Tungsten–Gold Metallogenetic Potential of the Ziyunshan Pluton in Central Hunan, South China: Insights from Element Geochemistry of Granites
Abstract
:1. Introduction
2. Regional Geological Background and Geological Characteristics of Ziyunshan Pluton
3. Materials and Methods
4. Results and Discussion
4.1. Geological Characteristics of Typical Mineral Deposits
- (1)
- Baojinshan Au-W deposit
- (2)
- Wanxi Pb-Zn deposit
- (3)
- Yuexingshan tungsten (lead and zinc) deposit
4.2. Relationship between Deposits and Ziyunshan Pluton
- (1)
- Spatial relationship between deposits and rock mass
- (2)
- Temporal relationship between mineralization and diagenesis
- (3)
- Genetic relationship between ore deposit and rock mass
Deposit/pluton | Type | Material and method | Age (Ma) | Reference |
---|---|---|---|---|
Baojinshan | Au-W | Scheelite, Sm-Nd | 204.7 ± 1.5 | [1] |
Daping | Au | Quartz, Rb-Sr | 204.8 ± 6.3 | [2] |
Chanziping | Au | 205.6 ± 9.4 | [2] | |
Xingfengshan | Au-W | Saltpeter, LA-ICP-MS U-Pb | 215.2 ± 2.7 | [26] |
Gutaishan | Au-Sb | Muscovite, Ar-Ar | 223.6 ± 5.3 | [3] |
Longshan | Au-Sb | Pyrite, Re-Os | 195 ± 36 | [4] |
Xiejiashan | Au-Sb-W | Scheelite, Sm-Nd | 210 ± 2 | [2] |
Ziyunshan | Granite | Zircon, SIMS U-Pb | 227.0 ± 2.2, 225.2 ± 1.7 | [11] |
Baojinshan | Granodiorite porphyry | Zircon, SIMS U-Pb | 225.1±1.5, 223.3±1.4 | [10] |
Deposit | Mineral | Method | Result (℃) | Mean (℃) | Reference |
---|---|---|---|---|---|
Baojinshan | quartz | homogenization | 250~380 | [3] | |
Longshan | quartz | decrepitation | 262~340 | 302 | [27] |
stibnite | 205~290 | 241 | |||
Xingfengshan | quartz | homogenization | 187~410 | 289 | [26] |
Gaojia’ao | quartz | decrepitation | 204~351 | 348 | [28] |
Woxi | quartz | homogenization | 170~220 | 195 | [29] |
Herenping | quartz | homogenization | 140~230 | 175 | [24] |
Xiaojia | quartz | homogenization | 135~313 | 236 | [30] |
4.3. Potential Mineralization of Ziyunshan Pluton
- (1)
- Regional metallogenic conditions
- (2)
- Shape, occurrence and scale of intrusive bodies
- (3)
- Petrogeochemical conditions
Category of Granite | Major Element | Ratio | REE | Reference |
---|---|---|---|---|
Main body | SiO2: 62.98%~72.80%; (K2O+Na2O):8.46%~9.65%; A/CNK < 1.1, belong to high potassium Ca-alkaline series. | Rb/Sr: 0.76~3.35 (average of 1.25); Ba/Sr: 2.69~5.27 (average of 3.50). | ΣREE: 125 × 10−6~257 × 10−6, enriched in LREE, (La/Yb)N: 15.49~22.66, pattern of right tendency, δEu: 0.59. | [10,11] |
Complement | SiO2: 72.14%~74.23%, K2O+Na2O: 7.79%~9.10%, A/CNK < 1.1, belong to high potassium Ca-alkaline series. | Rb/Sr: 1.72~2.70 (average of 2021); Ba/Sr: 3.50~4.25. | ΣREE: 76 × 10−6~446 × 10−6, enriched in LREE, (La/Yb)N: 6.06~17.37, pattern of right tendency, δEu: 0.39. | [10,11] |
Related to the rare earth | SiO2: about 72%; K2O + Na2O: 7%~13%; A/CNK > 1.1, belong to high potassium Ca-alkaline series. | Rb/Sr: < 10; Ba/Sr > 3. | High ΣREE, almost enriched in LREE, pattern of right tendency, obvious negative Eu anomaly. | [44] |
Related to the gold deposit | SiO2 < 73%, high contents of Al2O3, CaO, MgO, FeO+Fe2O3 and TiO2, (K2O+ Na2O) < 7%, A/CNK < 1.1, belong to shoshonitic and high potassium Ca-alkaline series. | Depleted in Ba, Sr, Nb, Ta; Rb/Sr:1~10; Ba/Sr < 3. | ΣREE: 76 × 10−6~250 × 10−6, high LREE/HREE, slight Eu loss, enriched in LREE with pattern of right tendency. | [45] |
Related to the Pb-Zn deposit | SiO2: 57%~74%; (K2O+ Na2O): 3.6%~8%; A/CNK: 0.9~2%; belong to shoshonitic and high potassium Ca-alkaline series. | Rb/Sr < 10, Ba/Sr > 3. | ΣREE: 130 × 10−6~300 × 10−6, (La/Yb)N: 1.6~21, obvious fractionation of LREE and HREE, moderate Eu deficit. | [46] |
Related to the W-Ti deposit | SiO2 > 73%, (K2O+Na2O) > 8%, A/CNK > 1.1, belong to high potassium Ca-alkaline series. | Rb/Sr > 10, Ba/Sr < 3. | Various ΣREE, lower LREE/HREE, patterns in seagull and slope forms, Eu loss in the former one stronger than the later. | [47] |
- (4)
- Magmatic evolution
Types of Granite | Characteristics of Magmatic Evolution | Reference |
---|---|---|
Ziyunshan granite | The acid magma derived from the crust. The mixed magma source was formed by some mantle-derived components. The mantle-derived components of the main granite are higher. There is magmatic mixing. The degree of differentiation is higher, and the degree of differentiation of complement granite is higher; the whole is I type. | [10,11] |
Granite related to gold mine | It is mainly neutral (basic) or intermediate-acid rocks. Its origin has the characteristics of multiple sources. The crust–mantle interaction is obvious, and multi-source and multi-evolution is its biggest feature. The granite is mostly I-type, and the degree of differentiation is low. | [45] |
Granite related to lead–zinc ore | The magma source area is complex, but the general characteristics are as follows: the granites related to Pb-Zn-W-Sn polymetallic ore are from metamorphic sandstone melting source area. The origin of the granites associated with Pb, Zn, Ag and Cu polymetallic ore is deep, mostly in the crust–mantle mixed source area. The degree of differentiation of granites is relatively low, most of them are I-type granites. | [46] |
Granite related to tungsten–tin ore | It is mainly acidic or ultra-acid rocks. The magma source area is crust source, mainly variable mudstone melting source area. The granites have a high degree of differentiation and are mostly A-type and S-type granites. | [47] |
5. Conclusions
- (1)
- Au, W, Pb, Zn, Cu, Sb and rare metal deposits (points) are widely distributed in the Ziyunshan complex and its surrounding area, and an obvious zonation of ore-forming elements could be observed outwards from the rock mass. Rare metal elements such as Nb and Ta appear within the rock mass; W, Sn, Mo and Bi occur in the inner contact zone; Pb, Zn and Cu occur in the contact zone; and Au and Sb occur in the outer contact zone.
- (2)
- The ore-forming elements, such as W, Sn, Cu, Pb, Ag, Sb, Be, Li and Ta, are relatively enriched in the Ziyunshan pluton, where the main rock is more enriched with Pb, Zn, Ag, Cu and other chalcophile elements and the late-phase rock is enriched with W, Sn, Li and other lithophilic elements.
- (3)
- The placement of the Ziyunshan pluton possibly provided the necessary heating source, active fluid and partial provenance for mineralization in this area, which implied a good metallogenic potential.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Peng, J.T.; Wang, C.; Li, Y.K.; Hu, A.X.; Lu, Y.L.; Chen, X.J. Geochemical characteristics and Sm-Nd geochronology of scheelite in the Baojinshan ore district, central Hunan. Acta Petrol. Sin. 2021, 37, 665–682. [Google Scholar]
- Li, H.Q.; Wang, D.H.; Chen, F.W.; Mei, Y.P.; Cai, H. Study on chronology of the Chanziping and Daping gold deposit in Xuefeng Mountains, Hunan Province. Acta Geol. Sin. 2008, 82, 900–905. [Google Scholar]
- Ju, P.J.; Lai, J.Q.; Mo, Q.Y.; Shi, J.; Tan, H.Y.; Tao, S.L. Ore-forming fluid characteristics and genesis of Baojinshan gold deposit in Shuangfeng County, Hunan Province, China. Chin. J. Nonferrous Met. 2016, 26, 2625–2639. [Google Scholar]
- Fu, S.L.; Hu, R.Z.; Chen, Y.W.; Luo, J.C. Chronology of the Longshan Au-Sb deposit in central Hunan Province: Constraints from pyrite Re-Os and zircon U-Th/He isotopic dating. Acta Petrol. Sin. 2016, 32, 3507–3517. [Google Scholar]
- Chen, Y.W.; Bi, X.W.; Fu, S.L.; Dong, S.H. Zircon U-Pb dating and Hf isotope of the felsic dykes in the Longshan Au-Sb deposit in Central Hunan Province and their geological significance. Acta Petrol. Sin. 2016, 32, 3468–3469. [Google Scholar]
- Zhang, Z.Y.; Xie, G.Q.; Mao, J.W.; Liu, W.G.; Olin, P.; Li, W. Sm-Nd dating and in-situ LA-ICP-MS trace element analyses of scheelite from the Longshan Sb-Au deposit, Xiangzhong metallogenic province, South China. Minerals 2019, 9, 87. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Peng, J.T.; Xu, J.B.; Yang, J.H.; Hu, A.X.; Chen, X.J. Petrogenesis and metallogenic effect of the Baimashan granitic complex in central Hunan, South China. Acta Petrol. Sin. 2021, 37, 805–829. [Google Scholar]
- Zhang, L.S.; Peng, J.T.; Hu, A.X.; Lin, F.M.; Zhang, T. Re-Os dating of molybdenite from Darongxi tungsten deposit in western Hunan and its geological implications. Miner. Depos. 2014, 33, 181–189. [Google Scholar]
- Zhang, L.S.; Peng, J.T.; Zhang, D.L.; Hu, A.X.; Yang, J.H. Geochemistry and petrogenesis of the Indosinian Dashenshan granite, western Hunan, South China. Geotecton. Metallog. 2012, 36, 137–148. [Google Scholar]
- Lu, Y.L.; Peng, J.T.; Yang, J.H.; Li, Y.K.; Chen, X.J.; Zhou, X.; Li, G.L. Zircon U-Pb ages and Hf-O isotopes of granodiorite-porphyry in Baojinshan mining area and their geological significance. Chin. J. Nonferrous Met. 2017, 27, 1441–1454. [Google Scholar]
- Lu, Y.L.; Peng, J.T.; Yang, J.H.; Hu, A.X.; Li, Y.K.; Tan, H.Y.; Xiao, Q.Y. Petrogenesis of the Ziyunshan pluton in central Hunan, South China: Constraints from zircon U-Pb dating, element geochemistry and Hf-O isotopes. Acta Petrol. Sin. 2017, 33, 1705–1728. [Google Scholar]
- Xu, H.J.; Ma, C.Q.; Zhao, J.H.; Zhang, J.F. Petrogenesis of Dashenshan I-type granodiorite: Implications for Triassic crust–mantle interaction, South China. Int. Geol. Rev. 2014, 56, 332–350. [Google Scholar] [CrossRef]
- Lu, Y.L.; Li, X.Q.; Liu, Y.; Leng, J.H. The Establishment of Ore-Controlling Fracture System of Baoginshan Gold Mine Based on Fracture-Tectonic Analysis. Mob. Inf. Syst. 2021, 2021, 5887680. [Google Scholar] [CrossRef]
- Li, H.; Zhu, D.P.; Shen, L.W.; Algeo, T.J.; Elatikpo, S.M. A general ore formation model for metasediment-hosted Sb-(Au-W) mineralization of the Woxi and Banxi deposits in South China. Chem. Geol. 2022, 607, 121020. [Google Scholar] [CrossRef]
- Li, H.; Kong, H.; Zhou, Z.K.; Tindell, T.; Xi, X.S. Genesis of the Banxi Sb deposit, South China: Constraints from wall-rock geochemistry, fluid inclusion microthermometry, Rb–Sr geochronology, and H–O–S isotopes. Ore Geol. Rev. 2019, 115, 103162. [Google Scholar] [CrossRef]
- Gong, G.L.; Chen, G.H.; Dai, J.B.; Chen, X.; Li, W.Y. Tectono-controlling characteristics and genesis of Daxin gold deposit in Hunan Province. Geotecton. Metallog. 2007, 31, 342–347. [Google Scholar]
- Li, F.S.; Kang, R.H.; Chen, Y.W. The metallogenic geological condition of Gaojia’ao. Hunan Prov. Its Ore-Prospect. Orientatioa Gold 2002, 22, 1–3. [Google Scholar]
- Li, H.; Zhou, Z.K.; Evans, N.J.; Kong, H.; Xi, X.S. Fluid-zircon interaction during low-temperature hydrothermal processes: Implications for the genesis of the Banxi antimony deposit, South China. Ore Geol. Rev. 2019, 114, 103137. [Google Scholar] [CrossRef]
- Li, H.; Zhou, Z.K.; Algeo, T.J.; Wu, J.H.; Jiang, W.C. Geochronology and geochemistry of tuffaceous rocks from the Banxi Group: Implications for Neoproterozoic tectonic evolution of the southeastern Yangtze Block, South China. J. Asian Earth Sci. 2019, 177, 152–176. [Google Scholar] [CrossRef]
- Li, H.; Wu, Q.H.; Evans, N.J.; Zhou, Z.K.; Kong, H.; Lin, Z.W. Geochemistry and geochronology of the Banxi Sb deposit: Implications for fluid origin and the evolution of Sb mineralization in central-western Hunan, South China. Gondwana Res. 2018, 55, 112–134. [Google Scholar] [CrossRef]
- Zhang, L.J.; Shao, Y.J.; Lai, J.Q.; Shi, J.; Xu, Z.B. Analysis on ore-controlling alteration rocks and structures in the Baojinshan-Jinkengchong gold deposit. Hunan. Miner. Explor. 2015, 5, 245–253. [Google Scholar]
- Yang, Z.; Yang, L.Q.; Liu, J.T.; Meng, J.Y.; Lu, L.; Sun, N.; Zhang, G.N.; Long, F. Mineralogy typomorphic characteristics of pyrrhotite and mineralization significance of Yangla copper deposit, Yunnan, China. Acta Petrol. Sin. 2014, 30, 2669–2680. [Google Scholar]
- Zhu, Y.N.; Peng, J.T. Infrared microthermometric and noble gas isotope study of fluid inclusions in ore minerals at the Woxi orogenic Au–Sb–W deposit, western Hunan, South China. Ore Geol. Rev. 2015, 65, 56–69. [Google Scholar] [CrossRef]
- Hu, S.Q.; Peng, J.T.; Deng, M.K.; Li, Y.K. Characteristics of ore-forming fluid in the Herenping albite-quartz lode gold deposit, western Hunan China. Acta Miner. Sinica 2017, 37, 93–105. [Google Scholar]
- Peng, J.T.; Dai, T.G. Geochemical studies of ore-forming fluids in gold deposits, Southwestern Hunan. Miner. Depos. 1999, 18, 73–82. [Google Scholar]
- Xiao, J.Y.; Peng, J.T.; Hu, A.X.; Mu, L. Characteristics of fluid inclusions of the Xingfengshan gold deposit, central Hunan, and its genetic implications. Geol. Rev. 2020, 66, 1376–1392. [Google Scholar]
- Liang, H.Y. Geochemistry of ore fluids and genesis of Longshan Au-Sb deposit, west Hunan, China. Geochimica 1991, 20, 342–350. [Google Scholar]
- Wu, J.C.; Wang, J.R.; Jian, O.U.; Wang, S.S.; Yang, S.F.; Li, Y.H. Inclusion-isotope geochemistry of the Baimashan-Longshan gold metallogenic belt in Hunan and its ore-forming fluids’ characteristics. Miner. Resour. Geol. 2007, 21, 673–678. [Google Scholar]
- Peng, J.T.; Huang, D.Z.; Xin, Y.J.; Liu, Z.F.; Liu, Y.K. Characteristics of fluid inclusions and genesis of Woxi Au-Sb-W deposit in western Hunan, China. Chin. J. Nonferrous Met. 2013, 23, 2605–2612. [Google Scholar]
- Lin, S. Research on Mineralizing Fluid Geochemistry Characteristics of Xiaojiashan Gold Deposit. South. Met. 2020, 237, 27–33. [Google Scholar]
- Lu, R.; Xu, Z.W.; Lu, J.J.; Wang, R.C.; Zuo, C.H.; Zhao, Z.X.; Miao, B.H. Genesis of the Shuikoushan lead-zinc deposit, Changning City, Hunan Province. J. Nanjing Univ. (Nat. Sci.) 2013, 6, 732–746. [Google Scholar]
- Cai, Y.X.; Tan, J.J.; Yang, H.M.; Lu, S.S.; Duan, R.C.; Qiu, X.F.; Cheng, S.B.; Yang, X.L. The origin of ore-forming material in the Tongshanling Cu-polymetallic ore field in Hunan Province: Constrains from S–Pb–C isotopes. Acta Geol. Sin. 2015, 89, 1792–1803. [Google Scholar]
- Hu, X.Z.; Peng, E.S.; Sun, Z.J. Geological characteristics and genesis of the Qibaoshan Cu-polymetal deposit. Geotecton. Metallog. 2000, 24, 365–370. [Google Scholar]
- Bao, Z.X.; Bao, Y.M.; Wan, R.J. The geological feature and ore-control factor of stibnite ore belt of Zhazixi and its geological prospection. Beijing Geol. 1998, 01, 11–16. [Google Scholar]
- Gu, X.X.; Liu, J.M.; Schulz, O.; Franz, V.; Zheng, M.H. Syngenetic origin of the Woxi W-Sb-Au deposit in Hunan: Evidence from trace elements and sulfur isotopes. Chin. J. Geol. 2004, 39, 415, 424–439. [Google Scholar]
- Li, X.M.; Hu, R.Z.; Bi, X.W.; Peng, J.T. Geochemistry and tin metallogenic potential for Qitianling granite mass in Southern Hunan. J. Jilin Univ. (Earth Sci. Ed.) 2010, 40, 80–93. (In Chinese) [Google Scholar]
- Dong, S.H.; Bi, X.W.; Hu, R.Z.; Chen, Y.W. Petrogenesis of the Yaogangxian granites and implications for W mineralization, Hunan Province. Acta Petrol. Sin. 2014, 30, 2749–2765. [Google Scholar]
- Liu, S.Q. 1/5 Regional Geological Survey Report of Shuiche Part G-49-6-D and Luguan Part G-49-7-C: Geology Section; Regional Geological Survey Team, Bureau of Geology and Mineral Resources: Changsha, China, 1992. (In Chinese)
- Yan, M.C.; Chi, Q.H.; Gu, T.X.; Wang, C.S. The Chemical Compositions of the Continental Crust and Rocks in the Eastern Part of China. Geophys. Geochem. Explor. 1997, 0, 451–459. [Google Scholar]
- Taylor, S.R. Abundance of chemical elements in the continental crust: A new table. Geochim. Cosmochim. Acta 1964, 28, 1273–1285. [Google Scholar] [CrossRef]
- Li, H. Relations with gold and genetic types of the granites in Hunan Province. Geol. Resour. 1995, 4, 283–293. [Google Scholar]
- Sun, J.M.; Lou, Y.L.; Gao, L.J.; Bao, Z.X. Geology and metallogenesis of Precambrian gold deposits in central Hunan Province. Geol. Resour. 2007, 16, 189–195. [Google Scholar]
- Chen, C.H.; Hsieh, P.S.; Lee, C.Y.; Zhou, H.W. Two episodes of the Indosinian thermal event on the South China Block: Constraints from LA-ICPMS U–Pb zircon and electron microprobe monazite ages of the Darongshan S-type granitic suite. Gondwana Res. 2011, 19, 1008–1023. [Google Scholar] [CrossRef]
- Chen, F.W.; Dai, P.Y.; Mei, Y.P.; Li, H.Q.; Wang, D.H.; Cai, H. Metallogenetic and isotopic chronological study on the shenjiaya gold deposit in xuefeng mountains, hunan province. Acta Geol. Sin. 2008, 82, 906–911. [Google Scholar]
- Zhao, Z.; Wang, D.H.; Chen, Z.Y.; Guo, N.X.; Liu, X.X.; He, H.H. Metallogenic specialization of rare earth mineralized igneous rocks in the Eastern Nanling Region. Geotecton. Metallog. 2014, 38, 255–263. [Google Scholar]
- Wang, C.; Liu, S.; Guo, C. Metallogenic specialization of the magmatic rocks associated with gold deposits in the Nanling Region. Geotecton. Metallog. 2014, 38, 276–288. [Google Scholar]
- Zhao, Z.; Wang, D.H.; Zhang, C.Q.; He, Y.F. Metallogenic specialization of the magmatic rocks associated with the lead-zinc deposits in the Nanling region. Geotecton. Metallog. 2014, 38, 289–300. [Google Scholar]
- Chen, J.; Lu, J.J.; Chen, W.F.; Wang, R.C.; Ma, D.S.; Zhu, J.C.; Zhang, W.L.; Ji, J.F. W-Sn-Nb-Ta-bearing granites in the Nanling Range and their relationship to metallogengesis. Geol. J. China Univ. 2008, 14, 459. [Google Scholar]
- Guo, C.L.; Chen, Z.Y.; Lou, F.S.; Xu, Y.M. Geochemical characteristics and genetic types of the W-Sn bearing Late Jurassic granites in the Nanling Region. Geotec. Met. 2014, 38, 301–311. [Google Scholar]
District | Deposit | Mineral | δ34S Value (‰) | Reference |
---|---|---|---|---|
Central Hunan | Baojinshan Au deposit | pyrite | −5.5~−1.9 | [3] |
stibnite | −7.7~−4.3 | |||
Jinkengchong Au deposit | Au-bearing quartz vein | −0.65~−0.11 | [21] | |
quartz vein in rock | −5.4~−1.54 | |||
Wanxi Pb-Zn deposit | galena | −17.1~−15.5 | [3] | |
sphalerite | −13.7~−13.5 | |||
Longshan Au-Sb deposit | stibnite | −2.1~+1.2 | [27] | |
pyrite | +0.63~+4.6 | |||
Daxin Au-Sb deposit | pyrite | +0.2~+3.4 | [16] | |
Banxi Group Madiyi Formation | +13.1 | [27] | ||
Southern Hunan | Shuikoushan Pb-Zn polymetallic deposit | pyrite | −2.42~−0.23 | [31] |
Tongshanling Cu polymetallic deposit | galena | −1.9~+2.6 | [32] | |
Qibaoshan Cu polymetallic deposit | pyrite | +1.8~+5.1 | [33] | |
Western Hunan | Zhazixi Sb deposit | stibnite | +4.7~+10.4 | [34] |
Woxi Au-Sb-W deposit | galena | −12.3~−5.0 | [35] |
Rock | Number of Sample | Element (Au × 10−9; Other Elements × 10−6) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Au | Sb | Ag | Cu | Pb | Zn | W | Sn | Mo | Li | Be | Nb | Ta | U | ||
Adamellite (subject) | ZYS-1 | 1 | 0.35 | 0.431 | 9 | 38.1 | 68 | 401 | 9.5 | 0.5 | 111 | 4.8 | 12 | 3.6 | 4.3 |
ZYS-2 | <1 | 0.37 | 0.482 | 16 | 38.7 | 67 | 435 | 8.0 | 0.2 | 57 | 4.4 | 12 | 3.8 | 6.0 | |
ZYS-3 | <1 | 0.67 | 0.545 | 19 | 33.6 | 74 | 292 | 6.6 | 0.1 | 90 | 4.5 | 13 | 3.6 | 6.8 | |
ZYS-4 | <1 | 0.76 | 0.481 | 17 | 36.6 | 76 | 386 | 9.0 | 0.4 | 112 | 3.6 | 12 | 3.4 | 7.3 | |
ZYS-5 | <1 | 1.50 | 0.540 | 18 | 40.3 | 67 | 260 | 7.6 | 0.6 | 68 | 3.3 | 13 | 3.2 | 5.5 | |
ZYS-6 | 4 | 4.90 | 0.577 | 18 | 33.0 | 77 | 406 | 6.4 | 0.2 | 71 | 3.6 | 14 | 3.7 | 4.9 | |
ZYS-7 | 4 | 0.53 | 0.472 | 17 | 36.4 | 73 | 294 | 7.9 | 0.2 | 65 | 3.2 | 13 | 2.9 | 4.8 | |
ZYS-8 | <1 | 0.46 | 0.708 | 18 | 34.2 | 73 | 232 | 5.4 | 0.1 | 62 | 3.1 | 13 | 2.8 | 4.0 | |
ZYS-9 | <1 | 0.42 | 0.593 | 20 | 30.8 | 83 | 346 | 5.7 | 0.1 | 62 | 3.8 | 14 | 3.2 | 5.2 | |
Two-mica granite (complement) | ZYS-10 | <1 | 0.19 | 0.628 | 6 | 53.9 | 44 | 307 | 9.0 | 0.1 | 102 | 5.2 | 14 | 2.0 | 4.4 |
ZYS-11 | <1 | 0.27 | 0.496 | 10 | 50.1 | 79 | 351 | 8.2 | 0.8 | 95 | 4.7 | 12 | 3.8 | 5.1 | |
ZYS-12 | <1 | 0.24 | 0.481 | 10 | 50.0 | 49 | 382 | 8.0 | 0.7 | 99 | 4.2 | 13 | 4.1 | 4.3 | |
ZYS-13 | 1 | 0.23 | 0.493 | 9 | 49.1 | 45 | 284 | 9.4 | 0.9 | 86 | 5.1 | 13 | 4.2 | 7.6 | |
ZYS-14 | 2 | 0.48 | 0.790 | 13 | 57.7 | 50 | 474 | 9.5 | 0.0 | 153 | 3.2 | 14 | 2.4 | 5.2 | |
ZYS-15 | 1 | 0.40 | 0.469 | 10 | 63.1 | 33 | 339 | 8.3 | 0.2 | 93 | 3.3 | 10 | 2.2 | 5.7 | |
ZYS-16 | <1 | 4.16 | 0.728 | 11 | 55.0 | 41 | 501 | 10.3 | 0.1 | 129 | 3.8 | 13 | 2.6 | 6.8 | |
ZYS-17 | 1 | 0.46 | 0.647 | 11 | 55.7 | 43 | 341 | 10.0 | 0.0 | 106 | 3.8 | 15 | 2.3 | 8.5 | |
Adamellite (subject) | ZYS-18 | <1 | 0.52 | 0.930 | 27 | 33.3 | 87 | 295 | 6.3 | 0.4 | 79 | 3.8 | 17 | 1.5 | 2.9 |
ZYS-19 | <1 | 0.48 | 0.912 | 10 | 64.2 | 68 | 105 | 14.6 | 0.0 | 47 | 3.5 | 19 | 3.2 | 5.9 | |
ZYS-20 | <1 | 0.44 | 0.557 | 22 | 27.8 | 79 | 207 | 4.3 | 0.3 | 56 | 3.2 | 13 | 2.7 | 3.5 | |
ZYS-21 | <1 | 0.15 | 0.741 | 29 | 21.8 | 93 | 202 | 3.7 | 0.4 | 92 | 3.6 | 15 | 2.4 | 2.9 | |
ZYS-22 | <1 | 0.16 | 0.494 | 13 | 32.2 | 67 | 270 | 6.8 | 0.7 | 71 | 4.3 | 13 | 3.5 | 5.1 | |
ZYS-23 | <1 | 0.39 | 0.636 | 18 | 38.5 | 63 | 248 | 7.6 | 0.8 | 87 | 4.9 | 13 | 3.1 | 5.4 | |
ZYS-24 | <1 | 0.67 | 0.756 | 25 | 26.1 | 85 | 237 | 3.4 | 1.1 | 58 | 3.3 | 14 | 2.6 | 4.5 | |
Acidic rock in China | 0.53 | 0.16 | 0.060 | 8 | 24 | 45 | 0.85 | 2.0 | 0.7 | 19 | 2.7 | 15 | 1.2 | 2.5 | |
Clark values | 4 | 0.20 | 0.070 | 55 | 12.5 | 70 | 1 | 2.0 | 1.5 | 20 | 2.8 | 20 | 2.0 | 2.7 |
District | Pluton/Stratum | Element | Reference | |||
---|---|---|---|---|---|---|
Au (10−9) | Sb (10−6) | W (10−6) | As (10−6) | |||
Central Hunan | Ziyunshan | <1~4 | 0.15~4.9 | 0.05~250 | 1.46~8.32 | This paper |
Baimashan | 0.53~3.10 | 0.18~1.52 | 0.62~68.0 | 0.72~10.4 | [38] | |
Tianlongshan | 0.8~4 | [9] | ||||
Dashenshan | 595~849 | |||||
The Sinian Jiangkou Formation | 10.0~17.5 | 1.25~2.07 | 0.86~1.9 | 7.0~15.1 | [41] | |
4.17 | 22.33 | 1.23 | 122 | |||
Banxi Group Madiyi Formation | 97.35 | [41] | ||||
Western Hunan | Sinian–Cambrian | 14~24 | [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leng, J.; Lu, Y.; Li, X.; Zhao, X.; Liu, Y. Tungsten–Gold Metallogenetic Potential of the Ziyunshan Pluton in Central Hunan, South China: Insights from Element Geochemistry of Granites. Minerals 2023, 13, 144. https://doi.org/10.3390/min13020144
Leng J, Lu Y, Li X, Zhao X, Liu Y. Tungsten–Gold Metallogenetic Potential of the Ziyunshan Pluton in Central Hunan, South China: Insights from Element Geochemistry of Granites. Minerals. 2023; 13(2):144. https://doi.org/10.3390/min13020144
Chicago/Turabian StyleLeng, Jiahao, Yulong Lu, Xingqiang Li, Xiangying Zhao, and Yang Liu. 2023. "Tungsten–Gold Metallogenetic Potential of the Ziyunshan Pluton in Central Hunan, South China: Insights from Element Geochemistry of Granites" Minerals 13, no. 2: 144. https://doi.org/10.3390/min13020144
APA StyleLeng, J., Lu, Y., Li, X., Zhao, X., & Liu, Y. (2023). Tungsten–Gold Metallogenetic Potential of the Ziyunshan Pluton in Central Hunan, South China: Insights from Element Geochemistry of Granites. Minerals, 13(2), 144. https://doi.org/10.3390/min13020144