Metamorphic Evolution of the Archean Supracrustal Rocks from the Qingyuan Area of the Northern Liaoning Terrane, North China Craton: Constrained Using Phase Equilibrium Modeling and Monazite Dating
Abstract
:1. Introduction
2. Geological Setting
3. Petrology
3.1. Petrography and Mineral Compositions
3.2. Bulk-Rock Composition
4. Phase Equilibrium Modeling
5. Monazite Age Dating
6. Discussion
6.1. Metamorphic Evolution
6.2. Tectonic Implications
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- James, D.E.; Fouch, M.J. Formation and evolution of Archean cratons: Insights from southern Africa. In The Early Earth: Physical, Chemical and Biological Development; Fowler, C.M.R., Ed.; Geological Society London Special Publications: Bath, UK, 2002; pp. 1–26. [Google Scholar]
- King, S.D. Archean cratons and mantle dynamics. Earth Planet. Sci. Lett. 2005, 234, 1–14. [Google Scholar] [CrossRef]
- Wilde, S.A.; Valley, J.W.; Peck, W.H.; Graham, C.M. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 2001, 409, 175–178. [Google Scholar] [CrossRef] [PubMed]
- Bowring, S.A.; Williams, I.S. Priscoan (4.00–4.03 Ga) orthogneisses from northwestern Canada. Contrib. Mineral. Petrol. 1999, 134, 3–16. [Google Scholar] [CrossRef]
- Reimink, J.R.; Davies, J.H.F.L.; Chacko, T.; Stem, R.A.; Heaman, L.M.; Sarkar, C.; Schaltegger, U.; Creasser, R.A.; Pearson, D.G. No evidence for Hadean continental crust within Earth’s oldest evolved rock unit. Nat. Geosci. 2016, 9, 777–780. [Google Scholar] [CrossRef]
- Nutman, A.P.; Friend, C.R.L.; Bennett, V.C. Review of the oldest (4400–3600 Ma) geological and mineralogical record: Glimpses of the beginning. Episodes 2001, 24, 93–101. [Google Scholar] [CrossRef]
- Cates, N.L.; Mojzsis, S.J. Pre-3750 Ma supracrustal rocks from the Nuvvuagittuq supracrustal belt, northern Quebec. Earth Planet. Sci. Lett. 2007, 255, 9–21. [Google Scholar] [CrossRef]
- Liu, D.Y.; Nutman, A.P.; Compston, W.; Wu, J.S.; Shen, Q.H. Remnants of ≥3800 Ma crust in the Chinese part of the Sino-Korean craton. Geology 1992, 20, 339–342. [Google Scholar] [CrossRef]
- Wan, Y.S.; Xie, H.Q.; Wang, H.C.; Liu, S.J.; Chu, H.; Xiao, Z.B.; Li, Y.; Hao, G.M.; Li, P.C.; Dong, C.Y.; et al. Discovery of early Eoarchean-Hadean zircons in eastern Hebei, North China Craton. Acta Geol. Sin. 2021, 95, 277–291. [Google Scholar]
- Condie, K.C. Developments in Precambrian Geology 3: Archean Greenstone Belts; Elsevier: Amsterdam, The Netherlands, 1981. [Google Scholar]
- Collins, W.J.; Van Kranendonk, M.J.; Teyssier, C. Partial convective overturn of Archean crust in the east Pilbara Craton, Western Australia: Driving mechanisms and tectonic implications. J. Struct. Geol. 1998, 20, 1405–1424. [Google Scholar] [CrossRef]
- Lin, S.F.; Beakhouse, G.P. Synchronous vertical and horizontal tectonism at latest ages of Archean cratonization and genesis of Hemlo gold deposit, Superior craton, Ontario, Canada. Geology 2013, 41, 359–362. [Google Scholar] [CrossRef]
- Wu, J.S.; Geng, Y.S.; Shen, Q.H.; Wan, Y.S.; Liu, D.Y.; Song, B. Archean Geological Characteristics and Tectonic Evolution of the China-Korea Paleocontinent; Geological Publishing House: Beijing, China, 1998. [Google Scholar]
- Geng, Y.S.; Liu, F.L.; Yang, C.H. Magmatic event at the end of the Archean in Eastern Hebei Province and its geological implication. Acta Geol. Sin. 2006, 80, 819–833. [Google Scholar]
- Zhao, G.C.; Zhai, M.G. Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications. Gondwana Res. 2013, 23, 1207–1240. [Google Scholar] [CrossRef]
- Zhao, G.C. Metamorphic P-T-t paths of the eastern Hebei, western Shandong, Fuping, Wutai, and Hengshan domains, North China craton. In Tectonothermal Evolution of the Basement Rocks of the North China Craton; Lu, L.Z., Ed.; The college of Earth Sciences: Changchun, China, 1995; pp. 11–48. (In Chinese) [Google Scholar]
- Wang, C.Q.; Cui, W.Y. Granulites from the Dengchang-Houshan area, northern Hebei Province: Geochemistry and metamorphism. In Geological Evolution of the Granulite Terrain in the Northern part of the North China Craton; Qian, X.L., Wang, R.M., Eds.; Seismological Press: Beijing, China, 1994; pp. 166–175. (In Chinese) [Google Scholar]
- Chen, N.S.; Wang, R.J.; Shan, W.Y.; Zhong, Z.Q. Isobaric cooling P-T-t path of the western section of the Miyun Complex and its tectonic implications. Sci. Geol. Sin. 1994, 29, 354–364. (In Chinese) [Google Scholar]
- Zhang, H.C.; Liu, J.H.; Chen, Y.C.; Zhang, Q.W.; Peng, T.; Li, Z.M.; Wu, C.M. Neoarchean metamorphic evolution and geochronology of the Miyun metamorphic complex, North China Craton. Precambrian Res. 2018, 320, 78–92. [Google Scholar] [CrossRef]
- Liu, T.; Wei, C.J.; Johnson, T.; Sizova, E. Newly-discovered ultra-high temperature granulites from the East Hebei Terrane, North China Craton. Sci. Bull. 2022, 67, 670–673. [Google Scholar] [CrossRef]
- Zhao, G.C.; Wilde, S.A.; Cawood, P.A.; Lu, L.Z. Thermal evolution of Archaean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting. Int. Geol. Rev. 1998, 40, 706–721. [Google Scholar] [CrossRef]
- Liu, T.; Wei, C.J.; Kröner, A.; Han, B.F.; Duan, Z.Z. Metamorphic P–T paths for the Archean Caozhuang supracrustal sequence, eastern Hebei Province, North China Craton: Implications for a sagduction regime. Precambrian Res. 2020, 340, 105346. [Google Scholar] [CrossRef]
- Wan, Y.S.; Song, B.; Yang, C.; Liu, D.Y. Zircon SHRIMP UePb geochronology of Archean rocks from the FushuneQingyuan Area, Liaoning Province and its geological significance. Acta Geol. Sin. 2005, 79, 78–87. (In Chinese) [Google Scholar]
- Wan, Y.S.; Song, B.; Yang, C.; Liu, D.Y. Geochemical Characteristics of Archean Basement in the FushuneQingyuan Area, Northern Liaoning Province and its geological significance. Geol. Rev. 2005, 51, 128–137. (In Chinese) [Google Scholar]
- Peng, P.; Wang, C.; Wang, X.P.; Yang, S.Y. Qingyuan high-grade granite–greenstone terrain in the Eastern North China Craton: Root of a Neoarchaean arc. Tectonophysics 2015, 662, 7–21. [Google Scholar] [CrossRef]
- Wu, M.L.; Lin, S.F.; Wan, Y.S.; Gao, J.F. Crustal evolution of the Eastern Block in the North China Craton: Constraints from zircon U-Pb geochronology and Lu–Hf isotopes of the Northern Liaoning Complex. Precambrian Res. 2016, 275, 35–47. [Google Scholar] [CrossRef]
- Li, Z.; Wei, C. Two types of Neoarchean basalts from Qingyuan greenstone belt, North China Craton: Petrogenesis and tectonic implications. Precambrian Res. 2017, 292, 175–193. [Google Scholar] [CrossRef]
- Wu, D.; Wei, C.J. Metamorphic evolution of two types of garnet amphibolite from the Qingyuan terrane, North China Craton: Insights from phase equilibria modelling and zircon dating. Precambrian Res. 2021, 355, 106091. [Google Scholar] [CrossRef]
- Li, Z.; Wei, C.; Chen, B.; Yang, F.; Zhang, X.; Cui, Y. Late Neoarchean high-grade regional metamorphism in the eastern North China Craton: New constraints from monazite dating in northern Liaoning. Precambrian Res. 2022, 373, 106625. [Google Scholar] [CrossRef]
- Wu, K.K.; Zhao, G.C.; Sun, M.; Yin, C.Q.; He, Y.H.; Tam, P.Y. Metamorphism of the northern Liaoning Complex: Implications for the tectonic evolution of Neoarchean basement of the Eastern Block, North China Craton. Geosci. Front. 2013, 4, 305–320. [Google Scholar] [CrossRef] [Green Version]
- Zhai, M.G.; Yang, R.Y.; Lu, W.J.; Zhou, J. Geochemistry and evolution of the Qingyuan Archaean granite–greenstone terrain, NE China. Precambrian Res. 1985, 27, 37–62. [Google Scholar] [CrossRef]
- Zhao, G.C.; Sun, M.; Wilde, S.A.; Li, S.Z. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Res. 2005, 136, 177–202. [Google Scholar] [CrossRef]
- Tam, P.Y.; Zhao, G.C.; Sun, M.; Li, S.Z.; Wu, M.L.; Yin, C.Q. Petrology and metamorphic P-T path of high-pressure mafic granulites from the Jiaobei massif in the Jiao-Liao-Ji Belt, North China Craton. Lithos 2012, 155, 94–109. [Google Scholar] [CrossRef]
- Qian, J.H.; Wei, C.J. P–T–t evolution of garnet amphibolites in the Wutai–Hengshan area, North China Craton: Insights from phase equilibria and geochronology. J. Metamorph. Geol. 2016, 34, 423–446. [Google Scholar] [CrossRef]
- Wang, F.; Li, X.P.; Chu, H.; Zhao, G.C. Petrology and metamorphism of khondalites from Jining Complex in the North China Craton. Int. Geol. Rev. 2011, 53, 212–229. [Google Scholar] [CrossRef]
- Wan, Y.S.; Xie, H.Q.; Wang, H.C.; Li, P.C.; Chu, H.; Xiao, Z.B.; Dong, C.Y.; Liu, S.J.; Li, Y.; Hao, G.M.; et al. Discovery of ~3.8 Ga TTG rocks in eastern Hebei, North China Craton. Acta Geol. Sin. 2021, 95, 1321–1333. [Google Scholar]
- Zhao, G.C.; Cawood, P.A.; Li, S.Z.; Wilde, S.A.; Sun, M.; Zhang, J.; He, Y.H.; Yin, C.Q. Amalgamation of the North China Craton: Key issues and discussion. Precambrian Res. 2012, 222, 55–76. [Google Scholar] [CrossRef]
- Shen, E.F.; Luo, H.; Han, G.G.; Dai, X.Y.; Jin, W.S.; Hu, X.D.; Li, S.B.; Bi, S.Y. Archean Geology and Mineralization of Northern Liaoning and Southern Jilin Province; Geological Publishing House: Beijing, China, 1994; pp. 1–255. (In Chinese) [Google Scholar]
- Wang, K.; Liu, S.W.; Wang, M.J.; Yan, M. Geochemistry and zircon U-Pb–Hf isotopes of the late Neoarchean granodiorite-monzogranite-quartz syenite intrusions in the Northern Liaoning Block, North China Craton: Petrogenesis and implications for geodynamic processes. Precambrian Res. 2017, 295, 151–171. [Google Scholar] [CrossRef]
- Duan, Z.Z.; Wei, C.J.; Li, Z. Metamorphic P-T paths and zircon U–Pb ages of Paleoproterozoic metabasic dykes in eastern Hebei and northern Liaoning: Implications for the tectonic evolution of the North China Craton. Precambrian Res. 2019, 326, 124–141. [Google Scholar] [CrossRef]
- Pettijohn, F.J.; Chapter, S. Chemical Composition of Sandstones Excluding Carbonate and Volcanic Sands; US Government Printing Office: Washington, DC, USA, 1963; pp. S6–S7. [Google Scholar]
- Mackie, W. Seventy chemical analyses of rocks. Trans. Edinb. Geol. Soc. 1899, 8, 33–60. [Google Scholar] [CrossRef]
- Holland, T.J.B.; Powell, R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J. Metamorph. Geol. 2011, 29, 333–383. [Google Scholar] [CrossRef]
- Duan, Z.Z.; Wei, C.J.; Rehman, H.U. Metamorphic evolution and zircon ages of pelitic granulites in eastern Hebei. North China Craton: Insights into the regional Archean P-T–t history. Precambrian Res. 2017, 292, 240–257. [Google Scholar] [CrossRef]
- White, R.W.; Powell, R.; Holland, T.J.B.; Johnson, T.E.; Green, E.C.R. New mineral activity–composition relations for thermodynamic calculations in metapelitic systems. J. Metamorph. Geol. 2014, 32, 261–286. [Google Scholar] [CrossRef]
- Holland, T.J.B.; Powell, R. Activity–composition relations for phases in petro-logical calculations: An asymmetric multicomponent formulation. Contrib. Mineral. Petrol. 2003, 145, 492–501. [Google Scholar] [CrossRef]
- White, R.W.; Powell, R.; Holland, T.J.B.; Worley, B.A. The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: Mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. J. Metamorph. Geol. 2000, 18, 497–511. [Google Scholar] [CrossRef]
- Whitney, D.L.; Evans, B.W. Abbreviations for names of rock-forming minerals. Am. Mineral. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- Cherniak, D.J.; Zhang, X.Y.; Nakamura, M.; Watson, E.B. Oxygen diffusion in monazite. Earth Planet. Sci. Lett. 2004, 226, 161–174. [Google Scholar] [CrossRef]
- Wu, Y.B.; Wang, H.; Gao, S.; Hu, Z.C.; Liu, X.C.; Gong, H.J. LA–ICP–MS monazite U-Pb age and trace element constraints on the granulite–facies metamorphism in the Tongbai orogen, central China. J. Asian Earth Sci. 2014, 82, 90–102. [Google Scholar] [CrossRef]
- Rubatto, D.; Hermann, J.; Buick, I. Temperature and bulk composition control on the growth of monazite and zircon during low–pressure anatexis (Mount Stafford, central Australia). J. Petrol. 2006, 47, 1973–1996. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, Z.; Gao, S.; Günther, D.; Xu, J.; Gao, C.; Chen, H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Zong, K.Q.; Gao, C.G.; Gao, S.; Xu, J.; Chen, H.H. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chin. Sci. Bull. 2010, 55, 1535–1546. [Google Scholar] [CrossRef]
- Ludwig, K.P. ISOPLOT: A Geochronological Toolkit for Microsoft Excel; Geochronology Center Special Publication: Berkeley, CA, USA, 2003. [Google Scholar]
- Sun, S.S.; McDonough, W.F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes; Geological Society London Special Publications: Bath, UK, 1989; Volume 42, pp. 313–345. [Google Scholar]
- Stevens, G.; Clemens, J.D.; Droop, G.T.R. Melt production during granulite facies anatexis: Experimental data from ‘‘primitive” metasedimentary protoliths. Contrib. Mineral. Petrol. 1997, 128, 352–370. [Google Scholar] [CrossRef]
- Tajčmanová, L.; Connolly, J.A.D.; Cesare, B. A thermodynamic model for titanium and ferric iron solution in biotite. J. Metamorph. Geol. 2009, 27, 153–165. [Google Scholar] [CrossRef]
- Hensen, B.J.; Osanai, Y. Experimental study of dehydration melting of F bearing biotite in model pelitic compositions. Mineral. Mag. A 1994, 58, 410–411. [Google Scholar] [CrossRef]
- Petö, P. An experimental investigation of melting relations involving muscovite and paragonite in the silica-saturated portion of the system K2O-Na2O-Al2O3-SiO2 -H2O to 15 kb total pressure. In Progress in Experimental Petrology; NERC: London, UK, 1976; pp. 41–45. [Google Scholar]
- Holdaway, M.J. Application of new experimental and garnet Margules data to the garnet–biotite geothermometer. Am. Mineral. 2000, 85, 881–892. [Google Scholar] [CrossRef]
- Wu, C.M.; Zhang, J.; Ren, L.D. Empirical garnet–biotite–plagioclase–quartz (GBPQ) geobarometry in medium- to high-grade metapelites. Lithos 2004, 78, 319–332. [Google Scholar] [CrossRef]
- Wu, C.M.; Chen, H.X. Revised Ti-in-biotite geothermometer for ilmenite- or rutile-bearing crustal metapelites. Sci. Bull. 2015, 60, 116–121. [Google Scholar] [CrossRef]
- Spear, F.S.; Florence, F.P. Thermobarometry in granulites: Pitfalls and new approaches. Precambrian Res. 1992, 55, 209–241. [Google Scholar] [CrossRef]
- Kwan, L.C.J.; Zhao, G.C.; Yin, C.Q.; Geng, H.Y. Metamorphic P-T path of mafic granulites from Eastern Hebei: Implications for the Neoarchean tectonics of the Eastern Block, North China Craton. Gondwana Res. 2016, 37, 20–38. [Google Scholar] [CrossRef]
- Liu, T.; Wei, C.J. Metamorphic evolution of Archean ultrahigh-temperature mafic granulites from the western margin of Qian’an gneiss dome, eastern Hebei Province, North China Craton: Insights into the Archean tectonic regime. Precambrian Res. 2018, 318, 170–187. [Google Scholar] [CrossRef]
- Liu, T.; Wei, C.J. Metamorphic P-T paths and Zircon U–Pb ages of Archean ultra-high temperature paragneisses from the Qian’an gneiss dome, East Hebei terrane, North China Craton. J. Metamorph. Geol. 2020, 38, 329–356. [Google Scholar] [CrossRef]
- Johannes, W.; Holtz, F. Petrogenesis and Experimental Petrology of Granitic Rocks; Springer: Berlin/Heidelberg, Germany, 1996; p. 335. [Google Scholar]
- Robertson, J.K.; Wyllie, P.J. Experimental studies on rocks from the Deboullie Stock, Northern Maine, including melting relations in the water-deficient environment. J. Geol. 1971, 79, 549–571. [Google Scholar] [CrossRef]
- Wei, C.J.; Guan, X.; Dong, J. HT-UHT metamorphism of metabasites and the petrogenesis of TTGs. Acta Petrol. Sin. 2017, 33, 1381–1404, (In Chinese with English Abstract). [Google Scholar]
- Thompson, A.B.; England, P.C. Pressure temperature-time paths of regional metamorphism, II. Their influences and interpretation using mineral assemblages in metamorphic rocks. J. Petrol. 1984, 25, 929–955. [Google Scholar] [CrossRef]
- Wells, P.R.A. Thermal models for magmatic accretion and subsequent metamorphism of continental crust. Earth Planet. Sci. Lett. 1980, 46, 253–265. [Google Scholar] [CrossRef]
- Bohlen, S.R. On the formation of granulites. J. Metamorph. Geol. 1991, 9, 223–229. [Google Scholar] [CrossRef]
- Zhao, G.C.; Wilde, S.A.; Cawood, P.A.; Lu, L.Z. Thermal evolution of two textural types of mafic granulites in the North China Craton: Evidence for both mantle plume and collisional tectonics. Geol. Mag. 1999, 136, 223–240. [Google Scholar] [CrossRef]
- Sizova, E.; Gerya, T.; Stüwe, K.; Brown, M. Generation of felsic crust in the Archean: A geodynamic modeling perspective. Precambrian Res. 2015, 271, 198–224. [Google Scholar] [CrossRef]
- Li, J.J.; Shen, B.F. Geochronology of Precambrian continental crust in Liaoning Province and Jilin Province. Progess Precambrian Res. 2000, 23, 249–255, (In Chinese with English Abstract). [Google Scholar]
- Bai, X.; Liu, S.W.; Yan, M.; Zhang, L.F.; Wang, W.; Guo, R.R.; Guo, B.R. Geological event series of Early Precambrian metamorphic complex in South Fushun area, Liaoning Province. Acta Petrol. Sin. 2014, 30, 2905–2924, (In Chinese with English Abstract). [Google Scholar]
- Wang, W.; Liu, S.W.; Cawood, P.A.; Bai, X.; Guo, R.R.; Guo, B.R.; Wang, K. Late Neoarchean subduction-related crustal growth in the Northern Liaoning region of the North China Craton: Evidence from ∼2.55 to 2.50 Ga granitoid gneisses. Precambrian Res. 2016, 281, 200–223. [Google Scholar] [CrossRef]
- Wang, M.J.; Liu, S.W.; Wang, W.; Wang, K.; Yan, M.; Guo, B.R.; Bai, X.; Guo, R.R. Petrogenesis and tectonic implications of the Neoarchean North Liaoning tonalitic-trondhjemitic gneisses of the North China Craton, North China. J. Asian Earth Sci. 2016, 131, 12–39. [Google Scholar] [CrossRef]
- Wang, W.; Cawood, P.A.; Liu, S.W.; Guo, R.R.; Bai, X.; Wang, K. Cyclic formation and stabilization of Archean lithosphere by accretionary orogenesis: Constraints from TTG and potassic granitoids, North China Craton. Tectonics 2017, 36, 1724–1742. [Google Scholar] [CrossRef]
- Wang, K.; Liu, S.W.; Wang, M.J.; Wang, W.; Yan, M. Formation ages, petrogenesis and geological implications of the Archean granitoid rocks in the Xinbin-Weiziyu Area, northern Liaoning Province. Acta Sci. Nat. Univ. Pekin. 2018, 54, 61–79, (In Chinese with English Abstract). [Google Scholar]
- Peng, Z.D.; Wang, C.L.; Zhang, L.C.; Zhu, M.T.; Tong, X.X. Geochemistry of metamorphosed volcanic rocks in the Neoarchean Qingyuan greenstone belt, North China Craton: Implications for geodynamic evolution and VMS mineralization. Precambrian Res. 2019, 365, 196–211. [Google Scholar] [CrossRef]
- Li, Z.; Wei, C.J.; Chen, B.; Zhang, W.; Yang, F. U–Pb–Hf–O–Nd isotopic and geochemical constraints on the origin of Archean TTG gneisses from North China Craton: Implications for crustal growth. Precambrian Res. 2021, 354, 106078. [Google Scholar] [CrossRef]
Mineral | Grt-c | Grt-r | Pl-c | Pl-m | Pl-r | Kfs | Bt |
---|---|---|---|---|---|---|---|
SiO2 | 36.86 | 36.95 | 62.41 | 62.22 | 62.50 | 65.18 | 35.74 |
TiO2 | 0.02 | 0.11 | – | – | – | – | 3.81 |
Al2O3 | 20.74 | 20.56 | 23.79 | 23.78 | 23.90 | 18.55 | 18.62 |
Cr2O3 | – | 0.02 | – | – | – | – | 0.03 |
FeO | 32.71 | 34.50 | – | 0.09 | 0.24 | – | 20.27 |
MnO | 3.12 | 3.83 | 0.04 | – | 0.04 | 0.03 | 0.14 |
MgO | 4.77 | 2.68 | – | – | – | – | 8.66 |
CaO | 0.86 | 1.11 | 5.15 | 5.52 | 5.42 | 0.03 | 0.02 |
Na2O | – | – | 8.69 | 8.44 | 8.46 | 0.49 | 0.09 |
K2O | – | – | 0.15 | 0.13 | 0.08 | 15.65 | 10.02 |
Total | 99.08 | 99.78 | 100.21 | 100.20 | 100.65 | 99.95 | 97.49 |
O | 12 | 12 | 8 | 8 | 8 | 8 | 11 |
Si | 2.968 | 2.999 | 2.759 | 2.753 | 2.752 | 3.002 | 2.681 |
Ti | – | 0.007 | – | – | – | – | 0.215 |
Al | 1.969 | 1.967 | 1.240 | 1.240 | 1.241 | 1.007 | 1.646 |
Cr | – | – | – | – | – | – | 0.002 |
Fe3+ | 0.093 | 0.022 | – | 0.003 | 0.009 | – | – |
Fe2+ | 2.110 | 2.319 | – | – | – | – | 1.272 |
Mn | 0.213 | 0.263 | – | – | – | – | 0.009 |
Mg | 0.572 | 0.324 | – | – | – | – | 0.968 |
Ca | 0.074 | 0.097 | 0.244 | 0.262 | 0.256 | – | 0.002 |
Na | – | – | 0.745 | 0.724 | 0.722 | 0.044 | 0.013 |
K | – | – | 0.008 | 0.007 | 0.004 | 0.920 | 0.960 |
Sum | 8.000 | 8.000 | 4.998 | 4.990 | 4.986 | 4.976 | 7.767 |
X(phase) | 0.19 | 0.11 | 0.24 | 0.26 | 0.26 | 0.95 | 0.43 |
Y(phase) | 0.025 | 0.032 | 0.75 | 0.73 | 0.74 | 0.05 |
Spot | Th (ppm) | U (ppm) | Th/U | Measured Isotopic Ratios | Corrected Ages (Ma) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
207Pb/206Pb | 1σ | 207Pb/235U | 1σ | 206Pb/238U | 1σ | 207Pb/206Pb | 1σ | 207Pb/235U | 1σ | 206Pb/238U | 1σ | ||||
15Q-4-01 | 4215 | 657 | 6.42 | 0.164 | 0.002 | 10.729 | 0.163 | 0.474 | 0.003 | 2498 | 24 | 2500 | 14 | 2501 | 14 |
15Q-4-02 | 15,507 | 665 | 23.30 | 0.163 | 0.002 | 10.691 | 0.152 | 0.477 | 0.003 | 2483 | 24 | 2497 | 13 | 2515 | 13 |
15Q-4-03 | 24,917 | 579 | 43.00 | 0.163 | 0.002 | 10.975 | 0.155 | 0.490 | 0.003 | 2484 | 24 | 2521 | 13 | 2569 | 15 |
15Q-4-04 | 13,857 | 524 | 26.43 | 0.164 | 0.002 | 10.551 | 0.145 | 0.468 | 0.003 | 2495 | 24 | 2484 | 13 | 2473 | 12 |
15Q-4-05 | 17,492 | 633 | 27.61 | 0.164 | 0.002 | 10.304 | 0.149 | 0.456 | 0.003 | 2494 | 23 | 2462 | 13 | 2422 | 12 |
15Q-4-06 | 12,521 | 335 | 37.34 | 0.161 | 0.003 | 10.528 | 0.183 | 0.475 | 0.003 | 2478 | 32 | 2482 | 16 | 2504 | 15 |
15Q-4-07 | 19,158 | 484 | 39.61 | 0.166 | 0.003 | 10.917 | 0.171 | 0.477 | 0.004 | 2518 | 27 | 2516 | 15 | 2515 | 16 |
15Q-4-08 | 9527 | 2243 | 4.25 | 0.164 | 0.002 | 10.660 | 0.123 | 0.471 | 0.002 | 2498 | 19 | 2494 | 11 | 2488 | 10 |
15Q-4-09 | 4853 | 477 | 10.17 | 0.166 | 0.002 | 10.992 | 0.163 | 0.482 | 0.003 | 2513 | 26 | 2522 | 14 | 2536 | 14 |
15Q-4-10 | 9960 | 2433 | 4.09 | 0.164 | 0.002 | 10.588 | 0.111 | 0.468 | 0.002 | 2496 | 17 | 2488 | 10 | 2476 | 10 |
15Q-4-11 | 13,921 | 651 | 21.38 | 0.166 | 0.003 | 10.649 | 0.150 | 0.466 | 0.003 | 2516 | 26 | 2493 | 13 | 2467 | 12 |
15Q-4-12 | 10,963 | 1184 | 9.26 | 0.166 | 0.002 | 10.654 | 0.138 | 0.467 | 0.003 | 2515 | 24 | 2493 | 12 | 2469 | 12 |
15Q-4-13 | 11,328 | 479 | 23.66 | 0.164 | 0.003 | 10.562 | 0.156 | 0.469 | 0.003 | 2494 | 21 | 2485 | 14 | 2479 | 14 |
15Q-4-14 | 13,058 | 896 | 14.57 | 0.162 | 0.002 | 10.491 | 0.145 | 0.468 | 0.003 | 2483 | 21 | 2479 | 13 | 2475 | 14 |
15Q-4-15 | 13,026 | 1342 | 9.70 | 0.163 | 0.002 | 10.682 | 0.116 | 0.475 | 0.002 | 2487 | 19 | 2496 | 10 | 2507 | 11 |
15Q-4-16 | 8487 | 2504 | 3.39 | 0.161 | 0.002 | 10.552 | 0.107 | 0.475 | 0.002 | 2478 | 17 | 2484 | 10 | 2504 | 10 |
15Q-4-17 | 21,469 | 1028 | 20.89 | 0.163 | 0.002 | 10.529 | 0.130 | 0.468 | 0.003 | 2487 | 21 | 2482 | 12 | 2476 | 12 |
15Q-4-18 | 29,017 | 895 | 32.41 | 0.162 | 0.002 | 10.583 | 0.148 | 0.472 | 0.003 | 2483 | 24 | 2487 | 13 | 2492 | 13 |
15Q-4-19 | 8749 | 2015 | 4.34 | 0.160 | 0.002 | 10.527 | 0.127 | 0.475 | 0.003 | 2461 | 21 | 2482 | 11 | 2507 | 12 |
15Q-4-20 | 13,411 | 2579 | 5.20 | 0.163 | 0.002 | 10.563 | 0.123 | 0.470 | 0.002 | 2487 | 14 | 2485 | 11 | 2481 | 10 |
15Q-4-21 | 6961 | 1106 | 6.29 | 0.163 | 0.002 | 10.606 | 0.139 | 0.473 | 0.003 | 2484 | 22 | 2489 | 12 | 2495 | 12 |
15Q-4-22 | 14,278 | 547 | 26.09 | 0.163 | 0.003 | 10.767 | 0.174 | 0.480 | 0.004 | 2482 | 26 | 2503 | 15 | 2528 | 16 |
15Q-4-23 | 20,755 | 354 | 58.62 | 0.164 | 0.003 | 10.892 | 0.209 | 0.483 | 0.004 | 2494 | 31 | 2514 | 18 | 2539 | 18 |
15Q-4-24 | 7409 | 2754 | 2.69 | 0.164 | 0.003 | 10.655 | 0.178 | 0.472 | 0.003 | 2494 | 28 | 2494 | 16 | 2492 | 13 |
15Q-4-25 | 18,834 | 478 | 39.37 | 0.164 | 0.003 | 10.790 | 0.201 | 0.477 | 0.004 | 2502 | 66 | 2505 | 17 | 2513 | 16 |
15Q-4-26 | 13,800 | 610 | 22.62 | 0.166 | 0.003 | 11.011 | 0.190 | 0.482 | 0.004 | 2513 | 27 | 2524 | 16 | 2534 | 16 |
15Q-4-27 | 22,458 | 437 | 51.41 | 0.168 | 0.003 | 11.130 | 0.171 | 0.482 | 0.004 | 2535 | 27 | 2534 | 14 | 2535 | 15 |
15Q-4-28 | 19,744 | 702 | 28.13 | 0.166 | 0.002 | 10.942 | 0.159 | 0.477 | 0.003 | 2524 | 24 | 2518 | 14 | 2513 | 15 |
15Q-4-29 | 16,941 | 896 | 18.90 | 0.169 | 0.002 | 10.843 | 0.143 | 0.466 | 0.003 | 2545 | 22 | 2510 | 12 | 2464 | 12 |
15Q-4-30 | 4372 | 3289 | 1.33 | 0.167 | 0.002 | 10.879 | 0.139 | 0.471 | 0.003 | 2531 | 22 | 2513 | 12 | 2487 | 12 |
15Q-4-31 | 20,928 | 306 | 68.34 | 0.169 | 0.003 | 11.068 | 0.196 | 0.474 | 0.004 | 2552 | 31 | 2529 | 17 | 2503 | 18 |
15Q-4-32 | 3730 | 653 | 5.71 | 0.170 | 0.002 | 11.323 | 0.166 | 0.484 | 0.003 | 2553 | 24 | 2550 | 14 | 2545 | 15 |
15Q-4-33 | 11,496 | 402 | 28.62 | 0.167 | 0.003 | 10.977 | 0.193 | 0.475 | 0.004 | 2532 | 29 | 2521 | 16 | 2507 | 17 |
15Q-4-34 | 12,076 | 683 | 17.68 | 0.165 | 0.002 | 10.550 | 0.147 | 0.464 | 0.003 | 2506 | 24 | 2484 | 13 | 2458 | 12 |
15Q-4-35 | 20,761 | 750 | 27.67 | 0.165 | 0.002 | 10.786 | 0.157 | 0.473 | 0.003 | 2509 | 58 | 2505 | 14 | 2498 | 13 |
15Q-4-36 | 21,990 | 912 | 24.11 | 0.167 | 0.003 | 10.778 | 0.164 | 0.469 | 0.003 | 2524 | 26 | 2504 | 14 | 2478 | 12 |
15Q-4-37 | 7265 | 2277 | 3.19 | 0.163 | 0.002 | 10.824 | 0.148 | 0.480 | 0.003 | 2500 | 24 | 2508 | 13 | 2529 | 11 |
15Q-4-38 | 10,694 | 2297 | 4.66 | 0.165 | 0.002 | 10.750 | 0.148 | 0.473 | 0.003 | 2506 | 23 | 2502 | 13 | 2496 | 12 |
15Q-4-39 | 19,216 | 572 | 33.58 | 0.167 | 0.003 | 11.077 | 0.171 | 0.481 | 0.004 | 2529 | 27 | 2530 | 14 | 2532 | 16 |
15Q-4-40 | 18,429 | 539 | 34.16 | 0.165 | 0.003 | 11.005 | 0.195 | 0.483 | 0.004 | 2511 | 31 | 2524 | 17 | 2541 | 17 |
Rocks | Location | Magmatic Age (Ma) | Metamorphic Age (Ma) | Method | Reference |
---|---|---|---|---|---|
Grantic gneiss | Hongtoushan | 2520 ± 16 | Conventional multi-grain | Li and Shen, 2000 [75] | |
Grantic gneiss | Paozigou | 2519 ± 77 | |||
Amphibole fine-grained gneiss | Xiaolaihe | 2515 ± 6 | SHRIMP | Wan et al., 2005 [23] | |
Amphibole fine-grained gneiss | Tangtu | 2515 ± 7 | |||
Amphibole fine-grained gneiss | Qingyuan | 2494 ± 5 | 2479 ± 5 | ||
TTG gneiss | Fushun | 2530 ± 22 | 2477 ± 13 | ||
TTG gneiss | Xiaolaihe | 2556 ± 18 | 2469 ± 19 | ||
Quartz dioritic gneiss | Majuanzi | 2571 ± 7 | LA-ICP-MS | Bai et al., 2014 [76] | |
Quartz diorite | Tangtu | 2496 ± 18 | 2427 ± 49 | ||
Plagioclase amphibolite | Tangtu | 2530 ± 5 | 2507 ± 11; 2461 ± 26; 2350 ± 26 | ||
Tonalitic gneiss | Jiubingtai | 2544 ± 4 | |||
Trondhjemitic gneiss | Tangtu | 2518 ± 23 | 2473 ± 30 | ||
Trondhjemitic gneiss | Jiubingtai | 2550 ± 10 | 2508 ± 49 | ||
Syenitic granite | Jiubingtai | 2522 ± 4 | |||
Quartz diorite | Yangjiadian | 2478 ± 18 | LA-ICP-MS | Peng et al., 2015 [25] | |
Tonalite | Binghugou | 2528 ± 6 | |||
Binghugou | 2520 ± 12 | ||||
Quartz mozodiorite | Yangjiadian | 2504 ± 5 | |||
Amphibolite | Pinglinghou | 2474 ± 5 | |||
Granulite | Jingjiagou | 2537 ± 8 | 2482 ± 5 | SHRIMP | Wu et al., 2016 [26] |
Grt-Hb-Bt-Pl gneiss | Longwangmiao | 2555 ± 10 | 2476 ± 9 | ||
Grt-Bt-Pl gneiss | Xiaolaihe | 2497 ± 4 | 2476 ± 10 | ||
Granulite | Pinglinghou | 2515 ± 39 | 2485 ± 3 | ||
Grt-amphibolite | Tangtu | 2489 ± 3 | |||
Grt-Bt-Pl gneiss | Tongshi | 2484 ± 14 | |||
Trondhjemitic gneiss | Xiajiabao | 2559 ± 11 | LA-ICP-MS | Wang et al., 2016 [77] | |
Trondhjemitic gneiss | Huangqizhai | 2558 ± 11 | |||
Tonalitic gneiss | Xiajiabao | 2525 ± 6 | 2496 ± 6 | ||
Trondhjemitic gneiss | Dasuhe | 2504 ± 14 | |||
Monograntic gneiss | Xiaojinchang | 2529 ± 3 | 2495 ± 38 | ||
Monograntic gneiss | Hongqizhai | 2515 ± 3 | |||
Tonalitic gneiss | Jiubingtai | 2522 ± 8 | LA-ICP-MS | Wang et al., 2016 [78] | |
Tonalitic gneiss | Jiubingtai | 2511 ± 4 | 2484 ± 6 | ||
Biotite trondhjemitic gneiss | Hongmiaozi | 2528 ± 9 | |||
Trondhjemitic gneiss | Yongling | 2537 ± 9 | 2487 ± 5 | ||
Tonalitic gneiss | Sandaoguan | 2524 ± 6 | |||
Hornblende plagioclase gneiss | Tangtu | 2550 ± 18 | 2508 ± 10 | LA-ICP-MS | Wang et al., 2017 [79] |
Hornblende plagioclase gneiss | 2561 ± 5 | ||||
Amphibolite | Weiziyu | 2757 ± 6 | |||
Amphibolite | Huiyuan | 2525 ± 16 | |||
TTG gneiss | Hongmiaozi | 2592 ± 4 | 2532 ± 43 | ||
TTG gneiss | Hongmiaozi | 2585 ± 6 | |||
TTG gneiss | Hongtoushan | 2573 ± 4 | |||
TTG gneiss | Baiqizhai | 2558 ± 4 | |||
TTG gneiss | Huiyuan | 2541 ± 5 | |||
TTG gneiss | Huiyuan | 2537 ± 5 | |||
Potassic granitoid gneiss | Qingyuan | 2554 ± 23 | 2497 ± 19; 2495 ± 21 | ||
Potassic granitoid gneiss | Baiqizhai | 2554 ± 17 | |||
Potassic granitoid gneiss | Huiyuan | 2546 ± 3 | |||
Potassic granitoid gneiss | Hongtoushan | 2515 ± 3 | |||
Porphyritic granodiorite | Yingerbu | 2559 ± 7 | 2500 ± 6 | LA-ICP-MS | Wang et al., 2017 [39] |
Porphyritic granodiorite | Majuanzi | 2550 ± 4 | 2510 ± 5 | ||
Porphyritic granodiorite | Fushun | 2542 ± 4 | |||
Medium-grained granodiorite | Weiziyu | 2545 ± 12 | |||
Medium-grained monzogranite | Yongling | 2550 ± 8 | 2515 ± 9 | ||
Porphyritic quartz syenitic gneiss | Shiwen | 2505 ± 9 | |||
Amphibolite | Xiaolaihe | 2530 ± 4 | LA-ICP-MS | Li and Wei, 2017 [27] | |
Amphibolite | Hongtoushan | 2539 ± 7 | |||
Amphibolite | Tangtu | 2501 ± 5 | |||
Amphibolite | Fangniugou | 2516 ± 3 | |||
Amphibolite | Fangniugou | 2520 ± 4 | 2495 ± 8 | ||
Amphibolite | Jinfengling | 2547 ± 19 | 2486 ± 37 | ||
Trondhjemitic gneiss | Hongmiaozi | 2585 ± 14 | LA-ICP-MS | Wang et al., 2018 [80] | |
Tonalitic gneiss | Majuanzi | 2588 ± 12 | |||
Monograntic gneiss | Weiziyu | 2555 ± 4 | 2516 ± 12 | ||
Biotite plagioclase gneisses | Xiaolaihe | 2565 ± 8 | 2516 ± 7 | LA-ICP-MS | Peng et al., 2019 [81] |
Mafic granulite | Dongjinggou | 1938 ± 12; 1843 ± 10 | LA-ICP-MS | Duan et al., 2019 [40] | |
Garnet amphibolite | Lvjiapu | 2502 ± 9 | LA-ICP-MS | Wu and Wei, 2021 [28] | |
Garnet amphibolite | Majiadian | 1821 ± 9 | |||
Dioritic gneiss | Qingyuan | 2519 ± 13 | 2457 ± 21; 2389 ± 20 | LA-ICP-MS | Li et al., 2021 [82] |
Tonalitic gneiss | Qingyuan | 2556 ± 4 | 2496 ± 8 | ||
Trondhjemitic gneiss | Qingyuan | 2542 ± 5 | 2495 ± 7 | ||
Trondhjemitic gneiss | Qingyuan | 2506 ± 8 | 2453 ± 13; 2401 ± 12 | ||
Biotite two-feldspar gneiss | Hongtoushan | 2473 ± 16 | LA-ICP-MS | Li et al., 2022 [29] | |
Biotite two-feldspar gneiss | Hongtoushan | 2501 ± 7 | LA-ICP-MS | this paper |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Li, Z.; Wei, C. Metamorphic Evolution of the Archean Supracrustal Rocks from the Qingyuan Area of the Northern Liaoning Terrane, North China Craton: Constrained Using Phase Equilibrium Modeling and Monazite Dating. Minerals 2022, 12, 1079. https://doi.org/10.3390/min12091079
Liu T, Li Z, Wei C. Metamorphic Evolution of the Archean Supracrustal Rocks from the Qingyuan Area of the Northern Liaoning Terrane, North China Craton: Constrained Using Phase Equilibrium Modeling and Monazite Dating. Minerals. 2022; 12(9):1079. https://doi.org/10.3390/min12091079
Chicago/Turabian StyleLiu, Ting, Zhuang Li, and Chunjing Wei. 2022. "Metamorphic Evolution of the Archean Supracrustal Rocks from the Qingyuan Area of the Northern Liaoning Terrane, North China Craton: Constrained Using Phase Equilibrium Modeling and Monazite Dating" Minerals 12, no. 9: 1079. https://doi.org/10.3390/min12091079
APA StyleLiu, T., Li, Z., & Wei, C. (2022). Metamorphic Evolution of the Archean Supracrustal Rocks from the Qingyuan Area of the Northern Liaoning Terrane, North China Craton: Constrained Using Phase Equilibrium Modeling and Monazite Dating. Minerals, 12(9), 1079. https://doi.org/10.3390/min12091079