Geochronology, Whole-Rock Geochemistry, and Sr–Nd–Hf Isotopes of Granitoids in the Tongshanling Ore Field, South China: Insights into Cu and W Metallogenic Specificity
Abstract
:1. Introduction
2. Geological Setting
2.1. Regional Geology
2.2. Ore Field Geology
3. Sampling and Analytical Methods
4. Results
4.1. Major and Trace Elements of Granitoids
4.2. Zircon Morphology and U–Pb Geochronology
4.3. Zircon Lu–Hf Isotopic and Trace Element Compositions
4.4. Whole-Rock Sr–Nd Isotopes
5. Discussion
5.1. Contrasting Petrogenesis of the Granodiorite and Granite Porphyry
5.1.1. Genetic Types of the Granites
5.1.2. Magma Generation and Evolution of the Granitoids
5.1.3. Granite Fractionation Signatures
5.2. Emplacement Age and Tectonic Implications
5.3. Metallogenic Specificity and Ore Genetic Model
6. Conclusions
- (1)
- The Tongshanling granodiorite is I-type and was produced by partial melting of the Mesoproterozoic crustal basement. The granite porphyry has an A-type affinity, was derived from partial melting of the Mesoproterozoic basement, and underwent fractional crystallization of plagioclase and K-feldspar during its formation.
- (2)
- The No. 1, Jiangyong, No. 2, and No. 3 granodiorites were emplaced at 163.7 ± 0.4 Ma, 159.37 ± 0.6 Ma, 157.8 ± 0.6 Ma, and 154.7 ± 0.6 Ma, respectively. The granite porphyry was emplaced at 161.1 ± 0.3 Ma. All granitoids are classified as post-collision, in good agreement with an extensional setting.
- (3)
- The granodiorite has a low differentiation index and formation temperature, and high oxygen fugacity, which are related to Cu mineralization in the Tongshanling ore field. The granite porphyry has a high differentiation index, and formation temperature, significant crust–mantle interaction, and low oxygen fugacity, which are related to W mineralization granite porphyry in the Tongshanling ore field.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Faure, M.; Ishida, K. The Mid-Upper Jurassic Olistostrome of the West Philippines: A Distinctive Key-Marker for the North Palawan Block. J. Southeast Asian Earth Sci. 1990, 4, 61–67. [Google Scholar] [CrossRef]
- Maruyama, S.; Isozaki, Y.; Kimura, G.; Terabayashi, M. Paleogeographic Maps of the Japanese Islands: Plate Tectonic Synthesis from 750 Ma to the Present. Isl. Arc 1997, 6, 121–142. [Google Scholar] [CrossRef]
- Zhou, X.; Sun, T.; Shen, W.; Shu, L.; Niu, Y. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution. Episodes 2006, 29, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Hu, R.-Z.; Zhou, M.-F. Multiple Mesozoic Mineralization Events in South China—an Introduction to the Thematic Issue. Miner. Depos. 2012, 47, 579–588. [Google Scholar] [CrossRef]
- Zhou, Y.; Zeng, C.; Li, H.; An, Y.; Liang, J.; Lü, W.; Yang, Z.; He, J.; Shen, W. Geological Evolution and Ore-Prospecting Targets in Southern Segment of Qinzhou Bay-Hangzhou Bay Juncture Orogenic Belt, Southern China. Geol. Bull. China 2012, 31, 486–491. [Google Scholar]
- Guo, C.L.; Xu, Y.M.; Lou, F.S.; Zheng, J.H. A Comparative Study of the Middle Jurassic Granodiorite Related to Cu and the Late Jurassic Granites Related to Sn in the Qin-Hang Metallogenic Belt and a Tentative Discussion on Their Tectonic Dynamic Setting. Acta Petrol. Mineral. 2013, 32, 463–484. [Google Scholar]
- Zhong, L.; Li, J.; Peng, T.; Xia, B.; Liu, L. Zircon U–Pb Geochronology and Sr–Nd–Hf Isotopic Compositions of the Yuanzhuding Granitoid Porphyry within the Shi-Hang Zone, South China: Petrogenesis and Implications for Cu–Mo Mineralization. Lithos 2013, 177, 402–415. [Google Scholar] [CrossRef]
- Ding, T.; Ma, D.; Lu, J.; Zhang, R. Apatite in Granitoids Related to Polymetallic Mineral Deposits in Southeastern Hunan Province, Shi–Hang Zone, China: Implications for Petrogenesis and Metallogenesis. Ore Geol. Rev. 2015, 69, 104–117. [Google Scholar] [CrossRef]
- Li, X.; Chi, G.; Zhou, Y.; Deng, T.; Zhang, J. Oxygen Fugacity of Yanshanian Granites in South China and Implications for Metallogeny. Ore Geol. Rev. 2017, 88, 690–701. [Google Scholar] [CrossRef]
- Zhang, C.; Sun, W.; Wang, J.; Zhang, L.; Sun, S.; Wu, K. Oxygen Fugacity and Porphyry Mineralization: A Zircon Perspective of Dexing Porphyry Cu Deposit, China. Geochim. Cosmochim. Acta 2017, 206, 343–363. [Google Scholar] [CrossRef]
- Sun, W.; Huang, R.; Li, H.; Hu, Y.; Zhang, C.; Sun, S.; Zhang, L.; Ding, X.; Li, C.; Zartman, R.E.; et al. Porphyry Deposits and Oxidized Magmas. Ore Geol. Rev. 2015, 65, 97–131. [Google Scholar] [CrossRef]
- Mao, J.; Cheng, Y.; Chen, M.; Franco, P. Major Types and Time–Space Distribution of Mesozoic Ore Deposits in South China and Their Geodynamic Settings. Miner. Depos. 2013, 48, 267–294. [Google Scholar]
- Shu, X.J.; Wang, X.L.; Sun, T.; Xu, X.; Dai, M.N. Trace Elements, U–Pb Ages and Hf Isotopes of Zircons from Mesozoic Granites in the Western Nanling Range, South China: Implications for Petrogenesis and W–Sn Mineralization. Lithos 2011, 127, 468–482. [Google Scholar] [CrossRef]
- Zhou, M.F.; Gao, J.; Zhao, Z.; Zhao, W.W. Introduction to the Special Issue of Mesozoic W-Sn Deposits in South China. Ore Geol. Rev. 2018, 101, 432–436. [Google Scholar] [CrossRef]
- Schmidt, C.; Gottschalk, M.; Zhang, R.; Lu, J. Oxygen Fugacity during Tin Ore Deposition from Primary Fluid Inclusions in Cassiterite. Ore Geol. Rev. 2021, 139, 104451. [Google Scholar] [CrossRef]
- Ren, T.; Li, H. Research Progress of Granite-Related Tin Mineralization. Zhongnan Daxue Xuebao Ziran Kexue Ban J. Cent. South Univ. Sci. Technol. 2022, 53, 514–534. [Google Scholar] [CrossRef]
- Lu, Y.; Ma, L.; Qu, W.; Mei, Y.; Chen, X. U-Pb and Re-Os Isotope Geochronology of Baoshan Cu-Mo Polymetallic Ore Deposit in Hunan Province. Acta Petrol. Sin. 2006, 22, 2483–2492. [Google Scholar]
- Yuan, S.D.; Peng, J.T.; Li, X.Q.; Peng, Q.L.; Fu, Y.Z.; Shen, N.P.; Zhang, D.L. Carbon, Oxygen and Strontium Isotope Geochemistry of Calcites from the Xianghualing Tin-Polymetallic Deposit, Hunan Province. Acta Geol. Sin. 2008, 82, 1522–1530. [Google Scholar]
- Yuan, S.; Peng, J.; Hu, R.; Li, H.; Shen, N.; Zhang, D. A Precise U–Pb Age on Cassiterite from the Xianghualing Tin-Polymetallic Deposit (Hunan, South China). Miner. Depos. 2008, 43, 375–382. [Google Scholar] [CrossRef]
- Yuan, S.; Peng, J.; Shen, N.; HU, R.; DAI, T. 40Ar-39 Ar Isotopic Dating of the Xianghualing Sn-polymetallic Orefield in Southern Hunan, China and Its Geological Implications. Acta Geol. Sin. Ed. 2007, 81, 278–286. [Google Scholar]
- Zhao, P.; Yuan, S.; Mao, J.; Santosh, M.; Li, C.; Hou, K. Geochronological and Petrogeochemical Constraints on the Skarn Deposits in Tongshanling Ore District, Southern Hunan Province: Implications for Jurassic Cu and W Metallogenic Events in South China. Ore Geol. Rev. 2016, 78, 120–137. [Google Scholar] [CrossRef]
- Kong, H.; Li, H.; Wu, Q.H.; Xi, X.S.; Dick, J.M.; Gabo-Ratio, J.A.S. Co-Development of Jurassic I-Type and A-Type Granites in Southern Hunan, South China: Dual Control by Plate Subduction and Intraplate Mantle Upwelling. Geochemistry 2018, 78, 500–520. [Google Scholar] [CrossRef]
- Li, H.; Kong, H.; Zhou, Z.K.; Wu, Q.H.; Xi, X.S.; Gabo-Ratio, J.A.S. Ore-Forming Material Sources of the Jurassic Cu–Pb–Zn Mineralization in the Qin–Hang Ore Belt, South China: Constraints from S–Pb Isotopes. Geochemistry 2019, 79, 280–306. [Google Scholar] [CrossRef]
- Mao, J.; Li, H. Evolution of the Qianlishan Granite Stock and Its Relation to the Shizhuyuan Polymetallic Tungsten Deposit. Int. Geol. Rev. 1995, 37, 63–80. [Google Scholar]
- Mao, J.; Li, H.; Hidehiko, S.; Louis, R.; Bernard, G. Geology and Metallogeny of the Shizhuyuan Skarn-Greisen Deposit, Hunan Province, China. Int. Geol. Rev. 1996, 38, 1020–1039. [Google Scholar]
- Lu, H.-Z.; Liu, Y.; Wang, C.; Xu, Y.; Li, H. Mineralization and Fluid Inclusion Study of the Shizhuyuan W-Sn-Bi-Mo-F Skarn Deposit, Hunan Province, China. Econ. Geol. 2003, 98, 955–974. [Google Scholar] [CrossRef]
- Yuan, Y.; Yuan, S.; Chen, C.; Huo, R. Zircon U-Pb Ages and Hf Isotopes of the Granitoids in the Huangshaping Mining Area and Their Geological Significance. Acta Petrol. Sin. 2014, 30, 64–78. [Google Scholar]
- Li, H.; Watanabe, K.; Yonezu, K. Zircon Morphology, Geochronology and Trace Element Geochemistry of the Granites from the Huangshaping Polymetallic Deposit, South China: Implications for the Magmatic Evolution and Mineralization Processes. Ore Geol. Rev. 2014, 60, 14–35. [Google Scholar] [CrossRef]
- Li, X.; Huang, C.; Wang, C.; Wang, L. Genesis of the Huangshaping W–Mo–Cu–Pb–Zn Polymetallic Deposit in Southeastern Hunan Province, China: Constraints from Fluid Inclusions, Trace Elements, and Isotopes. Ore Geol. Rev. 2016, 79, 1–25. [Google Scholar]
- Ding, T.; Ma, D.; Lu, J.; Zhang, R.; Zhang, S.; Gao, S. Petrogenesis of Late Jurassic Granitoids and Relationship to Polymetallic Deposits in Southern China: The Huangshaping Example. Int. Geol. Rev. 2016, 58, 1646–1672. [Google Scholar] [CrossRef]
- Zhu, D.-P.; Li, H.; Algeo, T.J.; Jiang, W.-C.; Wang, C. The Prograde-to-Retrograde Evolution of the Huangshaping Skarn Deposit (Nanling Range, South China). Miner. Depos. 2021, 56, 1087–1110. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, Y.; Shao, Y.; Li, H.; Ahmad Shah, S.; Zhou, W. Using Garnet Geochemistry Discriminating Different Skarn Mineralization Systems: Perspective from Huangshaping W-Mo-Sn-Cu Polymetallic Deposit, South China. Ore Geol. Rev. 2021, 138, 104412. [Google Scholar] [CrossRef]
- Mao, J.W.; Wu, S.H.; Song, S.W.; Dai, P.; Xie, G.Q.; Su, Q.W.; Liu, P.; Wang, X.G.; Yu, Z.Z.; Chen, X.Y. The World-Class Jiangnan Tungsten Belt: Geological Characteristics, Metallogeny, and Ore Deposit Model. Sci. Bull. 2020, 65, 3746–3762. [Google Scholar]
- Liu, B.; Kong, H.; Wu, Q.-H.; Chen, S.-F.; Li, H.; Xi, X.-S.; Wu, J.-H.; Jiang, H. Origin and Evolution of W Mineralization in the Tongshanling Cu–Polymetallic Ore Field, South China: Constraints from Scheelite Microstructure, Geochemistry, and Nd–O Isotope Evidence. Ore Geol. Rev. 2022, 143, 104764. [Google Scholar] [CrossRef]
- Wu, J.; Kong, H.; Li, H.; Algeo, T.J.; Yonezu, K.; Liu, B.; Wu, Q.; Zhu, D.; Jiang, H. Multiple Metal Sources of Coupled Cu-Sn Deposits: Insights from the Tongshanling Polymetallic Deposit in the Nanling Range, South China. Ore Geol. Rev. 2021, 139, 104521. [Google Scholar] [CrossRef]
- Blevin, P.L. Redox and Compositional Parameters for Interpreting the Granitoid Metallogeny of Eastern Australia: Implications for Gold-rich Ore Systems. Resour. Geol. 2004, 54, 241–252. [Google Scholar] [CrossRef]
- Sun, W.D.; Liang, H.Y.; Ling, M.X.; Zhan, M.Z.; Ding, X.; Zhang, H.; Yang, X.Y.; Li, Y.L.; Ireland, T.R.; Wei, Q.R.; et al. The Link between Reduced Porphyry Copper Deposits and Oxidized Magmas. Geochim. Cosmochim. Acta 2013, 103, 263–275. [Google Scholar] [CrossRef]
- Cheng, Y.; Spandler, C.; Chang, Z.; Clarke, G. Volcanic–Plutonic Connections and Metal Fertility of Highly Evolved Magma Systems: A Case Study from the Herberton Sn–W–Mo Mineral Field, Queensland, Australia. Earth Planet. Sci. Lett. 2018, 486, 84–93. [Google Scholar] [CrossRef]
- Mao, J.; Pirajno, F.; Cook, N. Mesozoic Metallogeny in East China and Corresponding Geodynamic Settings—An Introduction to the Special Issue. Ore Geol. Rev. 2011, 43, 1–7. [Google Scholar] [CrossRef]
- Wu, Q.; Cao, J.; Kong, H.; Shao, Y.; Li, H.; Xi, X.; Deng, X. Petrogenesis and Tectonic Setting of the Early Mesozoic Xitian Granitic Pluton in the Middle Qin-Hang Belt, South China: Constraints from Zircon U–Pb Ages and Bulk-Rock Trace Element and Sr–Nd–Pb Isotopic Compositions. J. Asian Earth Sci. 2016, 128, 130–148. [Google Scholar] [CrossRef]
- Hao, Z.; Xiao, Y.; HuiFu, D.; Wang, Q.; Chang, J.; Shen, L.; Lin, L. Geochemistry of the Cunqian Ore-Bearing Porphyry from the Eastern Qin-Hang Metallogenic Belt and Its Implication for Tectonic Setting and Mineralization. Acta Petrol. Sin. 2016, 32, 2069–2085. [Google Scholar]
- Shi, G.; Xue, J.; Zhu, X.; Pang, Z.; Wang, X.; Yang, F.; Jepson, G.; Tao, W.; Zhen, S. Ore Genesis of the Changkeng–Fuwan Au-Ag Deposit in Central Guangdong, South China: Evidence from Fluid Inclusions and C-H-O-S-Pb-He-Ar Isotopes. Minerals 2022, 12, 799. [Google Scholar] [CrossRef]
- Yu, Z.-F.; Peng, Q.-M.; Zhao, Z.; Wang, P.-A.; Xia, Y.; Wang, Y.-Q.; Wang, H. Geochronology, Geochemistry, and Geodynamic Relationship of the Mafic Dykes and Granites in the Qianlishan Complex, South China. Minerals 2020, 10, 1069. [Google Scholar] [CrossRef]
- Gilder, S.A.; Gill, J.; Coe, R.S.; Zhao, X.; Liu, Z.; Wang, G.; Yuan, K.; Liu, W.; Kuang, G.; Wu, H. Isotopic and Paleomagnetic Constraints on the Mesozoic Tectonic Evolution of South China. J. Geophys. Res. Solid Earth 1996, 101, 16137–16154. [Google Scholar] [CrossRef]
- Quan, T.J.; Wang, G.; Zhong, J.L.; Fei, L.D.; Kong, H.; Liu, S.J.; Zhao, Z.Q.; Guo, B.Y. Petrogenesis of Granodiorites in Tongshanling Deposit of Hunan Province: Constraints from Petrogeochemistry, Zircon U–Pb Chronology and Hf Isotope. J. Mineral. Petrol. 2013, 33, 43–52. [Google Scholar]
- Li, F.S.; Kang, R.H.; Hu, X.Y.; Ma, W.L.; Huang, X.H.; Zeng, Y.H.; Tang, J.B.; Zhu, X.; Qin, Z.W.; Zhao, J. Geological Characteristics and Ore-Search Prospect of the Weijia Tungsten Deposit in Nanling Region. Geol. China 2012, 39, 445–457. [Google Scholar]
- Yang, C.; Shen, Z.J.; Kuang, W.L.; Zhang, W.H. The Geological Features and Minerogenetic Mechanism of Tungsten–Polymetallic Deposits in Tongshanling Area, Southwestern Hunan: Taking Xianglinpu Deposit as an Example. Contrib. Geol. Miner. Resour. Res. 2012, 27, 156–161. [Google Scholar]
- Stacey, J.S.; Kramers, J.D. Approximation of Terrestrial Lead Isotope Evolution by a Two-Stage Model. Earth Planet. Sci. Lett. 1975, 26, 207–221. [Google Scholar] [CrossRef]
- Vermeesch, P. IsoplotR: A Free and Open Toolbox for Geochronology. Geosci. Front. 2018, 9, 1479–1493. [Google Scholar] [CrossRef]
- Balcaen, L.; De Schrijver, I.; Moens, L.; Vanhaecke, F. Determination of the 87Sr/86Sr Isotope Ratio in USGS Silicate Reference Materials by Multi-Collector ICP–Mass Spectrometry. Int. J. Mass Spectrom. 2005, 242, 251–255. [Google Scholar] [CrossRef]
- Jweda, J.; Bolge, L.; Class, C.; Goldstein, S.L. High Precision Sr-Nd-Hf-Pb Isotopic Compositions of USGS Reference Material BCR-2. Geostand. Geoanal. Res. 2016, 40, 101–115. [Google Scholar] [CrossRef]
- Le Maitre, R.W. A Classification of Igneous Rocks and Glossary of Terms. Recomm. Int. Union Geol. Sci. Subcomm. Syst. Igneous Rocks 1989, 193. [Google Scholar]
- Maniar, P.D.; Piccoli, P.M. Tectonic Discrimination of Granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Rickwood, P.C. Boundary Lines within Petrologic Diagrams Which Use Oxides of Major and Minor Elements. Lithos 1989, 22, 247–263. [Google Scholar] [CrossRef]
- Sun, S.-S.; McDonough, W.F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Belousova, E.; Griffin, W.; O’Reilly, S.Y.; Fisher, N. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contrib. Mineral. Petrol. 2002, 143, 602–622. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Schaltegger, U. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Rev. Mineral. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- Wu, Y.; Zheng, Y. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chin. Sci. Bull. 2004, 49, 1554–1569. [Google Scholar] [CrossRef]
- Huang, X.; Lu, J.; Sizaret, S.; Wang, R.; Ma, D.; Zhang, R.; Zhao, X.; Wu, J. Petrogenetic Differences between the Middle-Late Jurassic Cu-Pb-Zn-Bearing and W-Bearing Granites in the Nanling Range, South China: A Case Study of the Tongshanling and Weijia Deposits in Southern Hunan Province. Sci. China Earth Sci. 2017, 60, 1220–1236. [Google Scholar] [CrossRef]
- Chappell, B.W. Two Contrasting Granite Types. Pacif. Geol. 1974, 8, 173–174. [Google Scholar]
- Loiselle, M.C. Characteristics and Origin of Anorogenic Granites. Geol. Soc. Am. Abstr. Programs 1979, 11, 468. [Google Scholar]
- Miller, C.F. Are Strongly Peraluminous Magmas Derived from Pelitic Sedimentary Sources? J. Geol. 1985, 93, 673–689. [Google Scholar] [CrossRef]
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contrib. Mineral. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Chappell, B.W.; White, A.J.R. I-and S-Type Granites in the Lachlan Fold Belt. Earth Environ. Sci. Trans. R. Soc. Edinb. 1992, 83, 1–26. [Google Scholar]
- Chappell, B.W. Aluminium Saturation in I- and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos 1999, 46, 535–551. [Google Scholar] [CrossRef]
- Davis, J.; Hawkesworth, C. The Petrogenesis of 30–20 Ma Basic and Intermediate Volcanics from the Mogollon-Datil Volcanic Field, New Mexico, USA. Contrib. Mineral. Petrol. 1993, 115, 165–183. [Google Scholar] [CrossRef]
- Xu, H.; Ma, C.; Zhao, J.; Zhang, J. Magma Mixing Generated Triassic I-Type Granites in South China. J. Geol. 2014, 122, 329–351. [Google Scholar] [CrossRef]
- He, H.; Li, Y.; Wang, C.; Han, Z.; Ma, P.; Xiao, S. Petrogenesis and Tectonic Implications of Late Cretaceous Highly Fractionated I-Type Granites from the Qiangtang Block, Central Tibet. J. Asian Earth Sci. 2019, 176, 337–352. [Google Scholar] [CrossRef]
- Quelhas, P.; Mata, J.; Dias, Á.A. Evidence for Mixed Contribution of Mantle and Lower and Upper Crust to the Genesis of Jurassic I-Type Granites from Macao, SE China. GSA Bull. 2021, 133, 37–56. [Google Scholar] [CrossRef]
- Moghadam, H.S.; Li, Q.-L.; Griffin, W.L.; Stern, R.J.; Chiaradia, M.; Karsli, O.; Ghorbani, G.; O’Reilly, S.Y.; Pourmohsen, M. Zircon U-Pb, Geochemical and Isotopic Constraints on the Age and Origin of A-and I-Type Granites and Gabbro-Diorites from NW Iran. Lithos 2020, 374, 105688. [Google Scholar] [CrossRef]
- Clemens, J.D.; Stevens, G.; Farina, F. The Enigmatic Sources of I-Type Granites: The Peritectic Connexion. Lithos 2011, 126, 174–181. [Google Scholar] [CrossRef]
- Chappell, B.W.; Bryant, C.J.; Wyborn, D. Peraluminous I-Type Granites. Lithos 2012, 153, 142–153. [Google Scholar] [CrossRef]
- Topuz, G.; Candan, O.; Zack, T.; Chen, F.; Li, Q.-L. Origin and Significance of Early Miocene High-potassium I-Type Granite Plutonism in the East Anatolian Plateau (the Taşlıçay Intrusion). Lithos 2019, 348, 105210. [Google Scholar] [CrossRef]
- Griffin, W.L.; Wang, X.; Jackson, S.E.; Pearson, N.J.; O’Reilly, S.Y.; Xu, X.; Zhou, X. Zircon Chemistry and Magma Mixing, SE China: In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos 2002, 61, 237–269. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the Continental Crust. Treatise Geochem. 2003, 3–9, 1–64. [Google Scholar] [CrossRef]
- Sisson, T.W.; Ratajeski, K.; Hankins, W.B.; Glazner, A.F. Voluminous Granitic Magmas from Common Basaltic Sources. Contrib. Mineral. Petrol. 2005, 148, 635–661. [Google Scholar] [CrossRef]
- Ionov, D.A.; Hofmann, A.W. NbTa-Rich Mantle Amphiboles and Micas: Implications for Subduction-Related Metasomatic Trace Element Fractionations. Earth Planet. Sci. Lett. 1995, 131, 341–356. [Google Scholar] [CrossRef]
- Stepanov, A.; Mavrogenes, J.A.; Meffre, S.; Davidson, P. The Key Role of Mica during Igneous Concentration of Tantalum. Contrib. Mineral. Petrol. 2014, 167, 1009. [Google Scholar] [CrossRef]
- Sylvester, P.J. Post-Collisional Strongly Peraluminous Granites. Lithos 1998, 45, 29–44. [Google Scholar] [CrossRef]
- Sun, H.; Li, H.; Danišík, M.; Xia, Q.; Jiang, C.; Wu, P.; Yang, H.; Fan, Q.; Zhu, D. U–Pb and Re–Os Geochronology and Geochemistry of the Donggebi Mo Deposit, Eastern Tianshan, NW China: Insights into Mineralization and Tectonic Setting. Ore Geol. Rev. 2017, 86, 584–599. [Google Scholar] [CrossRef]
- Gao, P.; Zheng, Y.F.; Zhao, Z.F. Experimental Melts from Crustal Rocks: A Lithochemical Constraint on Granite Petrogenesis. Lithos 2016, 266–267, 133–157. [Google Scholar] [CrossRef]
- Yu, J.; Zhou, X.; O’Reilly, Y.S.; Zhao, L.; Griffin, W.L.; Wang, R.; Wang, L.; Chen, X. Formation History and Protolith Characteristics of Granulite Facies Metamorphic Rock in Central Cathaysia Deduced from U-Pb and Lu-Hf Isotopic Studies of Single Zircon Grains. Chin. Sci. Bull. 2005, 50, 2080–2089. [Google Scholar] [CrossRef]
- Yu, J.-H.; O’Reilly, S.Y.; Zhao, L.; Griffin, W.L.; Zhang, M.; Zhou, X.; Jiang, S.-Y.; Wang, L.-J.; Wang, R.-C. Origin and Evolution of Topaz-Bearing Granites from the Nanling Range, South China: A Geochemical and Sr–Nd–Hf Isotopic Study. Mineral. Petrol. 2007, 90, 271–300. [Google Scholar] [CrossRef]
- Eby, G.N. Chemical Subdivision of the A-Type Granitoids:Petrogenetic and Tectonic Implications. Geology 1992, 20, 641–644. [Google Scholar] [CrossRef]
- Altherr, R.; Holl, A.; Hegner, E.; Langer, C.; Kreuzer, H. High-Potassium, Calc-Alkaline I-Type Plutonism in the European Variscides: Northern Vosges (France) and Northern Schwarzwald (Germany). Lithos 2000, 50, 51–73. [Google Scholar] [CrossRef]
- Patiño Douce, A.E. What Do Experiments Tell Us about the Relative Contributions of Crust and Mantle to the Origin of Granitic Magmas? Geol. Soc. Lond. Spec. Publ. 1999, 168, 55–75. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Jiang, S.Y.; Dai, B.Z.; Liao, S.Y.; Zhao, K.D.; Ling, H.F. Middle to Late Jurassic Felsic and Mafic Magmatism in Southern Hunan Province, Southeast China: Implications for a Continental Arc to Rifting. Lithos 2009, 107, 185–204. [Google Scholar] [CrossRef]
- Wang, Y.J. U-Pb Dating of Mesozoic Granodioritic Intrusions in Southeastern Hunan Province and Its Petrogenetic Implication. Sci. China Ser. D 2001, 45, 271–280. [Google Scholar]
- Wei, D.F.; Bao, Z.Y.; Fu, J.M. Geochemical Characteristics and Zircon SHRIMP U-Pb Dating of the Tongshanling Granite in Hunan Province, South China. Geotecton. Metallog. 2007, 31, 482–489. [Google Scholar]
- Barth, M.G.; McDonough, W.F.; Rudnick, R.L. Tracking the Budget of Nb and Ta in the Continental Crust. Chem. Geol. 2000, 165, 197–213. [Google Scholar] [CrossRef]
- Jiang, Y.-H.; Wang, G.-C.; Liu, Z.; Ni, C.-Y.; Qing, L.; Zhang, Q. Repeated Slab Advance–Retreat of the Palaeo-Pacific Plate underneath SE China. Int. Geol. Rev. 2015, 57, 472–491. [Google Scholar] [CrossRef]
- Zhou, X.M.; Li, W.X. Origin of Late Mesozoic Igneous Rocks in Southeastern China: Implications for Lithosphere Subduction and Underplating of Mafic Magmas. Tectonophysics 2000, 326, 269–287. [Google Scholar] [CrossRef]
- Li, Z.-X.; Li, X.-H. Formation of the 1300-Km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology 2007, 35, 179–182. [Google Scholar] [CrossRef]
- Li, X.H.; Li, Z.X.; Li, W.X.; Liu, Y.; Yuan, C.; Wei, G.; Qi, C. U–Pb Zircon, Geochemical and Sr–Nd–Hf Isotopic Constraints on Age and Origin of Jurassic I- and A-Type Granites from Central Guangdong, SE China: A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab? Lithos 2007, 96, 186–204. [Google Scholar] [CrossRef]
- Hu, R.Z.; Chen, W.T.; Xu, D.R.; Zhou, M.F. Reviews and New Metallogenic Models of Mineral Deposits in South China: An Introduction. J. Asian Earth Sci. 2017, 137, 1–8. [Google Scholar] [CrossRef]
- Jiang, S.-Y.; Zhao, K.-D.; Jiang, Y.-H.; Dai, B.-Z. Characteristics and Genesis of Mesozoic A-Type Granites and Associated Mineral Deposits in the Southern Hunan and Northern Guangxi Provinces along the Shi-Hang Belt, South China. Geol. J. China Univ. 2008, 14, 496. [Google Scholar]
- Pirajno, F.; Ernst, R.E.; Borisenko, A.S.; Fedoseev, G.; Naumov, E.A. Intraplate Magmatism in Central Asia and China and Associated Metallogeny. Ore Geol. Rev. 2009, 35, 114–136. [Google Scholar] [CrossRef]
- Fan, C.; Xia, S.; Zhao, F.; Sun, J.; Cao, J.; Xu, H.; Wan, K. New Insights into the Magmatism in the Northern Margin of the S Outh C Hina S Ea: Spatial Features and Volume of Intraplate Seamounts. Geochem. Geophys. Geosyst. 2017, 18, 2216–2239. [Google Scholar] [CrossRef]
- Cao, J.T.; Wang, Y.L.; Wang, J.B.; Zhou, Q.M.; Ma, S.H.; Liu, Y.M. An Electrochemiluminescence Ratiometric Self-Calibrated Biosensor for Carcinoembryonic Antigen Detection. J. Electroanal. Chem. 2018, 814, 111–117. [Google Scholar] [CrossRef]
- Cao, J.; Yang, X.; Du, J.; Wu, Q.; Kong, H.; Li, H.; Wan, Q.; Xi, X.; Gong, Y.; Zhao, H. Formation and Geodynamic Implication of the Early Yanshanian Granites Associated with W–Sn Mineralization in the Nanling Range, South China: An Overview. Int. Geol. Rev. 2018, 60, 1744–1771. [Google Scholar] [CrossRef]
- Roberts, M.P.; Clemens, J.D. Origin of High-Potassium, Calc-Alkaline, I-Type Granitoids. Geology 1993, 21, 825–828. [Google Scholar] [CrossRef]
- Wang, G.C.; Jiang, Y.H.; Liu, Z.; Ni, C.Y.; Qing, L.; Zhang, Q.; Zhu, S.Q. Multiple Origins for the Middle Jurassic to Early Cretaceous High-K Calc-Alkaline I-Type Granites in Northwestern Fujian Province, SE China and Tectonic Implications. Lithos 2016, 246–247, 197–211. [Google Scholar] [CrossRef]
- Harris, R.A.; Stone, D.B.; Turner, D.L. Tectonic Implications of Paleomagnetic and Geochronologic Data from the Yukon-Koyukuk Province, Alaska. Geol. Soc. Am. Bull. 1987, 99, 362–375. [Google Scholar] [CrossRef]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef] [Green Version]
- Blevin, P.L.; Chappell, B.W. Chemistry, Origin, and Evolution of Mineralized Granites in the Lachlan Fold Belt, Australia; the Metallogeny of I-and S-Type Granites. Econ. Geol. 1995, 90, 1604–1619. [Google Scholar] [CrossRef]
- Blevin, P.L. The Petrographic and Compositional Character of Variably K-Enriched Magmatic Suites Associated with Ordovician Porphyry Cu–Au Mineralisation in the Lachlan Fold Belt, Australia. Miner. Depos. 2002, 37, 87–99. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, J.-H.; Chen, J.-Y.; Wang, H.; Xiang, Y.-X. Petrogenesis of Jurassic Tungsten-Bearing Granites in the Nanling Range, South China: Evidence from Whole-Rock Geochemistry and Zircon U–Pb and Hf–O Isotopes. Lithos 2017, 278, 166–180. [Google Scholar] [CrossRef]
- Kemp, A.I.S.; Hawkesworth, C.J.; Foster, G.L.; Paterson, B.A.; Woodhead, J.D.; Hergt, J.M.; Gray, C.M.; Whitehouse, M.J. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon. Science 2007, 315, 980–983. [Google Scholar] [CrossRef]
- Williams, I.S.; Ellis, D.J. Pb, U and Th Diffusion in Natural Zircon. Nature 1997, 390, 159–162. [Google Scholar]
- Cherniak, D.J.; Watson, E.B. Pb Diffusion in Zircon. Chem. Geol. 2001, 172, 5–24. [Google Scholar] [CrossRef]
- Watson, E.B.; Harrison, T.M. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth Planet. Sci. Lett. 1983, 64, 295–304. [Google Scholar] [CrossRef]
- Ballard, J.R.; Palin, M.J.; Campbell, I.H. Relative Oxidation States of Magmas Inferred from Ce(IV)/Ce(III) in Zircon: Application to Porphyry Copper Deposits of Northern Chile. Contrib. Mineral. Petrol. 2002, 144, 347–364. [Google Scholar] [CrossRef]
- Liu, B.; Wu, Q.H.; Kong, H.; Xi, X.S.; Jiang, J.B.; Li, H.; Cao, J.Y.; Tang, Y.Y. The evolution sequence of granites in the Xitian ore field in Hunan and its tungsten–tin mineralization: Constraints from zircon U–Pb dating and geochemical characteristics. Earth Sci. 2022, 47, 240–258. [Google Scholar]
- Peng, J.T.; Hu, R.Z.; Yuan, S.D.; Bi, X.W.; Shen, N.P. The Time Ranges of Granitoid Emplacement and Related Nonferrous Metallic Mineralization in Southern Hunan. Geol. Rev. 2008, 54, 617–625. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Y.; Kong, H.; Liu, B.; Zong, Q.; Wu, Q.; Jiang, H.; Tan, F. Geochronology, Whole-Rock Geochemistry, and Sr–Nd–Hf Isotopes of Granitoids in the Tongshanling Ore Field, South China: Insights into Cu and W Metallogenic Specificity. Minerals 2022, 12, 892. https://doi.org/10.3390/min12070892
Tang Y, Kong H, Liu B, Zong Q, Wu Q, Jiang H, Tan F. Geochronology, Whole-Rock Geochemistry, and Sr–Nd–Hf Isotopes of Granitoids in the Tongshanling Ore Field, South China: Insights into Cu and W Metallogenic Specificity. Minerals. 2022; 12(7):892. https://doi.org/10.3390/min12070892
Chicago/Turabian StyleTang, Yuyu, Hua Kong, Biao Liu, Qi Zong, Qianhong Wu, Hua Jiang, and Fucheng Tan. 2022. "Geochronology, Whole-Rock Geochemistry, and Sr–Nd–Hf Isotopes of Granitoids in the Tongshanling Ore Field, South China: Insights into Cu and W Metallogenic Specificity" Minerals 12, no. 7: 892. https://doi.org/10.3390/min12070892
APA StyleTang, Y., Kong, H., Liu, B., Zong, Q., Wu, Q., Jiang, H., & Tan, F. (2022). Geochronology, Whole-Rock Geochemistry, and Sr–Nd–Hf Isotopes of Granitoids in the Tongshanling Ore Field, South China: Insights into Cu and W Metallogenic Specificity. Minerals, 12(7), 892. https://doi.org/10.3390/min12070892