Interaction and Inhibition Mechanism of Sulfuric Acid with Fluorapatite (001) Surface and Dolomite (104) Surface: Flotation Experiments and Molecular Dynamics Simulations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mineral Samples
2.2. Contact Angle Measurement
2.3. Single-Mineral Flotation
2.4. Molecular Dynamics Simulation
2.4.1. Simulation Method
2.4.2. Simulation Model
3. Results and Discussion
3.1. Study on Flotation Behavior of Apatite and Dolomite
3.2. Effect of Reagent on Wettability of Mineral Surface
3.3. Molecular Dynamics Simulation of Fluorapatite–/Dolomite–Agent Solution System
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, X.; Luo, H.; Cheng, R.; Li, C.; Zhang, J. Effect of citric acid and flotation performance of combined depressant on collophanite ore. Miner. Eng. 2017, 109, 162–168. [Google Scholar] [CrossRef]
- Cordell, D.; Drangert, J.O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang. 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Ruan, Y.; He, D.; Chi, R. Review on beneficiation techniques and reagents used for phosphate ores. Minerals 2019, 9, 253. [Google Scholar] [CrossRef]
- Summaries, M.C. US Geological Survey. Available online: https://pubs.usgs.gov/periodicals/mcs2022/mcs2022.pdf (accessed on 19 May 2022).
- Xu, W.; Liang, Q.; Tian, Y.; Mei, G. Reverse anionic flotation of dolomitic collophanite using a mixed fatty acid collector: Adsorption behavior and mechanism. Physicochem. Probl. Miner. Process. 2022, 58, 151519. [Google Scholar] [CrossRef]
- Xu, W.; Shi, B.; Tian, Y.; Mei, G. Process mineralogy characteristics and flotation application of a refractory collophanite from Guizhou, China. Minerals 2021, 11, 1249. [Google Scholar] [CrossRef]
- Yang, H.; Xiao, J.; Xia, Y.; Xie, Z.; Tan, Q.; Xu, J.; Guo, H.; Wu, S. Origin of the Ediacaran Weng’an and Kaiyang phosphorite deposits in the Nanhua basin, SW China. J. Asian Earth Sci. 2019, 182, 103931. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, F.; Liu, M.; Jin, Y.; Yu, H. Employing sulfur—Phosphorus mixed acid as a depressant: A novel investigation in flotation of collophanite. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 1–14. [Google Scholar] [CrossRef]
- Deng, J.; Zhang, K.; He, D.; Zhao, H.; Hakkou, R.; Benzaazoua, M. Occurrence of Sesquioxide in a Mid-Low Grade Collophane-Sedimentary Apatite Ore from Guizhou, China. Minerals 2020, 10, 1038. [Google Scholar] [CrossRef]
- Yang, B.; Zhu, Z.; Sun, H.; Yin, W.; Yao, J. Improving flotation separation of apatite from dolomite using PAMS as a novel eco-friendly depressant. Miner. Eng. 2020, 156, 106492. [Google Scholar] [CrossRef]
- Filippova, I.V.; Filippov, L.O.; Lafhaj, Z.; Barres, O.; Fornasiero, D. Effect of calcium minerals reactivity on fatty acids adsorption and flotation. Colloids Surf. A Physicochem. Eng. Asp. 2018, 545, 157–166. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, W.; Li, H. Selective flotation of apatite from calcite using 2-phosphonobutane-1, 2, 4-tricarboxylic acid as depressant. Miner. Eng. 2019, 136, 62–65. [Google Scholar] [CrossRef]
- Wang, T.; Feng, B.; Guo, Y.; Zhang, W.; Rao, Y.; Zhong, C.; Zhang, L.; Cheng, C.; Wang, H.; Luo, X. The flotation separation behavior of apatite from calcite using carboxymethyl chitosan as depressant-ScienceDirect. Miner. Eng. 2020, 159, 106635. [Google Scholar] [CrossRef]
- Zhong, C.; Feng, B.; Zhang, W.; Zhang, L.; Guo, Y.; Wang, T.; Wang, H. The role of sodium alginate in the flotation separation of apatite and dolomite. Powder Technol. 2020, 373, 620–626. [Google Scholar] [CrossRef]
- Abouzeid, A.-Z.M. Physical and thermal treatment of phosphate ores—An overview. Int. J. Miner. Process. 2008, 85, 59–84. [Google Scholar] [CrossRef]
- Liu, X.; Li, C.; Luo, H.; Cheng, R.; Liu, F. Selective reverse flotation of apatite from dolomite in collophanite ore using saponified gutter oil fatty acid as a collector. Int. J. Miner. Process. 2017, 165, 20–27. [Google Scholar] [CrossRef]
- Zou, H.; Cao, Q.; Liu, D.; Yu, X.; Lai, H. Surface features of fluorapatite and dolomite in the reverse flotation process using sulfuric acid as a depressor. Minerals 2019, 9, 33. [Google Scholar] [CrossRef]
- Liu, L.; Qiao, E.; Shen, L.; Min, F.; Xue, C. Effect of hydration layer on the adsorption of dodecane collector on low-rank coal: A molecular dynamics simulation study. Processes 2020, 8, 1207. [Google Scholar] [CrossRef]
- Xie, J.; Li, X.; Mao, S.; Li, L.; Ke, B.; Zhang, Q. Effects of structure of fatty acid collectors on the adsorption of fluorapatite (0 0 1) surface: A first-principles calculations. Appl. Surf. Sci. 2018, 444, 699–709. [Google Scholar] [CrossRef]
- Kholodov, V.N.; Nedumov, R.I. The role of black shales in the formation of phosphate and manganese ores. Lithol. Miner. Resour. 2011, 46, 321–352. [Google Scholar] [CrossRef]
- Ye, J.; Zhang, Q.; Li, X.; Wang, X.; Ke, B.; Li, X.; Shen, Z. Effect of the morphology of adsorbed oleate on the wettability of a collophane surface. Appl. Surf. Sci. 2018, 444, 87–96. [Google Scholar] [CrossRef]
- Chanturiya, V.; Masloboev, V.; Makarov, D.; Mazukhina, S.; Nesterov, D.; Men’shikov, Y. Artificial geochemical barriers for additional recovery of non-ferrous metals and reduction of ecological hazard from the mining industry waste. J. Environ. Sci. Health Part A 2011, 46, 1579–1587. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; Zou, H.; Chen, X.; Yu, X. Interaction of sulfuric acid with dolomite (104) surface and its impact on the adsorption of oleate anion: A DFT study. Physicochem. Probl. Miner. Process. 2020, 56, 34–42. [Google Scholar]
- Yi, H.; Zhang, X.; Zhao, Y.; Liu, L.; Song, S. Molecular dynamics simulations of hydration shell on montmorillonite (001) in water. Surf. Interface Anal. 2016, 48, 976–980. [Google Scholar] [CrossRef]
- Li, E.; Du, Z.; Yuan, S.; Cheng, F. Low temperature molecular dynamic simulation of water structure at sylvite crystal surface in saturated solution. Miner. Eng. 2015, 83, 53–58. [Google Scholar] [CrossRef]
- Yi, H.; Jia, F.; Zhao, Y.; Wang, W.; Song, S.; Li, H.; Liu, C. Surface wettability of montmorillonite (0 0 1) surface as affected by surface charge and exchangeable cations: A molecular dynamic study. Appl. Surf. Sci. 2018, 459, 148–154. [Google Scholar] [CrossRef]
Element | P2O5 | CaO | MgO | SiO2 | Fe2O3 | Al2O3 | K2O | Na2O | Others |
---|---|---|---|---|---|---|---|---|---|
Apatite | 37.35 | 46.31 | 0.31 | 0.77 | 0.09 | 1.17 | 0.01 | 0.06 | 13.93 |
Dolomite | 0.08 | 26.54 | 20.83 | 2.81 | 0.02 | 0.75 | 0.00 | 0.09 | 48.88 |
System | Eads/kcal·mol−1 |
---|---|
Fluorapatite–H2SO4 | −117,830.60 |
Perfect dolomite–H2SO4 | 1.90 |
Defective dolomite–H2SO4 | −100,334.92 |
System | Eads/kcal·mol−1 |
---|---|
Fluorapatite–oleate ion | 4312.55 |
Defect dolomite–oleate ion | −30,891.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, A.; Wang, X.; Zhang, Q. Interaction and Inhibition Mechanism of Sulfuric Acid with Fluorapatite (001) Surface and Dolomite (104) Surface: Flotation Experiments and Molecular Dynamics Simulations. Minerals 2023, 13, 1517. https://doi.org/10.3390/min13121517
Chen A, Wang X, Zhang Q. Interaction and Inhibition Mechanism of Sulfuric Acid with Fluorapatite (001) Surface and Dolomite (104) Surface: Flotation Experiments and Molecular Dynamics Simulations. Minerals. 2023; 13(12):1517. https://doi.org/10.3390/min13121517
Chicago/Turabian StyleChen, Aoao, Xuming Wang, and Qin Zhang. 2023. "Interaction and Inhibition Mechanism of Sulfuric Acid with Fluorapatite (001) Surface and Dolomite (104) Surface: Flotation Experiments and Molecular Dynamics Simulations" Minerals 13, no. 12: 1517. https://doi.org/10.3390/min13121517
APA StyleChen, A., Wang, X., & Zhang, Q. (2023). Interaction and Inhibition Mechanism of Sulfuric Acid with Fluorapatite (001) Surface and Dolomite (104) Surface: Flotation Experiments and Molecular Dynamics Simulations. Minerals, 13(12), 1517. https://doi.org/10.3390/min13121517