Mechanism and Kinetics of Stibnite Dissolution in H2SO4-NaCl-Fe(SO4)1.5-O2
Abstract
:1. Introduction
Chemistry of the Leaching of Stibnite in Hydrochloric Acid Media
2. Experimental Work
2.1. Materials
2.2. Experimental Procedure
3. Results
3.1. Effect of Fe(III) in the Sb Dissolution
3.2. Effect of the Concentration of NaCl on the Sb Dissolution
3.3. Effect of the Concentration of Sulfuric Acid
3.4. Effect of Temperature and Particle Size
3.4.1. H2SO4-NaCl-O2 Leaching Solution
3.4.2. H2SO4-NaCl-Fe(SO4)1.5-O2 Leaching Solution
3.5. Characterization of Solid Residues from Leaching
3.6. Kinetics of Stibnite Leaching in Sulfuric Acid-Sodium Chloride Solutions
3.7. Dissolution Kinetics of Antimony from Stibnite in H2SO4-NaCl-O2 Media
3.8. Dissolution Kinetics of Antimony from Stibnite in H2SO4-NaCl-Fe(SO4)1.5-O2 Media
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lager, T.; Forssberg, K.S.E. Current processing technology for antimony-bearing ores a review, Part 2. Miner. Eng. 1989, 2, 543–556. [Google Scholar] [CrossRef]
- Anderson, C.G. The metallurgy of antimony. Chem. Der Erde 2012, 72, 3–8. [Google Scholar] [CrossRef]
- Ren, B.; Zhou, Y.; Ma, H.; Deng, R.; Zhang, P.; Hou, B. Sb release characteristics of the solid waste produced in antimony mining smelting process. J. Mater. Cycles Waste Manag. 2018, 20, 193–200. [Google Scholar] [CrossRef]
- Padilla, R.; Chambi, L.C.; Ruiz, M.C. Antimony production by carbothermic reduction of stibnite in the presence of Lime. J. Min. Metall. Sect. B-Metall. Sect. B 2014, 50, 5–13. [Google Scholar] [CrossRef]
- Yang, J.G.; Tang, C.B.; Chen, Y.M.; Tang, M.T. Separation of antimony from a stibnite concentrate through a low-temperature smelting process to eliminate SO2 emission. Metall. Mater. Trans. B 2011, 42, 30–36. [Google Scholar] [CrossRef]
- Ye, L.; Ouyang, Z.; Chen, Y.; Chen, Y.; Xiao, L. Sulfur fixation and reduction roasting of stibnite for clean extraction of Sb by a combined metallurgy and beneficiation process. Miner. Eng. 2019, 144, 106049. [Google Scholar] [CrossRef]
- Ubaldini, S.; Veglio, F.; Fornari, P.; Abbruzzese, C. Process flow-sheet for gold and antimony recovery from stibnite. Hydrometallurgy 2000, 57, 187–199. [Google Scholar] [CrossRef]
- Awe, S.A.; Sandström, Å. Electrowinning of antimony from model sulphide alkaline solutions. Hydrometallurgy 2013, 137, 60–67. [Google Scholar] [CrossRef]
- Çopur, M.; Çolak, S.; Yapici, S. Solubility of stibnite ore in HCl solutions. Ind. Eng. Chem. Res. 1995, 34, 3995–4002. [Google Scholar] [CrossRef]
- Çopur, M.; Pekdemir, T.; Çelik, C.; Çulak, S. Determination of the optimum conditions for the dissolution of stibnite in HCl solutions. Ind. Eng. Chem. Res. 1997, 36, 682–687. [Google Scholar] [CrossRef]
- Bhatti, M.A.; Adnan, A.; Ahad, A.; Kazmi, K.R.; Akram, A. Oxidative chlorination leaching of stibnite using acidic ferric chloride lixiviant. J. Chem. Soc. Pak. 2018, 40, 1035–1045. [Google Scholar]
- Ye, L.; Ouyang, Z.; Chen, Y.; Chen, Y. Ferric chloride leaching of antimony from stibnite. Hydrometallurgy 2019, 186, 210–217. [Google Scholar] [CrossRef]
- Tian, Q.; Wang, H.; Xin, Y.; Li, D.; Guo, X. Ozonation leaching of a complex sulfidic antimony ore in hydrochloric acid solution. Hydrometallurgy 2016, 159, 126–131. [Google Scholar] [CrossRef]
- Guo, X.; Xin, Y.; Wang, H.; Tian, Q. Leaching kinetics of antimony-bearing complex sulfides ore in hydrochloric acid solution with ozone. Trans. Nonferrous Met. Soc. China 2017, 27, 2073–2081. [Google Scholar] [CrossRef]
- Çopur, M.; Yartaşi, C.; Özmetin, C.; Kocakerim, M.M. Solubility of stibnite ore in HCl solutions saturated with Cl2 gas. Chem. Biochem. Eng. Q. 2001, 15, 25–28. [Google Scholar]
- Yang, J.G.; Wu, Y.T. A hydrometallurgical process for the separation and recovery of antimony. Hydrometallurgy 2014, 143, 68–74. [Google Scholar] [CrossRef]
- Yang, J.G.; Yang, S.H.; Tang, C.B. The Membrane Electrowinning Separation of Antimony from a Stibnite Concentrate. Metall. Mater. Trans. B 2010, 41, 527–534. [Google Scholar] [CrossRef]
- Mahlangu, T.; Gudyanga, F.P.; Simbi, D.J. Reductive leaching of stibnite (Sb2S3) flotation concentrate using metallic iron in a hydrochloric acid medium I: Thermodynamics. Hydrometallurgy 2006, 84, 192–203. [Google Scholar] [CrossRef]
- Zhao, R.; Shi, X.; Hanying, J. Thermodynamic equilibrium of Sb-Cl-H2O system. Trans. Non Ferrous Met. Soc. China 1997, 7, 123–128. [Google Scholar]
- Senanayake, G.; Muir, D.M. Speciation and Reduction Potentials of Metal Ions in Concentrated Chloride and Sulfate Solutions Relevant to Processing Base Metal Sulfides. Metall. Trans. B 1988, 19, 37–45. [Google Scholar] [CrossRef]
- O′Malley, M.L.; Lidell, K.C. Leaching of CuFeS2 by aqueous FeCl2, HCl and NaCl. Effect of solution composition and limited oxidant. Metall. Trans. B 1987, 18, 505–510. [Google Scholar] [CrossRef]
- Ruiz, M.C.; Gallardo, E.; Padilla, R. Copper extraction from white metal by pressure leaching in H2SO4-FeSO4-O2. Hydrometallurgy 2009, 100, 50–55. [Google Scholar] [CrossRef]
- Padilla, R.; Copa, M.E.; Ruiz, M.C. Dissolution kinetics of marmatite in sulfuric acid-ferric sulfate-sodium chloride-oxygen media at atmospheric pressure. Hydrometallurgy 2022, 208, 105801. [Google Scholar] [CrossRef]
- Li, G.; Xin, Y.T.; Lü, X.D.; Tian, G.H.; Yang, K.; Ye, L.G. Stability constants of Sb5+ with Cl− and thermodynamics of Sb−S−Cl−H2O system involving complex behavior of Sb with Cl. Trans. Nonferrous Met. Soc. China 2020, 30, 3379–3389. [Google Scholar] [CrossRef]
- Ko, I.Y.; Kim, D.J.; Oh, J.H. Leaching kinetics of stibnite in ferric chloride solution-On the leaching behavior of stibnite, 2. Taehan Kumsak Hakhoe China 1981, 19, 410–417. [Google Scholar]
- Cheng, C.Y.; Lawson, F. The kinetics of leaching covellite in acidic oxygenated sulphate-chloride solutions. Hydrometallurgy 1991, 27, 269–284. [Google Scholar] [CrossRef]
- Ruiz, M.C.; Montes, K.S.; Padilla, R. Chalcopyrite leaching in sulfate-chloride media at ambient pressure. Hydrometallurgy 2011, 109, 37–42. [Google Scholar] [CrossRef]
- Sohn, H.Y. The influence of chemical equilibrium on fluid-solid reaction rates and the falsification of activation energy. Metall. Mater. Trans. B Process. Metall. Mater. Process. Sci. 2004, 35, 121–131. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padilla, R.; Caro, O.; Vega-Garcia, D.; Ruiz, M.C. Mechanism and Kinetics of Stibnite Dissolution in H2SO4-NaCl-Fe(SO4)1.5-O2. Minerals 2022, 12, 718. https://doi.org/10.3390/min12060718
Padilla R, Caro O, Vega-Garcia D, Ruiz MC. Mechanism and Kinetics of Stibnite Dissolution in H2SO4-NaCl-Fe(SO4)1.5-O2. Minerals. 2022; 12(6):718. https://doi.org/10.3390/min12060718
Chicago/Turabian StylePadilla, Rafael, Oscar Caro, Dennis Vega-Garcia, and María C. Ruiz. 2022. "Mechanism and Kinetics of Stibnite Dissolution in H2SO4-NaCl-Fe(SO4)1.5-O2" Minerals 12, no. 6: 718. https://doi.org/10.3390/min12060718
APA StylePadilla, R., Caro, O., Vega-Garcia, D., & Ruiz, M. C. (2022). Mechanism and Kinetics of Stibnite Dissolution in H2SO4-NaCl-Fe(SO4)1.5-O2. Minerals, 12(6), 718. https://doi.org/10.3390/min12060718