scholar] [CrossRef]
- Chauvet, A. Structural Control of Ore Deposits: The Role of Pre-Existing Structures on the Formation of Mineralised Vein Systems. Minerals 2019, 9, 56. [Google Scholar] [CrossRef] [Green Version]
- Hobbs, B.; Zhang, Y.; Ord, A.; Zhao, C. Application of coupled deformation, fluid flow, thermal and chemical modelling to predictive mineral exploration. J. Geochem. Explor. 2000, 69, 505–509. [Google Scholar] [CrossRef]
- Cox, S.F.; Knackstedt, M.A.; Braun, J. Principles of Structural Control on Permeability and Fluid Flow in Hydrothermal Systems. Rev. Econ. Geol. 2001, 14, 1–24. [Google Scholar] [CrossRef]
- Sibson, R.H. Seismogenic framework for hydrothermal transport and ore deposition. Rev. Econ. Geol. 2001, 14, 25–50. [Google Scholar]
- Oliver, N.H.S.; Ord, A.; Valenta, R.K.; Upton, P. Deformation, fluid flow and ore genesis in heterogeneous rocks, with examples and numerical models from the Mt Isa district, Australia. Rev. Econ. Geol. 2001, 14, 51–74. [Google Scholar]
- Hildenbrand, T.G.; Berger, B.; Jachens, R.A.; Ludington, S. Regional Crustal Structures and Their Relationship to the Distribution of Ore Deposits in the Western United States, Based on Magnetic and Gravity Data. Econ. Geol. 2000, 95, 1583–1603. [Google Scholar] [CrossRef]
- Robert, F.; Poulsen, K.H. Vein Formation and Deformation in Greenstone Gold Deposits. Rev. Econ. Geol. 2001, 14, 111–155. [Google Scholar] [CrossRef]
- Ord, A.; Hobbs, B.E.; Zhang, Y.; Broadbent, G.C.; Brown, M.; Willetts, G.; Sorjonen-Ward, P.; Walshe, J.L.; Zhao, C. Geodynamic modeling of the century deposit, Mt Isa Province, Queensland. Aust. J. Earth. Sci. 2002, 49, 1011–1039. [Google Scholar] [CrossRef]
- Zhang, Y.; Schaubs, P.M.; Zhao, C.; Ord, A.; Hobbs, B.E.; Barnicoat, A. Fault-related dilation, permeability enhancement, fluid flow and mineral precipitation patterns: Numerical models. In The Internal Structure of Fault Zones: Implications for Mechanical and Fluid-Flow Properties; Wibberley, C.A., Kurz, W., Imber, J., Holdsworth, R.E., Collettini, C., Eds.; Geological Society: London, UK, 2007; Volume 299, pp. 239–255. [Google Scholar]
- De Roo, J.A. Structural controls on the emplacement of the vein-type tungsten-tin ore at Mount Carbine, Queensland, Australia. Econ. Geol. 1988, 83, 1170–1180. [Google Scholar] [CrossRef]
- Groves, D.; Goldfarb, R.; Gebre-Mariam, M.; Hagemann, S.; Robert, F. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geol. Rev. 1998, 13, 7–27. [Google Scholar] [CrossRef]
- Goldfarb, R.; Groves, D.; Gardoll, S. Orogenic gold and geologic time: A global synthesis. Ore Geol. Rev. 2001, 18, 1–75. [Google Scholar] [CrossRef]
- Haest, M.; Muchez, P.; Dewaele, S.; Franey, N.; Tyler, R. Structural Control on the Dikulushi Cu-Ag Deposit, Katanga, Democratic Republic of Congo. Econ. Geol. 2007, 102, 1321–1333. [Google Scholar] [CrossRef]
- Lawley, C.; Imber, J.; Selby, D. Structural Controls on Orogenic Au Mineralization During Transpression: Lupa Goldfield, Southwestern Tanzania. Econ. Geol. 2013, 108, 1615–1640. [Google Scholar] [CrossRef]
- Koegelenberg, C.; Kisters, A.F.; Harris, C. Structural controls of fluid flow and gold mineralization in the easternmost parts of the Karagwe-Ankole Belt of north-western Tanzania. Ore Geol. Rev. 2016, 77, 332–349. [Google Scholar] [CrossRef]
- Basson, I.; Thomas, S.; Stoch, B.; Anthonissen, C.; McCall, M.-J.; Britz, J.; Macgregor, S.; Viljoen, S.; Nel, D.; Vietze, M.; et al. The structural setting of mineralisation at Kolomela Mine, Northern Cape, South Africa, based on fully-constrained, implicit 3D modelling. Ore Geol. Rev. 2018, 95, 306–324. [Google Scholar] [CrossRef]
- Gloyn-Jones, J.; Kisters, A. Regional folding, low-angle thrusting and permeability networks: Structural controls of gold mineralization in the Hope reef at Fairview Mine, Barberton Greenstone Belt, South Africa. Ore Geol. Rev. 2018, 102, 585–603. [Google Scholar] [CrossRef]
- Gloyn-Jones, J.; Kisters, A. Ore-shoot formation in the Main Reef Complex of the Fairview Mine—multiphase gold mineralization during regional folding, Barberton Greenstone Belt, South Africa. Miner. Depos. 2019, 54, 1157–1178. [Google Scholar] [CrossRef]
- Cathles, L.M. Fluid flow and genesis of hydrothermal ore deposits. Econ. Geol. 1981, 75, 424–457. [Google Scholar]
- Cox, S.F. Coupling between deformation, fluid pressures, and fluid flow in ore-producing hydrothermal systems at depth in the crust. In Economic Geology One Hundredth Anniversary Volume; Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.P., Eds.; Society of Economic Geologists: Littleton, CO, USA, 2005; pp. 39–76. [Google Scholar]
- Chi, G.; Xue, C. An overview of hydrodynamic studies of mineralization. Geosci. Front. 2011, 2, 423–438. [Google Scholar] [CrossRef] [Green Version]
- Oliver, N.H.S. Review and classification of structural controls on fluid flow during regional metamorphism. J. Metamorph. Geol. 1996, 14, 477–492. [Google Scholar] [CrossRef]
- Schlegel, T.; Heinrich, C.A. Lithology and Hydrothermal Alteration Control the Distribution of Copper Grade in the Prominent Hill Iron Oxide-Copper-Gold Deposit (Gawler Craton, South Australia). Econ. Geol. 2015, 110, 1953–1994. [Google Scholar] [CrossRef]
- Schlegel, T.U.; Wagner, T.; Wälle, M.; Heinrich, C. Hematite-breccia hosted iron oxide–copper–gold deposits require magmatic fluid components exposed to atmospheric oxidation: Evidence from Prominent Hill, Gawler craton, South Australia. Econ. Geol. 2018, 113, 597–644. [Google Scholar] [CrossRef] [Green Version]
- Reid, A. The Olympic Cu-Au Province, Gawler Craton: A Review of the Lithospheric Architecture, Geodynamic Setting, Alteration Systems, Cover Successions and Prospectivity. Minerals 2019, 9, 371. [Google Scholar] [CrossRef] [Green Version]
- Hand, M.; Reid, A.; Jagodzinski, L. Tectonic Framework and Evolution of the Gawler Craton, Southern Australia. Econ. Geol. 2007, 102, 1377–1395. [Google Scholar] [CrossRef]
- Hayward, N.; Skirrow, R.G. Geodynamic setting and controls on iron oxide Cu-Au (U) Ore in the Gawler Craton, South Australia. In Hydrothermal Iron Oxide Copper—Gold and Related Deposits: A Global Perspective: Advances in the Understanding of IOCG Deposits; Porter, T.M., Ed.; PGC Publishing: Linden Park, Australia, 2010; Volume 3, pp. 119–146. [Google Scholar]
- Hronsky, J.M.A.; Groves, D.I.; Loucks, R.R.; Begg, G.C. A unified model for gold mineralization in accretionary orogens and implications for regional-scale exploration targeting method. Min. Depos. 2012, 47, 339–358. [Google Scholar] [CrossRef]
- Tiddy, C.J.; Betts, P.G.; Neumann, M.R.; Murphy, F.C.; Stewart, J.R.; Giles, D.; Sawyer, M.; Freeman, H.; Jourdan, F. Interpretation of a ca. 1600–1580 Ma metamorphic core complex in the northern Gawler Craton, Australia. Gondwana Res. 2020, 85, 263–290. [Google Scholar] [CrossRef]
- Skirrow, R.G.; Van Der Wielen, S.E.; Champion, D.C.; Czarnota, K.; Thiel, S. Lithospheric Architecture and Mantle Metasomatism Linked to Iron Oxide Cu-Au Ore Formation: Multidisciplinary Evidence from the Olympic Dam Region, South Australia. Geochem. Geophys. Geosystems 2018, 19, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Drexel, J.F.; Preiss, W.V.; Parker, A.J. The Geology of South Australia: Volume 1, The Precambrian. In Geological Survey of South Australia 54; Mines and Energy, South Australia, Geological Survey of South Australia: Adelaide, Australia, 1993; Volume 1. [Google Scholar]
- Daly, S.J.; Fanning, C.M.; Fairclough, M.C. Tectonic evolution and exploration potential of the Gawler Craton, South Australia. ASGO J. Aust. Geol. Geophys. 1998, 17, 145–168. [Google Scholar]
- Ferris, G.M.; Schwarz, M.P.; Heithersay, P. The geological framework, distribution and controls of Fe-oxide and related alteration, and Cu-Au mineralization in the Gawler Craton, South Australia. Part I: Geological and tectonic framework. In Hydrothermal Iron Oxide Copper-Gold and Related Deposits: A Global Perspective; Porter, T.M., Ed.; PGC Publishing: Adelaide, Australia, 2002; pp. 9–31. [Google Scholar]
- Fanning, C.M.; Reid, A.J.; Teale, G. A Geochronological Framework for the Gawler Craton, South Australia; Mineral Resources Group, Division of Minerals and Energy Resources, Primary Industries and Resources South Australia: Adelaide, Australia, 2007.
- Thiel, S.; Heinson, G.; White, A. Tectonic evolution of the southern Gawler Craton, South Australia, from electromagnetic sounding. Aust. J. Earth Sci. 2005, 52, 887–896. [Google Scholar] [CrossRef]
- Betts, P.G.; Giles, D. The 1800–1100Ma tectonic evolution of Australia. Precambrian Res. 2006, 144, 92–125. [Google Scholar] [CrossRef]
- Fraser, G.L.; Lyons, P. Timing of Mesoproterozoic tectonic activity in the northwestern Gawler Craton constrained by 40Ar/39Ar geochronology. Precambrian Res. 2006, 151, 160–184. [Google Scholar] [CrossRef]
- Howard, K.; Reid, A.; Hand, M.; Barovich, K.; Belousova, E.A. Does the Kalinjala shear zone represent a paleosuture zone? Implications for distribution and styles of Mesoproterozoic mineralisation in the Gawler craton. Min. Energy S. Aust. J. 2006, 43, 6–11. [Google Scholar]
- Hall, J.W.; Glorie, S.; Reid, A.J.; Collins, A.S.; Jourdan, F.; Danišík, M.; Evans, N. Thermal history of the northern Olympic Domain, Gawler Craton; correlations between thermochronometric data and mineralizing systems. Gondwana Res. 2018, 56, 90–104. [Google Scholar] [CrossRef]
- Parker, A.J. Precambrian Provinces of South Australia—Tectonic setting. In Geology of the Mineral Deposits of Australia and Papua New Guinea; Hughes, F.E., Ed.; AUSIMM: Melbourne, Australia, 1990; pp. 985–990. [Google Scholar]
- Fanning, C.M. Ion-microscope U-Pb Zircon Dating of the Mount Woods Inlier, Preliminary Results; Research School of Earth Science, Australian National University: Canberra, Australia, 1993; unpub. [Google Scholar]
- Finlay, J. Structural Interpretation of the Mount Woods Inlier. Honours Thesis, Monash University, Melbourne, Australia, 1993. [Google Scholar]
- Betts, P.G.; Valenta, R.; Finlay, J. Evolution of the Mount Woods Inlier, northern Gawler Craton, Southern Australia: An integrated structural and aeromagnetic analysis. Tectonophysics 2003, 366, 83–111. [Google Scholar] [CrossRef]
- Holm, O. New geochronology of the Mount Woods Inlier and the central Gawler gold province. In Gawler Craton: State of Play 2004, Conference Abstracts, Report Book 2004/18; Department of Primary Industries and Resources South Australia: Adelaide, Australia, 2004. [Google Scholar]
- Chalmers, N. Mount Woods Domain: Proterozoic Metasediments and Intrusives; Department of Primary Industries and Resources Report Book 2007/7: Adelaide, Australia, 2007.
- Jagodzinski, E.A.; Reid, A.J.; Chalmers, N.; Swain., G.; Frew, R.A.; Foudoulis, C. Compilation of SHRIMP U-Pb Geochronological Data for the Gawler Craton, South Australia; Department of Primary Industries and Resources Report Book: Adelaide, Australia, 2007.
- Forbes, C.; Giles, D.; Hand, M.; Betts, P.; Suzuki, K.; Chalmers, N.; Dutch, R. Using P–T paths to interpret the tectonothermal setting of prograde metamorphism: An example from the northeastern Gawler Craton, South Australia. Precambrian Res. 2011, 185, 65–85. [Google Scholar] [CrossRef]
- Forbes, C.; Giles, D.; Jourdan, F.; Sato, K.; Omori, S.; Bunch, M. Cooling and exhumation history of the northeastern Gawler Craton, South Australia. Precambrian Res. 2012, 200, 209–238. [Google Scholar] [CrossRef]
- Flint, R.B.; Benbow, M.C. Geology of the Mount Woods Inlier; Department of Mines, South Australia Report Book 77/134; Department for Energy and Mining: Adelaide, Australia, 1977; 50p.
- Ambrose, G.J.; Flint, R.B. Billa Kalina South Australia Sheet SH53-7. Available online: https://sarigbasis.pir.sa.gov.au/WebtopEw/ws/plans/sarig1/image/DDD/200471-007 (accessed on 17 May 2022).
- Parker, A.J.; Lemon, N.M. Reconstruction of the early Proterozoic stratigraphy of the Gawler Craton, South Australia. J. Geol. Soc. Aust. 1982, 29, 221–238. [Google Scholar] [CrossRef]
- Vassallo, J.J. Structural repetition of the Hutchison Group metasediments, Eyre Peninsula, South Australia. Aust. J. Earth Sci. 2001, 48, 331–345. [Google Scholar] [CrossRef]
- Fanning, C.M. Geochronological Synthesis of South Australia. Part II: The Gawler Craton; Unpublished PRISE Report; Research School of Earth Sciences, Australian National University: Canberra, Australia, 1997. [Google Scholar]
- Belperio, A.; Flint, R.; Freeman, H. Prominent Hill: A Hematite-Dominated, Iron Oxide Copper-Gold System. Econ. Geol. 2007, 102, 1499–1510. [Google Scholar] [CrossRef]
- Fanning, C.M.; Flint, R.B.; Parker, A.J.; Ludwig, K.R.; Blissett, A.H. Refined Proterozoic evolution of the Gawler Craton, South Australia, through U-Pb zircon geochronology. Precambrian Res. 1988, 40, 363–386. [Google Scholar] [CrossRef]
- Johnson, J.P.; Cross, K.C. U-Pb geochronological constraints on the genesis of the Olympic Dam Cu-U-Au-Ag deposit, South Australia. Econ. Geol. 1995, 90, 1046–1063. [Google Scholar] [CrossRef]
- Jagodzinski, E.A. Compilation of SHRIMP U-Pb Geochronological Data for Zircons from Mafic Rocks of the Olympic Domain, Gawler Craton, South Australia, 2001–2003; Geoscience Australia: Canberra, Australia, 2005. [Google Scholar]
- Reeves, C. Aeromagnetic Surveys Principles, Practice and Interpretation; Earthworks, Geosoft: Washington, DC, USA, 2005. [Google Scholar]
- Siddorn, J.P. The Geological Interpretation of Aeromagnetic Data: A Geologist’s Perspective; KEGS Symposium: Toronto, ON, Canada, 2010. [Google Scholar]
- Siddorn, J.P. Interpreting Aeromagnetic Data for Geological and Structural Mapping in the QUEST Area. In Exploration Undercover: A Practical Example Using the QUEST Study Area; Geoscience BC: Vancouver, BC, Canada, 2011. [Google Scholar]
- Fullagar, P.K.; Pears, G.A. Geologically Constrained Gravity and Magnetic Interpretation at Prominent Hill, South Australia. Internal Company Report for Robert Smith of Greenfields Geophysics; Representing Oxiana Ltd.: Melbourne, Australia, 2007. [Google Scholar]
- Tomkinson, M. Preliminary Geological Domain Analysis, Southern Mount Woods Inlier, South Australia; Epigenesis Consulting Pty Ltd.: Hillarys, Australia, 2007. [Google Scholar]
- Tomkinson, M. Observations on the Geology of the Southern Mount Woods Inlier including the “White Hills Complex”—Lithologies, Intrusions, Iron Oxide Textures and Possible Tectonic Setting; Epigenesis Consulting Pty Ltd.: Hillarys, Australia, 2008. [Google Scholar]
- Hill, R. Eagle Project—Prominent Hill-GeoTEM Airborne Electromagnetics; Four Winds Technology: New South Wales, Australia, 2008. [Google Scholar]
- Betts, P.G. Geophysical Interpretation Mount Woods Inlier; PGN Geoscience: Melbourne, Australia, 2009. [Google Scholar]
- Van der Wielen, S.E.; Fabris, A.J.; Halley, S.W.; Keeling, J.L.; Mauger, A.J.; Gordon, G.A.; Keeping, T.; Giles, D.; Hill, S.M. An exploration strategy for IOCG mineral systems under deep cover. MESA J. 2013, 71, 18–30. [Google Scholar]
- Gale, K.; Anderson, I.; Harris, T.M. Combined Annual Technical Report for the Period 1 January 2011 to 31 December 2011; OZ Minerals: Adelaide, Australia, 2012. [Google Scholar]
- Hossain, M.; Urosevic, M.; Kepic, A. Volumetric Interpretation of 3D Seismic Data from the Hillside IOCG Deposit in South Australia. In Proceedings of the 76th EAGE Conference and Exhibition, Amsterdam, The Netherlands, 16–19 June 2014. [Google Scholar]
- Katona, L.F.; Wise, T.; Reid, A. Vectorization of Residual Gravity and TMI Data in the Northern Gawler Craton: Implications for Exploration Targeting and GIS Analysis; Geological Survey of South Australia: Adelaide, Australia, 2018. [Google Scholar] [CrossRef]
- Korsch, R.; Kositcin, N.; Blewitt, R.S.; Fraser, G.L.; Baines, G.; Kennett, B.L.N.; Neumann, N.L.; Reid, A.J.; Preiss, W.V.; Giles, D.; et al. Geodynamic Implications for the Deep Seismic Reflection Line 08GA-OM1: Gawler Craton—Officer Basin-Musgrave Province—Amadeus Basin (GOMA), South Australia and Northern Territory; Geoscience Australia Record: Adelaide, Australia, 2010; pp. 63–86. [Google Scholar]
- Harris, T.M.; Murphy, F.C.; Funk, C.W.; Betts, P.G. Mt Woods 2D Seismic Reflection Survey, Gawler Craton, South Australia: An Integrated Minerals Exploration Case Study. ASEG Ext. Abstr. 2013, 2013, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Wingate, M.T.; Campbell, I.H.; Compston, W.; Gibson, G.M. Ion microprobe U–Pb ages for Neoproterozoic basaltic magmatism in south-central Australia and implications for the breakup of Rodinia. Precambrian Res. 1998, 87, 135–159. [Google Scholar] [CrossRef]
- De Little, J.; Gale, K.; Funk, C. Combined Annual Technical Report for the Period 1 January 2009 to 31 December 2009; OZ Minerals: Adelaide, Australia, 2010. [Google Scholar]
- Gale, K.; Say, M.; Funk, C. Combined Annual Technical Report for the Period 1 January 2010 to 31 December 2010; OZ Minerals: Adelaide, Australia, 2011. [Google Scholar]
- Groves, D.I.; Goldfarb, R.J.; Santosh, M. The conjunction of factors that lead to formation of giant gold provinces and deposits in non-arc settings. Geosci. Front. 2015, 7, 303–314. [Google Scholar] [CrossRef] [Green Version]
- Hitzman, M.W.; Oreskes, N.; Einaudi, M.T. Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu-U-AuREE) deposits. Precambrian Res. 1992, 58, 241–287. [Google Scholar] [CrossRef]
- Belperio, A.P.; Freeman, H. Common geological characteristics of Prominent Hill and Olympic Dam—implications for iron oxide copper gold exploration models. In Proceedings of the PACRIM 2004, Adelaide, Australia, 19–22 September 2004; pp. 115–125. [Google Scholar]
- Schlegel, T.U.; Wagner, T.; Heinrich, C.A.; Boyce, A.J. Magmatic-hydrothermal sulfur source for Prominent Hill and other iron oxide-copper-gold mineralisations in the Olympic IOCG province, South Australia. Ore Geol. Rev. 2017, 89, 1058–1090. [Google Scholar] [CrossRef]
- Haddad-Martim, P.M.; Carranza, E.J.M.; de Souza Filho, C.R. The Fractal Nature of Structural Controls on Ore Formation: The Case of the Iron Oxide Copper-Gold Deposits in the Carajás Mineral Province, Brazilian Amazon. Econ. Geol. 2018, 113, 1499–1524. [Google Scholar] [CrossRef]
- Carvalho, E.R. Caracterização Geológica e Gênese das Mineralizações de Óxido de Fe-Cu-Au e Metais Associados na Província Mineral de Carajás: Estudo de Caso do Depósito de Sossego. Ph.D. Thesis, Universidade Estadual de Campinas, Campinas, Brazil, 2009, unpublished. [Google Scholar]
- Domingos, F.H.G. The Structural Setting of the Canaã dos Carajás Region and Sossego-Sequeirinho Deposits, Carajás, Brazil. Ph.D. Thesis, University of Durham, Durham, England, 2009, unpublished. [Google Scholar]
- Vearncombe, J.R.; Holyland, P.W. Rheology, stress-mapping, and hydrothermal mineralization—The example of structurally-controlled gold-antimony deposits in South Africa. S. Afr. J. Geol. 1995, 98, 415–429. [Google Scholar]
- Cundall, P.A.; Strack, O.D.L. A discrete numerical model for granular assemblies. Géotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Clough, R.W. The finite element method in plane stress analysis. In Proceedings of the Second ASCE Conference on Electronic Computation, Pittsburgh, PA, USA, 8–9 September 1960. [Google Scholar]
- Zienkiewicz, O.C.; Taylor, R.L.; Zhu, J.Z. The Finite Element Method: Its Basis and Fundamentals; Butterworth Heinemann: Oxford, UK, 2013. [Google Scholar] [CrossRef]
- Etheridge, M.A.; Wall, V.J.; Cox, S.; Vernon, R.H. High fluid pressures during regional metamorphism and deformation: Implications for mass transport and deformation mechanisms. J. Geophys. Res. Earth Surf. 1984, 89, 4344–4358. [Google Scholar] [CrossRef]
- Oliver, N.H.S.; Valenta, R.K.; Wall, V.J. The effect of heterogeneous stress and strain on metamorphic fluid flow, Mary Kathleen, Australia, and a model for large-scale fluid circulation. J. Metamorph. Geol. 1990, 8, 311–331. [Google Scholar] [CrossRef]
- Ridley, J. The relations between mean rock stress and fluid flow in the crust: With reference to vein- and lode-style gold deposits. Ore Geol. Rev. 1993, 8, 23–37. [Google Scholar] [CrossRef]
- Ord, A.; Hobbs, B.E.; Zhao, C. Fundamentals of Computational Geoscience. In Lecture Notes in Earth Sciences; Springer: Berlin/Heidelberg, Germany, 2009; Volume 122. [Google Scholar] [CrossRef]
- Sorjonen-Ward, P.; Zhang, Y.; Zhao, C. Numerical modelling of orogenic processes and gold mineralization in the southeastern part of the Yilgarn craton, western Australia. Aust. J. Earth Sci. 2002, 49, 1011–1039. [Google Scholar] [CrossRef]
- Schaubs, P.M.; Rawling, T.J.; Dugdale, L.J.; Wilson, C.J.L. Factors controlling the location of gold mineralisation around basalt domes in the stawell corridor: Insights from coupled 3D deformation-fluid-flow numerical models. Aust. J. Earth Sci. 2006, 53, 841–862. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, G.; Roberts, P.; Ord, A. Numerical modelling of deformation and fluid flow in the Shuikoushan district, Hunan Province, South China. Ore Geol. Rev. 2007, 31, 261–278. [Google Scholar] [CrossRef]
- Zhang, Y.; Robinson, J.; Schaubs, P. Numerical modelling of structural controls on fluid flow and mineralization. Geosci. Front. 2011, 2, 449–461. [Google Scholar] [CrossRef] [Green Version]
- Potma, W.; Roberts, P.A.; Schaubs, P.M.; Sheldon, H.A.; Zhang, Y.; Hobbs, B.E.; Ord, A. Predictive targeting in Australian orogenic-gold systems at the deposit to district scale using numerical modelling. Aust. J. Earth Sci. 2008, 55, 101–122. [Google Scholar] [CrossRef] [Green Version]
- Wise, T.; Fabris, A.; Pridmore, D.; Reid, A.; Van Der Wielen, S.; Heinson, G.; Jakica, S.; Ziramov, S.; Soeffky, P. Olympic Dam seismic revisited: Reprocessing of deep crustal seismic data using partially preserved amplitude processing. ASEG Ext. Abstr. 2016, 1, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Edmond, J.; Paterson, M. Volume changes during the deformation of rocks at high pressures. Int. J. Rock Mech. Min. Sci. Géoméch. Abstr. 1972, 9, 161–182. [Google Scholar] [CrossRef]
- Ord, A. Deformation of rock: A pressure-sensitive, dilatant material. Pure Appl. Geophys. 1991, 137, 337–366. [Google Scholar] [CrossRef]
- Riley, S.J.; De Gloria, S.D.; Elliot, R. A terrain ruggedness index that quantifies topographic heterogeneity. Intermt. J. Sci. 1999, 5, 23–27. [Google Scholar]
- Bowden, B.; Fraser, G.; Davidson, G.J.; Meffre, S.; Skirrow, R.; Bull, S.; Thompson, J. Age constraints on the hydrothermal history of the Prominent Hill iron oxide copper-gold deposit, South Australia. Miner. Depos. 2016, 52, 863–881. [Google Scholar] [CrossRef]
- Christensen, D. In Proceedings of the New Copper Discovery in the Olympic Dam Copper Belt), Australian Copper Conference 2014, Brisbane, Australia, 17–18 June 2014.
- Hronsky, J.M.; Kreuzer, O.P. Applying spatial prospectivity mapping to exploration targeting: Fundamental practical issues and suggested solutions for the future. Ore Geol. Rev. 2019, 107, 647–653. [Google Scholar] [CrossRef]
Material | Failure Criterion | Tensile Strength (MPa) | Friction Angle° | Cohesion (MPa) | Young’s Modulus (MPa) | Poisson’s Ratio | Unit Weight (Mn/m3) |
---|---|---|---|---|---|---|---|
Gabbro-gabbrodiorite | Mohr–Coulomb | 23 | 42 | 28 | 73,000 | 0.22 | 0.030 |
Magnetic I-Type Granite | Mohr–Coulomb | 15 | 36 | 20 | 55,000 | 0.23 | 0.0255 |
Granite–Gneiss and Metasediments | Mohr–Coulomb | 15 | 36 | 20 | 54,000 | 0.21 | 0.025 |
Quartzofeldspathic- Micaceous Gneiss | Mohr–Coulomb | 18 | 34 | 20 | 46,000 | 0.18 | 0.025 |
Host Sequence (MM) | Mohr–Coulomb | 15 | 36 | 20 | 54,000 | 0.23 | 0.026 |
Host Sequence (LM) | Mohr–Coulomb | 20 | 30 | 22 | 39,000 | 0.16 | 0.024 |
Input Layer | Unit (Distance (m), Radians, etc.) | Assigned Individual Points/Weights | |
---|---|---|---|
1 | Differential Stress | X ≥ 0.05 | 100 |
X < 0.05 | 0 | ||
2 | Shear Strain | X ≥ 0.000035 | 100 |
0.000035 < X ≤ 0.00003 | 75 | ||
0.00003 < X ≤ 0.000025 | 50 | ||
0.000025 < X ≤ 0.00002 | 25 | ||
X < 0.00002 | 0 | ||
3 | Proximity to ENE-Trending Structures | ≤1800 | 100 |
≤3240 | 60 | ||
≤10,500 | 10 | ||
>10,500 | 0 | ||
4 | Proximity to Olympic Dam-Trending Structures | X ≤ 2000 | 100 |
X > 2000 | 0 | ||
5 | Host Package | IN | 100 |
OUT | 0 | ||
6 | Competency Contrast | X ≤ 200 | 100 |
X > 200 | 0 | ||
7 | Obtuse Intersection | X ≤ 100 | 100 |
100 < X≤ 250 | 75 | ||
250 < X≤ 500 | 50 | ||
500 < X≤ 1000 | 25 | ||
X > 1000 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gloyn-Jones, J.N.; Basson, I.J.; Stoch, B.; Koegelenberg, C.; McCall, M.-J. Integration of Stress–Strain Maps in Mineral Systems Targeting for IOCG Mineralisation within the Mt. Woods Inlier, Gawler Craton, South Australia. Minerals 2022, 12, 699. https://doi.org/10.3390/min12060699
Gloyn-Jones JN, Basson IJ, Stoch B, Koegelenberg C, McCall M-J. Integration of Stress–Strain Maps in Mineral Systems Targeting for IOCG Mineralisation within the Mt. Woods Inlier, Gawler Craton, South Australia. Minerals. 2022; 12(6):699. https://doi.org/10.3390/min12060699
Chicago/Turabian StyleGloyn-Jones, Jonathan Nicholas, Ian James Basson, Ben Stoch, Corné Koegelenberg, and Michael-John McCall. 2022. "Integration of Stress–Strain Maps in Mineral Systems Targeting for IOCG Mineralisation within the Mt. Woods Inlier, Gawler Craton, South Australia" Minerals 12, no. 6: 699. https://doi.org/10.3390/min12060699
APA StyleGloyn-Jones, J. N., Basson, I. J., Stoch, B., Koegelenberg, C., & McCall, M. -J. (2022). Integration of Stress–Strain Maps in Mineral Systems Targeting for IOCG Mineralisation within the Mt. Woods Inlier, Gawler Craton, South Australia. Minerals, 12(6), 699. https://doi.org/10.3390/min12060699