High-Density Upper Amphibolite/Granulite Facies Fluid Inclusions in Magmatic Garnet from the Koralpe Mountains (Eastern Alps, Austria)
Abstract
:1. Introduction
2. Geological Setting
3. Location and Petrography of Pegmatite Samples
4. Materials and Methods
4.1. Electron Microprobe
4.2. Microthermometry
4.3. Micro-Raman Spectroscopy
5. Results
5.1. Major Element Chemistry of Magmatic Garnet Domains
5.2. Inclusion Study
5.3. Fluid Density Isochores—PT Conditions of Entrapment
6. Discussion
6.1. Origin of the Fluid
6.2. Do All Garnet Samples Show Fluid Modification Processes? The Role of Water
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Černý, P.; Meintzer, R.E.; Anderson, A.J. Extreme fractionation in rare-element granitic pegmatites: Selected examples of data and mechanism. Can. Mineral. 1985, 23, 381–421. [Google Scholar]
- London, D. Pegmatites. Can. Mineral. Spec. Publ. 2008, 10, 347. [Google Scholar]
- Müller, A.; Kearsley, A.; Spatt, J.; Seltmann, R. Peterogenetic implications of magmatic garnet in granitic pegmatites from Southern Norway. Can. Mineral. 2012, 50, 1095–1115. [Google Scholar] [CrossRef]
- Chernoff, C.B.; Carlson, W.D. Disequilibrium for Ca during growth of pelitic garnet. J. Metam. Geol. 1997, 15, 421–438. [Google Scholar] [CrossRef]
- Spear, F.S. Metamorphic Phase Equilibria and Pressure–Temperature–Time Paths; Mineralogical Society of America: Washington, DC, USA, 1993; p. 799. [Google Scholar]
- Menard, T.; Spear, F.S. Metamorphism of calcic Pelitic schists, Strafford Dome, Vermont: Compositional zoning and reaction history. J. Petrol. 1993, 34, 977–1005. [Google Scholar] [CrossRef]
- Thomas, R.; Davison, P.; Beurlen, H. The competing models for the origin and internal evolution of granitic pegmatites in the light melt and fluid inclusion research. Mineral. Petrol. 2012, 106, 55–73. [Google Scholar] [CrossRef]
- Thomas, R.; Davison, P. Revisiting complete miscibility between silicate melts and hydrous fluids, and the extreme enrichment of some elements in the supercritical state—Consequences for the formation of pegmatites and ore deposits. Ore Geol. Rev. 2016, 72, 1088–1101. [Google Scholar] [CrossRef]
- Masoudy, F.; Yardley, B.W.D. Magmatic and metamorphic fluids in pegmatite development: Evidence from Borujerd Complex, Iran. J. Sci. Islamic Repub. Iran 2005, 16, 43–53. [Google Scholar]
- London, D. Magmatic-hydrothermal transition in the Tanco rare-element pegmatite: Evidence from fluid inclusions and phase-equilibrium experiments. Am. Mineral. 1986, 71, 376–395. [Google Scholar]
- Bolder-Schrijver, L.J.A.; Kriegsmann, L.M.; Touret, J.L.R. Primary carbonate/CO2 inclusions in sapphirine-bearing garnulites from Sri Lanka. J. Metam. Geol. 2000, 18, 259–269. [Google Scholar] [CrossRef]
- Touret, J.L.R.; Huizenga, M. Fluid-assisted granulite metamorphism. Gondw. Res. 2012, 21, 224–235. [Google Scholar] [CrossRef]
- Frezzotti, M.L.; Touret, J.L.R. CO2, carbonate-rich melts and brines in the mantle. Geosc. Front. 2014, 5, 697–710. [Google Scholar] [CrossRef]
- Schuster, R.; Scharbert, S.; Abart, R.; Frank, W. Permo-Triassic extension and related HT/LP metamorphism in the Austroalpine–Southalpine realm. Mitt. Ges. Geol. Bergbaustud. 2001, 45, 111–141. [Google Scholar]
- Habler, G.; Thöni, M.; Miller, C. Major and trace element chemistry and Sm-Nd age correlation of magmatic pegmatite garnet overprinted by eclogite-facies metamorphism. Chem. Geol. 2007, 241, 4–22. [Google Scholar] [CrossRef]
- Konzett, J.; Schneider, T.; Nedyalkova, L.; Hauzenberger, C.; Melcher, F.; Gerdes, A.; Whitehouse, M. Anatectic Granitic Pegmatites from the Eastern Alps: A case of variable Rare-metal enrichment during high-grade regional metamorphism—I: Mineral assemblages, geochemical characteristics, and emplacement ages. Can. Mineral. 2018, 56, 555–602. [Google Scholar] [CrossRef]
- Konzett, J.; Hauzenberger, C.; Ludwig, T.; Stalder, R. Anatectic Granitic Pegmatites from the Eastern Alps: A case of variable Rare-metal enrichment during high-grade regional metamorphism—II: Pegmatite staurolite as an indicator of anatectic pegmatite parent melt formation—A field and experimental study. Can. Mineral. 2018, 56, 603–624. [Google Scholar] [CrossRef]
- Knoll, T.; Schuster, R.; Huet, B.; Mali, H.; Onuk, P.; Horschinegg, M.; Ertl, A.; Giester, G. Spodumene pegmatites and related leucogranites from the Austroalpine unit (Eastern Alps, Central Europe): Field relations, petrography, geochemistry and geochronology. Can. Mineral. 2018, 56, 489–528. [Google Scholar] [CrossRef]
- Krenn, K.; Konzett, J.; Stalder, R. Anatectic granitic pegmatites from the eastern Alps: A case of variable rare metal enrichment during high-grade regional metamorphism. III: Fluid inclusions as potential indicators for anatectic pegmatite parent melt formation. Can. Mineral. 2022, 60, 155–169. [Google Scholar] [CrossRef]
- Thöni, M.; Miller, C. Permo-Triassic pegmatites in the eo-Alpine eclogite-facies Koralpe complex, Austria: Age and magma source constraints from mineral chemical, Rb-Sr and Sm-Nd isotope data. Schweiz. Mineral. Petrogr. Mitt. 2000, 80, 169–186. [Google Scholar]
- Krenn, K.; Husar, M.; Mikulics, A. Fluid and solid inclusions in host minerals of Permian Pegmatites from Koralpe (Austria): Deciphering the Permian fluid evolution during pegmatite formation. Minerals 2021, 11, 638. [Google Scholar] [CrossRef]
- Schmid, S.M.; Fügenschuh, B.; Kissling, E.; Schuster, R. Tectonic map and overall architecture of the Alpine orogen. Eclog. Geol. Helv. 2004, 97, 93–117. [Google Scholar] [CrossRef]
- Schuster, R.; Stüwe, K. The Permian Metamorphic Event in the Alps. Geology 2008, 36, 603–606. [Google Scholar] [CrossRef]
- Göd, R. The spodumene deposit at “Weinebene”, Koralpe, Austria. Mineral. Dep. 1989, 24, 270–278. [Google Scholar] [CrossRef]
- Whitney, D.L.; Evans, W.E. Abbreviations for names of rock-forming minerals. Am. Mineral. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- Duscheck, W.; Kleinrahm, R.; Wagner, W. Measurements and correlation of the (pressure, density, temperature) relation of carbon dioxide: II. Saturated-liquid and saturated-vapour densities and the vapour pressure along the entire coexisting curve. J. Chem. Thermodyn. 1990, 22, 841–864. [Google Scholar] [CrossRef]
- Soave, G. Equilibrium constants from a modified Redlich-Kwong equation of state. Chem. Eng. Sci. 1972, 27, 1197–1203. [Google Scholar] [CrossRef]
- Belonoshko, A.; Saxena, S.K. A molecular dynamics study of pressure-volume-temperature properties of supercritical fluids: 2. CO2, CH4, CO, O2 and H2. Geochim. Cosmochim. Acta 1991, 55, 3191–3208. [Google Scholar] [CrossRef]
- Duan, Z.; Møller, N.; Weare, J.H. A general equation of state for supercritical fluid mixtures and molecular dynamics simulation of mixture PVTX properties. Geochim. Cosmochim. Acta 1996, 60, 1209–1216. [Google Scholar] [CrossRef]
- Bakker, R.J. Package FLUIDS 1 Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chem. Geol. 2003, 194, 3–23. [Google Scholar] [CrossRef]
- Burke, E.A.J. Raman microspectrometry of fluid inclusions. Lithos 2001, 55, 139–158. [Google Scholar] [CrossRef]
- Frezzotti, M.L.; Tecce, F.; Casagli, A. Raman spectroscopy for fluid inclusion analysis. J. Geoch. Explor. 2012, 112, 1–20. [Google Scholar] [CrossRef]
- Hurai, V.; Huraiová, M.; Slobodník, M.; Thomas, R. Geofluids; Elsevier: Amsterdam, The Netherlands, 2015; p. 485. [Google Scholar]
- Dufresne, W.J.; Rufledt, C.J.; Marshall, C.P. Raman spectroscopy of eight natural carbonate minerals of calcite structure. J. Raman Spec 2018, 49, 1999–2007. [Google Scholar] [CrossRef]
- Dahlquist, J.A.; Galindo, C.; Pankhurst, R.J.; Rapela, C.W.; Alasino, P.H.; Saavedra, J.; Fanning, C.M. Magmatic evolution of the Peñón Rosado granite: Petrogenesis of garnet-bearing granitoids. Lithos 2007, 95, 177–207. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Chou, I.-M.; Hu, W.; Burruss, R.C.; Sun, Q.; Song, Y. Raman spectroscopic measurements of CO2 density: Experimental calibration with high-pressure optical cell (HPOC) and fused silica capillary capsule (FSCC) with application to fluid inclusion observations. Geochim. Cosmochim. Acta 2011, 75, 4080–4093. [Google Scholar] [CrossRef]
- Touret, J.L.R.; Huizenga, J.M. Fluids in granulites. Geol. Soc. Am. 2011, 207, 25–37. [Google Scholar] [CrossRef]
- Touret, J.L.R. Fluids in metamorphic rocks. Lithos 2001, 55, 1–25. [Google Scholar] [CrossRef]
- Thomas, A.V.; Spooner, E.T.C. Fluid inclusions in the systems H2O-CH4-NaCl-CO2 from metasomatic tourmaline within the border unit of the Tanco zoned granite pegmatite, S.E. Manitoba. Geochim. Cosmochim. Acta 1988, 52, 1065–1075. [Google Scholar] [CrossRef]
- Linnen, R.L.; Williams-Jones, A.E. The evolution of pegmatite-hosted Sn-W mineralization at Nong Sua, Thailand: Evidence from fluid inclusions and stable isotopes. Geochim. Cosmochim. Acta 1994, 58, 735–747. [Google Scholar] [CrossRef]
- Fuertes-Fuente, M.; Martin-Izard, A.; Boiron, M.C.; Viñuela, J.M. P–T path and fluid evolution in the Franqueira Granitic Pegmatite, Central Galicia, Northwestern Spain. Can. Mineral. 2000, 38, 1163–1175. [Google Scholar] [CrossRef] [Green Version]
- Whitworth, M.P.; Rankin, A.H. Evolution of fluid phases associated with lithium pegmatites from SE Ireland. Mineral. Mag. 1989, 53, 271–284. [Google Scholar] [CrossRef] [Green Version]
- Honma, H.; Itihara, Y. Distribution of ammonium in minerals of metamorphic and granitic rocks. Geochim. Cosmochim. Acta 1981, 45, 983–988. [Google Scholar] [CrossRef]
- Hall, A.; Pereira, M.D.; BEA, F. The abundance of ammonium in the granites of central Spain, and the behaviour of the ammonium ion during anatexis and fractional crystallization. Mineral. Petrol. 1996, 56, 105–123. [Google Scholar] [CrossRef]
- Beurlen, H.; Reis Rodriguez Da Silva, M.; De Castro, C. Fluid origin and evolution during the formation of rare-element pegmatites from the Borborema Province, Northern Brazil. Rev. Bras. Geociênc. 2000, 30, 331–336. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.G.; Franz, J.D. Experimental determination of the compositional limits of immiscibility in the system CaCl2-H2O-CO2 at high temperatures and pressures using synthetic fluid inclusions. Chem. Geol. 1989, 74, 289–308. [Google Scholar] [CrossRef]
- Johnson, E.L. Experimentally determined limits for H2O-CO2-NaCl immiscibility in granulites. Geology 1991, 19, 925–928. [Google Scholar] [CrossRef]
- Diamond, L.W. Review of the systematics of CO2-H2O fluid inclusions. Lithos 2001, 55, 69–99. [Google Scholar] [CrossRef]
- Erdmann, S.; Jamieson, R.A.; MacDonald, M.A. Evaluating the origin of garnet, cordierite, and biotite in Granitic Rocks: A case study from the south mountain Batholith, Nova Scotia. J. Petrol. 2009, 50, 1477–1503. [Google Scholar] [CrossRef] [Green Version]
- Wise, M.A.; Müller, A.; Simmons, W.B. A proposed new mineralogical classification system for granitic pegmatites. Can. Mineral. 2022, 60, 229–248. [Google Scholar] [CrossRef]
- Anderson, A.J.; Clark, A.H.; Gray, S. The occurrence and origin of zabuyelite (Li2CO3) in spodumene-hosted fluid inclusions: Implications for the internal evolution of rare-element granitic pegmatites. Can. Mineral. 2001, 39, 1513–1527. [Google Scholar] [CrossRef]
- Anderson, A.J. Microthermometric behavior of crystal-rich inclusions in spodumene under confining pressure. Can. Mineral. 2019, 57, 853–865. [Google Scholar] [CrossRef]
Sample | Kor_1 | Kor_3 | W01 | W06 | ||||
---|---|---|---|---|---|---|---|---|
Core | Rim | Core | Rim | Core | Rim | Core | Rim | |
Av. (n = 8) | Av. (n = 9) | Av. (n = 7) | Av. (n = 3) | Av. (n = 7) | Av. (n = 3) | Av. (n = 9) | Av. (n = 3) | |
SiO2 | 36.60 ± 0.84 | 36.97 ± 1.24 | 37.39 ± 0.21 | 37.57 ± 0.11 | 36.34 ± 0.37 | 36.78 ± 0.53 | 35.61 ± 0.52 | 36.13 ± 0.44 |
TiO2 | 0.02 ± 0.05 | 0.02 ± 0.03 | 0.01 ± 0.02 | 0.01 ± 0.03 | 0.02 ± 0.05 | 0.00 | 0.08 ± 0.12 | 0.01 ± 0.01 |
Al2O3 | 20.39 ± 0.33 | 20.47 ± 0.62 | 21.54 ± 0.21 | 21.52 ± 0.12 | 21.53 ± 0.28 | 21.81 ± 0.49 | 20.65 ± 0.18 | 20.91 ± 0.18 |
Cr2O3 | 0.01 ± 0.02 | 0.00 ± 0.02 | 0.03 ± 0.04 | 0.05 ± 0.03 | 0.01 ± 0.04 | 0.06 ± 0.04 | 0.02 ± 0.05 | 0.00 |
CFe2O3 | 0.48 ± 0.45 | 0.70 ± 0.88 | 0.00 | 0.00 | 1.62 ± 0.56 | 0.83 ± 0.83 | 0.79 ± 0.83 | 0.74 ± 0.52 |
CFeO | 29.12 ± 1.48 | 28.44 ± 4.52 | 33.98 ± 0.67 | 31.51 ± 1.61 | 32.79 ± 0.53 | 30.46 ± 0.46 | 24.99 ± 4.27 | 27.76 ± 0.32 |
MnO | 10.51 ± 0.96 | 8.15 ± 2.20 | 3.92 ± 0.39 | 3.96 ± 0.53 | 3.34 ± 0.45 | 4.73 ± 0.82 | 16.65 ± 4.82 | 12.50 ± 0.62 |
MgO | 1.48 ± 0.16 | 1.83 ± 0.14 | 2.78 ± 0.13 | 2.45 ± 0.34 | 3.36 ± 0.17 | 2.34 ± 0.20 | 0.21 ± 0.22 | 0.28 ± 0.02 |
CaO | 0.90 ± 0.02 | 2.20 ± 3.61 | 0.81 ± 0.16 | 3.36 ± 2.33 | 0.39 ± 0.14 | 3.45 ± 0.59 | 0.19 ± 0.13 | 1.71 ± 1.13 |
K2O | 0.01 ± 0.03 | 0.02 ± 0.02 | 0.00 ± 0.01 | 0.01 ± 0.01 | 0.00 ± 0.01 | 0.01 ± 0.01 | 0.00 ± 0.01 | 0.02 ± 0.02 |
Na2O | 0.03 ± 0.05 | 0.02 ± 0.04 | 0.02 ± 0.01 | 0.02 ± 0.02 | 0.02 ± 0.02 | 0.03 ± 0.02 | 0.04 ± 0.04 | 0.01 ± 0.01 |
Total | 99.45 ± 0.72 | 99.71 ± 0.78 | 100.46 ± 0.69 | 100.41 ± 0.33 | 99.81 ± 0.61 | 99.53 ± 0.63 | 99.32 ± 0.88 | 99.99 ± 0.33 |
End-members | ||||||||
pyrope | 5.99 ± 0.54 | 7.37 ± 0.56 | 11.27 ± 0.54 | 9.87 ± 1.42 | 13.37 ± 0.79 | 9.36 ± 0.71 | 0.80 ± 0.90 | 1.13 ± 0.10 |
alm | 67.19 ± 1.93 | 65.20 ± 8.90 | 77.34 ± 1.08 | 71.32 ± 4.00 | 76.40 ± 1.70 | 69.23 ± 3.55 | 58.83 ± 11.2 | 64.94 ± 1.78 |
spess | 24.20 ± 2.06 | 15.70 ± 7.45 | 9.02 ± 0.84 | 9.06 ± 1.25 | 7.54 ± 1.07 | 11.02 ± 1.28 | 39.80 ± 12.5 | 28.93 ± 1.43 |
gross | 2.60 ± 0.09 | 11.72 ± 16.64 | 2.35 ± 0.45 | 9.72 ± 6.68 | 2.68 ± 0.39 | 10.38 ± 5.53 | 0.57 ± 0.38 | 4.96 ± 3.31 |
XMg | 0.08 ± 0.01 | 0.10 ± 0.01 | 0.12 ± 0.01 | 0.12 ± 0.01 | 0.15 ± 0.01 | 0.12 ± 0.01 | 0.014 ± 0.01 | 0.01 ± 0.002 |
XFe | 0.92 ± 0.01 | 0.89 ± 0.01 | 0.87 ± 0.01 | 0.87 ± 0.01 | 0.84 ± 0.01 | 0.88 ± 0.01 | 0.98 ± 0.01 | 0.98 ± 0.002 |
Sample | Sub-type | Chem. | n | Size [µm] | Phases at RT | Tm(CO2) [°C] | Th(CO2) [°C] | Density [g/cm3] | CO2 [mol%] | N2 [mol%] | Solid Phases |
---|---|---|---|---|---|---|---|---|---|---|---|
W01 | I | CO2-N2 | 14 | ≤6 | Lcar + S | −65.3 to −57.7 | −62.5 to −31.6 | 0.96 to 1.11 | n.o. | Ms ± Rho | |
II | CO2-N2 | 10 | ≤7.5 | Lcar + S | −65.2 to −57.3 | −60.3 to 4.5 | 0.76 to 1.11 | Qtz, Ms, Gr ± Rho | |||
W02 | I | CO2-N2 | 12 | ≤6 | Lcar + S | −60.4 to −59.1 | −59.1 to −25.1 | 0.89 to 1.04 | 90.30 | 9.70 | Rho, Ms |
II | CO2-N2 | 8 | ≤12 | Lcar + S | −59.4 to −58.9 | −17.6 to −15.9 | 0.85 to 0.86 | Rho, Ms, Rt, Xtm | |||
W06 | I | CO2-N2 | 27 | ≤10 | Lcar + S | −64.2 to −58.0 | −60.7 to −3.5 | 0.66 to 0.85 | 59.17 | 40.83 | Rho, Ms |
II | CO2-N2 | 6 | ≤39 | Lcar + S | −59.9 to −58.4 | −49.5 to −5.6 | 0.64 to 0.79 | Rho, Ms, Ap, Rt, Qtz/Crs | |||
Kor_1 | I | CO2-N2 | 12 | ≤10 | Lcar + S | −59.9 to −58.0 | −58.3 to −24.1 | 0.82 to 0.95 | 82.3 | 17.7 | Rho, Cal, Ms |
II | CO2-N2 | 8 | ≤16 | Lcar + S | −59.9 to −57.5 | −51.4 to −16.8 | 0.82 to 1.07 | 83.48 | 16.52 | Cal, Rho, Rt, Ms, Qtz, Gr, Zr, Xtm, Ilm | |
I | CO2 | 6 | ≤10 | Lcar + S | −56.6 | −35.8 to −11.3 | 0.99 to 1.10 | 100 | Rho, Cal, Ms | ||
Kor_3 | I | CO2-N2 | 39 | ≤9 | Lcar + S | −62.9 to −56.8 | −59.2 to −21.6 | 0.90 to 1.11 | 91.11 | 8.9 | Ms, Gr, Rho, Cal, Ky, Ilm |
II | CO2-N2 | 17 | ≤38 | Lcar + S | −60.0 to −57.0 | −59.5 to 11.7 | 0.70 to 1.10 | 93.17 | 6.83 | Ms, Gr, Rho, Cal, Ky, Ilm | |
I | CO2 | 8 | ≤12 | Lcar + S | −56.6 | −48.9 to 22.0 | 0.75 to 1.15 | 100 | Rho, Cal, Ms |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Husar, M.; Krenn, K. High-Density Upper Amphibolite/Granulite Facies Fluid Inclusions in Magmatic Garnet from the Koralpe Mountains (Eastern Alps, Austria). Minerals 2022, 12, 873. https://doi.org/10.3390/min12070873
Husar M, Krenn K. High-Density Upper Amphibolite/Granulite Facies Fluid Inclusions in Magmatic Garnet from the Koralpe Mountains (Eastern Alps, Austria). Minerals. 2022; 12(7):873. https://doi.org/10.3390/min12070873
Chicago/Turabian StyleHusar, Martina, and Kurt Krenn. 2022. "High-Density Upper Amphibolite/Granulite Facies Fluid Inclusions in Magmatic Garnet from the Koralpe Mountains (Eastern Alps, Austria)" Minerals 12, no. 7: 873. https://doi.org/10.3390/min12070873
APA StyleHusar, M., & Krenn, K. (2022). High-Density Upper Amphibolite/Granulite Facies Fluid Inclusions in Magmatic Garnet from the Koralpe Mountains (Eastern Alps, Austria). Minerals, 12(7), 873. https://doi.org/10.3390/min12070873