Separation Analysis of New Magnetic Separator for Pre-Concentration of Ilmenite Particles
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Samples
2.2. Equipment and Method
2.3. Ore Characterization Techniques
2.4. Evaluation Method
2.5. Capture Force Calculation
2.5.1. Magnetic Force
2.5.2. Centrifugal Force
2.5.3. Gravity
2.5.4. Fluid Drag
2.5.5. Friction
2.6. Design of the Orthogonal Experiment
3. Results and Discussion
3.1. Effect of Rotation Speed of Cylinder
3.2. Effect of Water Flow
3.3. Orthogonal Experiment
3.4. Concentrate Particle Size Distribution and Magnetic Properties
3.5. Capture Force and Effect Factor Analysis
4. Conclusions
- A concentrate with TiO2 grade of 22.84% and TiO2 recovery of 66.93% and maximum separation efficiency 39.82% was obtained through one roughing circuit, under the condition of rotation speed 208 rpm, water flow 1.9 m3/h, feed size −0.075 mm, constant magnetic field intensity 0.65 T; and the inclination angle of the cylinder was 0°.
- The capture force analysis indicated that the effective pre-concentration of fine ilmenite by radial turbulent outer-cylinder magnetic separator was ascribed to its high water flow and high rotation speed, if there is sufficient magnetic force;
- The concentrate product particle size analysis indicated that the RTOCMS was effective for the recovery of medium particle sizes (−0.075 + 0.038 mm), with continued enhancement for the recovery of fine-grained products (−0.038 mm).
- The major limitation of this study is that the magnetic field intensity cannot be adjusted and the field intensity is too small to capture minerals in the −0.038 mm grain size.
- The impact on the recovery rate may be due to the use of a magnetic system with a hard magnetic material arrangement, the magnetic intensity of which does not meet the requirements for the recovery rate of fine-grained minerals.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baawuah, E.; Kelsey, C.; Addai-Mensah, J.; Skinner, W. A Novel Pneumatic Planar Magnetic Separator for Magnetite Beneficiation: A Focus on Flowsheet Configuration. Minerals 2020, 10, 759. [Google Scholar] [CrossRef]
- Holmes, R.J.; Lu, Y.; Lu, L. Chapter 1—Introduction: Overview of the Global Iron Ore Industry. In Iron Ore, 2nd ed.; Lu, L., Ed.; Woodhead Publishing Series in Metals and Surface Engineering; Woodhead Publishing: Sawston, UK, 2022; pp. 1–56. [Google Scholar] [CrossRef]
- Wang, S.; Jin, H.; Deng, Y.; Xiao, Y. Comprehensive Utilization Status of Red Mud in China: A Critical Review. J. Clean. Prod. 2021, 289, 125136. [Google Scholar] [CrossRef]
- Zhang, X.; Han, Y.; Sun, Y.; Lv, Y.; Li, Y.; Tang, Z. An Novel Method for Iron Recovery from Iron Ore Tailings with Pre-Concentration Followed by Magnetization Roasting and Magnetic Separation. Miner. Process. Extr. Metall. Rev. 2020, 41, 117–129. [Google Scholar] [CrossRef]
- Chu, H.; Wang, Y.; Lu, D.; Liu, Z.; Zheng, X. Pre-Concentration of Fine Antimony Oxide Tailings Using an Agitated Reflux Classifier. Powder Technol. 2020, 376, 565–572. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, Y.; Liu, T.; Huang, J. Characterization and Pre-Concentration of Low-Grade Vanadium-Titanium Magnetite Ore. Minerals 2017, 7, 137. [Google Scholar] [CrossRef] [Green Version]
- Tripathy, S.K.; Banerjee, P.K.; Suresh, N.; Murthy, Y.R.; Singh, V. Dry High-Intensity Magnetic Separation In Mineral Industry—A Review Of Present Status And Future Prospects. Miner. Process. Extr. Metall. Rev. 2017, 38, 339–365. [Google Scholar] [CrossRef]
- Chen, L.; Zeng, J.; Guan, C.; Zhang, H.; Yang, R. High Gradient Magnetic Separation in Centrifugal Field. Miner. Eng. 2015, 78, 122–127. [Google Scholar] [CrossRef]
- Ge, W.; Encinas, A.; Araujo, E.; Song, S. Magnetic Matrices Used in High Gradient Magnetic Separation (HGMS): A Review. Results Phys. 2017, 7, 4278–4286. [Google Scholar] [CrossRef]
- Dahe, X. SLon magnetic separators applied in various industrial iron ore processing flow sheets. In Proceedings of the Iron Ore Conference 2007, Australasian Inst Mining & Metallurgy, Parkville Victoria, Perth, WA, Australia, 20–22 August 2007; pp. 245–250. [Google Scholar]
- Liu, L.; Tan, Q.; Yue, T.; Guo, Z.; Lv, L. Pre-Concentration of Ultrafine Crushed Hematite Ores. Sep. Sci. Technol. 2014, 49, 1442–1448. [Google Scholar] [CrossRef]
- Baawuah, E.; Kelsey, C.; Addai-Mensah, J.; Skinner, W. Economic and Socio-Environmental Benefits of Dry Beneficiation of Magnetite Ores. Minerals 2020, 10, 955. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, S.; Zhao, Z.; Gao, L.; Tong, X.; Dai, H. Investigation of the magnetic separation performance of a low-intensity magnetic separator embedded with auxiliary permanent magnets. Miner. Eng. 2022, 178, 107399. [Google Scholar] [CrossRef]
- Rayner, J.; Napier-Munn, T. The mechanism of magnetics capture in the wet drum magnetic separator. Miner. Eng. 2000, 13, 277–285. [Google Scholar] [CrossRef]
- Shang, H.; Shi, W.; Cheng, L.; Li, G.; Peng, X. Development and Application of New Type External Magnet Separation Equipment. Nonferrous Met. 2017, 7, 75–79. [Google Scholar]
- Zeng, S.; Zhang, Z.; Zhou, R.; Liu, S. Application of ZCLA Separator in Commercial Test of Preconcentration of Iron Ore from Meishan Iron Mine. Min. Metall. Eng. 2020, 40, 57–59+64. [Google Scholar]
- Zeng, S.; Zeng, W.; Ren, L.; An, D.; Li, H. Development of a High Gradient Permanent Magnetic Separator (HGPMS). Miner. Eng. 2015, 71, 21–26. [Google Scholar] [CrossRef]
- Powoe, S.P.B.; Kromah, V.; Jafari, M.; Chelgani, S.C. A Review on the Beneficiation Methods of Borate Minerals. Minerals 2021, 11, 318. [Google Scholar] [CrossRef]
- Tripathy, S.K.; Murthy, Y.R.; Singh, V.; Farrokhpay, S.; Filippov, L.O. Improving the Quality of Ferruginous Chromite Concentrates Via Physical Separation Methods. Minerals 2019, 9, 667. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zeng, J.; Xie, H.; Guan, C.; Chen, L. Enhanced Separation for Ilmenite Tailings with a Novel HGMS-flotation Process. Sep. Sci. Technol. 2020, 55, 752–760. [Google Scholar] [CrossRef]
- Ku, J.; Lei, Z.; Xia, J.; Guo, B.; Chen, H.; Peng, X.; Ran, H.; Deng, R. Dynamic Behavior and Separation Prediction of Magnetic Ore Bulks in Dry Medium-Intensity Magnetic Separator. Miner. Eng. 2021, 171, 107113. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, Y.; Lu, D. A Realistic Description of Influence of the Magnetic Field Strength on High Gradient Magnetic Separation. Miner. Eng. 2015, 79, 94–101. [Google Scholar] [CrossRef]
- Torii, M.; Lee, T.Q.; Fukuma, K.; Mishima, T.; Yamazaki, T.; Oda, H.; Ishikawa, N. Mineral Magnetic Study of the Taklimakan Desert Sands and Its Relevance to the Chinese Loess. Geophys. J. Int. 2001, 146, 416–424. [Google Scholar] [CrossRef] [Green Version]
- Jordens, A.; Marion, C.; Langlois, R.; Grammatikopoulos, T.; Sheridan, R.S.; Teng, C.; Demers, H.; Gauvin, R.; Rowson, N.A.; Waters, K.E. Beneficiation of the Nechalacho Rare Earth Deposit. Part 2: Characterisation of Products from Gravity and Magnetic Separation. Miner. Eng. 2016, 99, 96–110. [Google Scholar] [CrossRef] [Green Version]
- Zeng, J.; Chen, L.; Yang, R.; Tong, X.; Ren, P.; Zheng, Y. Centrifugal High Gradient Magnetic Separation of Fine Ilmenite. Int. J. Miner. Process. 2017, 168, 48–54. [Google Scholar] [CrossRef]
- Song, S.; Zhang, G.; Luo, Z.; Lv, B. Development of a Fluidized Dry Magnetic Separator and Its Separation Performance Tests. Miner. Process. Extr. Metall. Rev. 2019, 40, 307–313. [Google Scholar] [CrossRef]
- Tripathy, S.K.; Mohanty, I.; Filippov, L.O. Application of Artificial Neural Networks to Predict Dry Magnetic Separation of Low-Grade Hematite Fines. Trans. Indian Inst. Met. 2020, 73, 1797–1807. [Google Scholar] [CrossRef]
Elements | Content % | Elements | Content % |
---|---|---|---|
Na2O | 1.43 | K2O | 0.09 |
MgO | 8.67 | CaO | 10.09 |
Al2O3 | 12.31 | TiO2 | 10.33 |
SiO2 | 32.75 | MnO | 0.22 |
P2O5 | 0.06 | Fe2O3 | 17.37 |
SO3 | 1.15 | CuO | 0.02 |
Cl | 0.02 | Others | 5.49 |
Minerals | Titanomagnetite | Rutile | Ilmenite | Total Titanium | C | S |
---|---|---|---|---|---|---|
Ti content (%) | 0.29 | 0.12 | 5.64 | 6.25 | 0.029 | 0.46 |
Size (mm) | Density (g/cm3) | Yield (%) | TiO2 Content (%) | TiO2 Distribution Rate (%) |
---|---|---|---|---|
+0.30 | 2.95 | 17.36 | 4.90 | 7.91 |
−0.30 + 0.150 | 3.28 | 35.61 | 10.36 | 34.33 |
−0.150 + 0.075 | 3.65 | 24.15 | 14.60 | 32.80 |
−0.075 + 0.038 | 3.38 | 9.70 | 13.76 | 12.42 |
−0.038 | 3.03 | 13.18 | 10.23 | 12.54 |
Total | 3.35 | 100.00 | 10.75 | 100.00 |
Variables | Symbols | Variable Coding | ||
---|---|---|---|---|
Low | Medium | High | ||
−1 | 0 | 1 | ||
Speed of sorting cylinder (rpm) | 175 | 200 | 225 | |
Water velocity (m3/h) | 1 | 1.5 | 2 |
Number | Variables | Responses | |||
---|---|---|---|---|---|
Grade (%) | Recovery (%) | Separation Efficiency (%) | |||
1 | 1 | 1 | 18.91 | 68.51 | 31.66 |
2 | 1 | 0 | 16.81 | 76.11 | 24.85 |
3 | 1 | −1 | 14.23 | 79.83 | 17.60 |
4 | 0 | 1 | 25.68 | 53.52 | 35.63 |
5 | 0 | 0 | 23.84 | 66.00 | 39.51 |
6 | 0 | −1 | 20.18 | 68.73 | 34.48 |
7 | −1 | 1 | 26.88 | 18.28 | 12.46 |
8 | −1 | 0 | 27.14 | 22.69 | 15.12 |
9 | −1 | −1 | 26.58 | 32.77 | 23.01 |
Product | Weight (g) | Yeld (%) | Grade (%) | Recovery (%) |
---|---|---|---|---|
Concentrate | 20.54 | 35.05 | 22.84 | 66.93 |
Tailings | 38.06 | 64.95 | 6.09 | 33.07 |
Total | 58.60 | 100.00 | 12.36 | 100.00 |
Product | Size (mm) | Grade (%) | Recovery (%) |
---|---|---|---|
Concentrate | −0.075 + 0.038 | 25.22 | 75.20 |
−0.038 | 20.86 | 46.73 | |
Tailiings | −0.075 + 0.038 | 6.08 | 24.80 |
−0.038 | 6.27 | 53.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, L.; Cheng, Z.; Lu, D. Separation Analysis of New Magnetic Separator for Pre-Concentration of Ilmenite Particles. Minerals 2022, 12, 837. https://doi.org/10.3390/min12070837
Han L, Cheng Z, Lu D. Separation Analysis of New Magnetic Separator for Pre-Concentration of Ilmenite Particles. Minerals. 2022; 12(7):837. https://doi.org/10.3390/min12070837
Chicago/Turabian StyleHan, Liren, Zhiyong Cheng, and Dongfang Lu. 2022. "Separation Analysis of New Magnetic Separator for Pre-Concentration of Ilmenite Particles" Minerals 12, no. 7: 837. https://doi.org/10.3390/min12070837
APA StyleHan, L., Cheng, Z., & Lu, D. (2022). Separation Analysis of New Magnetic Separator for Pre-Concentration of Ilmenite Particles. Minerals, 12(7), 837. https://doi.org/10.3390/min12070837