Laboratory Study on the Use of Urease-Induced Calcium Carbonate Precipitation for Stabilization of Coal Fly Ash
Abstract
:1. Introduction
- (1)
- Study the effects of urease activity, salt solution ratio, and PAM concentration on the stabilization of FA.
- (2)
- Qualitative and quantitative research to evaluate each influencing factor from the perspectives of unconfined compressive strength (UCS), wind erosion rate, and agglomerated particle size to reveal the variation law and lay the foundation for the optimization of FA curing techniques.
- (3)
- Investigate the mechanism of FA samples cured with EICP techniques by observing the microstructure through scanning electron microscopy (SEM) and analyzing material compositions through Energy Dispersive X-ray Spectroscopy (EDX).
- (4)
- Determine the optimum ratio of EICP curing agents.
2. Materials and Methods
2.1. Material
2.1.1. FA
2.1.2. PAM
2.1.3. Urease
2.1.4. Other Materials
2.2. Sample Preparation
2.2.1. Sample
2.2.2. Solution
2.2.3. Standard Maintenance
2.3. Methods
2.3.1. Water-Stability Test
2.3.2. Freeze-Thaw Test
2.3.3. Other Tests
2.4. Statistical Analysis
3. Results and Discussion
3.1. UCS Analysis
3.2. Agglomerated Particle Size Analysis of the FA
3.3. Wind Erosion Resistance Analysis
3.4. Correlation Analysis of Cured Properties for FA Samples
3.5. SEM Imaging and EDX Analysis
4. Conclusions
- (1)
- The surface strength, structural stability, and resistance to wind erosion of FA significantly improved with a large number of crystals of CaCO3 formed by appropriate increases in urea concentration and urease activity.
- (2)
- The EICP-PAM technique combined the CaCO3 cementation formed in the EICP process with the hydrogel network immobilization produced by PAM to generate an organic-inorganic composite FA curing agent, which improved the brittle damage characteristics of the samples cured with EICP and made the cured samples have a better ductility.
- (3)
- Taking into account the economic cost of FA curing, when the CaCl2 concentration was kept constant (0.3 mo/L), the optimum urea concentration and urease activity were: 1 mo/L and 92 u, respectively, and at this dose, the UCS and wind erosion rate of the sample were 540.9 kPa and 2.905 mg/(m2·min) respectively. When 0.6 g/L PAM was added to the treatment solution, the UCS of the samples increased to 908.1 kPa, and the wind erosion rate decreased to 1.992 mg/(m2·min).
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bhatt, A.; Priyadarshini, S.; Mohanakrishnan, A.A.; Abri, A.; Sattler, M.; Techapaphawit, S. Physical, chemical, and geotechnical properties of coal fly ash: A global review. Case Stud. Constr. Mater. 2019, 11, e00263. [Google Scholar] [CrossRef]
- Banerjee, R.; Jana, A.; De, A.; Mukherjee, A. Phytoextraction of heavy metals from coal fly ash for restoration of fly ash dumpsites. Bioremed. J. 2020, 24, 41–49. [Google Scholar] [CrossRef]
- Gadore, V. Ahmaruzzaman Tailored fly ash materials: A recent progress of their properties and applications for remediation of organic and inorganic contaminants from water. J. Water Process Eng. 2021, 41, 101910. [Google Scholar] [CrossRef]
- Mahamaya, M.; Das, S.K.; Reddy, K.R.; Jain, S. Interaction of biopolymer with dispersive geomaterial and its characterization: An eco-friendly approach for erosion control. J. Clean. Prod. 2021, 312, 127778. [Google Scholar] [CrossRef]
- Zeng, L.; Sun, H.; Peng, T.; Hui, T. Effect of glass content on sintering kinetics, microstructure and mechanical properties of glass-ceramics from coal fly ash and waste glass. Mater. Chem. Phys. 2020, 260, 124120. [Google Scholar] [CrossRef]
- Naeimi, M.; Chu, J. Comparison of conventional and bio-treated methods as dust suppressants. Environ. Sci. Pollut. Res. 2017, 24, 23341–23350. [Google Scholar] [CrossRef]
- Anbu, P.; Kang, C.-H.; Shin, Y.-J.; So, J.-S. Formations of calcium carbonate minerals by bacteria and its multiple applications. Springerplus 2016, 5, 250. [Google Scholar] [CrossRef] [Green Version]
- Krajewska, B. Urease-aided calcium carbonate mineralization for engineering applications: A review. J. Adv. Res. 2017, 13, 59–67. [Google Scholar] [CrossRef]
- Bu, C.; Wen, K.; Liu, S.; Ogbonnaya, U.; Li, L. Development of bio-cemented constructional materials through microbial induced calcite precipitation. Mater. Struct. 2018, 51, 30. [Google Scholar] [CrossRef]
- Li, W.; Dong, B.; Yang, Z.; Xu, J.; Chen, Q.; Li, H.; Xing, F.; Jiang, Z. Recent Advances in Intrinsic Self-Healing Cementitious Materials. Adv. Mater. 2018, 30, e1705679. [Google Scholar] [CrossRef]
- Erick, O.; Marco, G.; Alex, P. Microbiologically Induced Carbonate Precipitation in the Restoration and Conservation of Cultural Heritage Materials. Molecules 2020, 25, 5449. [Google Scholar]
- Zhou, X.; Ke, T.; Li, S.; Deng, S.; An, X.; Ma, X.; De Philippis, R.; Chen, L. Induced biological soil crusts and soil properties varied between slope aspect, slope gradient and plant canopy in the Hobq desert of China. Catena 2020, 190, 104559. [Google Scholar] [CrossRef]
- Chunxiang, Q.; Tianwen, Z.; Xuan, Z.; Yilin, S. Application of microbial self-healing concrete: Case study. Constr. Build Mater. 2021, 290, 123226. [Google Scholar]
- Zhuang, D.; Yan, H.; Tucker, M.E.; Zhao, H.; Han, Z.; Zhao, Y.; Sun, B.; Li, D.; Pan, J.; Zhao, Y.; et al. Calcite precipitation induced by Bacillus cereus MRR2 cultured at different Ca2+ concentrations: Further insights into biotic and abiotic calcite. Chem. Geol. 2018, 500, 64–87. [Google Scholar] [CrossRef]
- Mohebbi, M.M.; Habibagahi, G.; Niazi, A.; Ghahramani, A. A laboratory investigation on suppression of dust from wind erosion using biocementation with Bacillus amyloliquefaciens. Sci. Iran. 2019, 26, 2665–2677. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zhang, N.; Ding, J.; Lu, C.; Jin, Y. Experimental Study on Wind Erosion Resistance and Strength of Sands Treated with Microbial-Induced Calcium Carbonate Precipitation. Adv. Mater. Sci. Eng. 2018, 2018, 3463298. [Google Scholar] [CrossRef] [Green Version]
- Kavazanjian, E.; Almajed, A.; Hamdan, N. Bio-Inspired Soil Improvement Using EICP Soil Columns and Soil Nails. In Grouting; ASCE Press: Baltimore, MD, USA, 2017; pp. 13–22. [Google Scholar]
- Choi, S.G.; Chu, J.; Brown, R.C.; Wang, K.; Wen, Z. Sustainable Biocement Production via Microbially Induced Calcium Carbonate Precipitation: Use of Limestone and Acetic Acid Derived from Pyrolysis of Lignocellulosic Biomass. ACS Sustain. Chem. Eng. 2017, 5, 5183–5190. [Google Scholar] [CrossRef]
- Miao, L.; Wu, L.; Sun, X.; Li, X.; Zhang, J. Method for solidifying desert sands with enzyme—Catalysed mineralization. Land Degrad. Dev. 2020, 31, 1317–1324. [Google Scholar] [CrossRef]
- Almajed, A.; Khodadadi, H.; Kavazanjian, E., Jr. Sisal Fiber Reinforcement of EICP-Treated Soil. In Proceedings of the IFCEE 2018: Innovations in Ground Improvement for Soils, Pavements, and Subgrades, Orlando, FL, USA, 5–10 March 2018; pp. 29–36. [Google Scholar]
- Wen, K.; Li, Y.; Amini, F.; Li, L. Impact of bacteria and urease concentration on precipitation kinetics and crystal morphology of calcium carbonate. Acta Geotech. 2020, 15, 17–27. [Google Scholar] [CrossRef]
- Ghosh, T.; Bhaduri, S.; Montemagno, C.; Kumar, A. Sporosarcina pasteurii can form nanoscale calcium carbonate crystals on cell surface. PLoS ONE 2019, 14, e0210339. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Dong, Y.; Zhang, W.; Zhang, S.; Li, L.; Li, J. Preparation of cross-linked soy protein isolate-based environmentally-friendly films enhanced by PTGE and PAM. Ind. Crop. Prod. 2015, 67, 373–380. [Google Scholar] [CrossRef]
- Lentz, R.D.; Sojka, R.E. Field results using polyacrylamide to manage furrow erosion and infiltration. Soil Sci. 1994, 158, 274–282. [Google Scholar] [CrossRef]
- Deng, S.; Zhang, D.; Wang, G.; Zhou, X.; Ye, C.; Fu, T.; Ke, T.; Zhang, Y.; Liu, Y.; Chen, L. Biological soil crust succession in deserts through a 59-year-long case study in China: How induced biological soil crust strategy accelerates desertification reversal from decades to years. Soil Biol. Biochem. 2020, 141, 107665. [Google Scholar] [CrossRef]
- Chock, T.; Antoninka, A.J.; Faist, A.M.; Bowker, M.A.; Belnap, J.; Barger, N.N. Responses of biological soil crusts to rehabilitation strategies. J. Arid. Environ. 2019, 163, 77–85. [Google Scholar] [CrossRef]
- Meng, H.; Gao, Y.; He, J.; Qi, Y.; Hang, L. Microbially induced carbonate precipitation for wind erosion control of desert soil: Field-scale tests. Geoderma 2021, 383, 114723. [Google Scholar] [CrossRef]
- DeJong, J.T.; Mortensen, B.M.; Martinez, B.C.; Nelson, D.C. Bio-mediated soil improvement. Ecol. Eng. 2010, 36, 197–210. [Google Scholar] [CrossRef]
- Oliveira, P.J.V.; Neves, J.P.G. Effect of Organic Matter Content on Enzymatic Biocementation Process Applied to Coarse-Grained Soils. J. Mater. Civ. Eng. 2019, 31, 04019121. [Google Scholar] [CrossRef]
- Sun, X.; Miao, L.; Chen, R. The application of bio-cementation for improvement in collapsibility of loess. Int. J. Environ. Sci. Technol. 2021, 18, 2607–2618. [Google Scholar] [CrossRef]
- Gowthaman, S.; Nakashima, K.; Kawasaki, S. Freeze-thaw durability and shear responses of cemented slope soil treated by microbial induced carbonate precipitation. Soils Found. 2020, 60, 840–855. [Google Scholar] [CrossRef]
- Ciantia, M.O.; Castellanza, R.; di Prisco, C. Experimental Study on the Water-Induced Weakening of Calcarenites. Rock Mech. Rock Eng. 2015, 48, 441–461. [Google Scholar] [CrossRef]
- Sujatha, E.R.; Saisree, S. Geotechnical behaviour of guar gum-treated soil. Soils Found. 2019, 59, 2155–2166. [Google Scholar] [CrossRef]
- Zhang, W.; Ju, Y.; Zong, Y.; Qi, H.; Zhao, K. In Situ Real-Time Study on Dynamics of Microbially Induced Calcium Carbonate Precipitation at a Single-Cell Level. Environ. Sci. Technol. 2018, 52, 9266–9276. [Google Scholar] [CrossRef]
- Jennifer, Z.; Anja, R.; Pawel, S. Calcite seed-assisted microbial induced carbonate precipitation (MICP). PLoS ONE 2021, 16, e0240763. [Google Scholar]
- Viklander, P. Permeability and volume changes in till due to cyclic freeze/thaw. Can. Geotech. J. 1998, 35, 471–477. [Google Scholar] [CrossRef]
- Sun, X.; Miao, L.; Chen, R.; Wang, H.; Xia, J. Surface rainfall erosion resistance and freeze-thaw durability of bio-cemented and polymer-modified loess slopes. J. Environ. Manag. 2022, 301, 113883. [Google Scholar] [CrossRef]
- Cheng, L.; Shahin, M.A.; Mujah, D. Influence of Key Environmental Conditions on Microbially Induced Cementation for Soil Stabilization. J. Geotech. Geoenviron. Eng. 2017, 143, 04016083. [Google Scholar] [CrossRef] [Green Version]
- Zheng, T. Bacteria-induced facile biotic calcium carbonate precipitation. J. Cryst. Growth 2021, 563, 126096. [Google Scholar] [CrossRef]
- Porter, H.; Dhami, N.K.; Mukherjee, A. Synergistic chemical and microbial cementation for stabilization of aggregates. Cem. Concr. Compos. 2017, 83, 160–170. [Google Scholar] [CrossRef]
- Cui, M.-J.; Zheng, J.-J.; Zhang, R.-J.; Lai, H.-J.; Zhang, J. Influence of cementation level on the strength behaviour of bio-cemented sand. Acta Geotech. 2017, 12, 971–986. [Google Scholar] [CrossRef]
- Nafisi, A.; Safavizadeh, S.; Montoya, B.M. Influence of Microbe and Enzyme-Induced Treatments on Cemented Sand Shear Response. J. Geotech. Geoenviron. Eng. 2019, 145, 06019008. [Google Scholar] [CrossRef]
- Gorospe, C.M.; Han, S.-H.; Kim, S.-G.; Park, J.-Y.; Kang, C.-H.; Jeong, J.-H.; So, J.-S. Effects of different calcium salts on calcium carbonate crystal formation by Sporosarcina pasteurii KCTC 3558. Biotechnol. Bioprocess Eng. 2013, 18, 903–908. [Google Scholar] [CrossRef]
- He, J.; Chu, J. Cementation of sand due to salt precipitation in drying process. Mar. Georesour. Geotechnol. 2017, 35, 441–445. [Google Scholar] [CrossRef]
- Oral, Ç.M.; Ercan, B. Influence of pH on morphology, size and polymorph of room temperature synthesized calcium carbonate particles. Powder Technol. 2018, 339, 781–788. [Google Scholar] [CrossRef]
- Zhou, G.-T.; Yao, Q.-Z.; Fu, S.-Q.; Guan, Y.-B. Controlled crystallization of unstable vaterite with distinct morphologies and their polymorphic transition to stable calcite. Eur. J. Miner. 2010, 22, 259–269. [Google Scholar] [CrossRef] [Green Version]
- Trushina, D.B.; Bukreeva, T.V.; Antipina, M.N. Size-Controlled Synthesis of Vaterite Calcium Carbonate by the Mixing Method: Aiming for Nanosized Particles. Cryst. Growth Des. 2016, 16, 1311–1319. [Google Scholar] [CrossRef]
No. | Composition | Urea (mol/L) | CaCl2 (mol/L) | Urease (Activity: u) | PAM (g/L) |
---|---|---|---|---|---|
1 | U | ||||
2 | T-0-0-0-0 | The blank control samples were treated with deionized water | |||
3 | T-1-0.3-4.6-0 | 1 | 0.3 | 4.6 | 0 |
4 | T-1-0.3-46-0 | 1 | 0.3 | 46 | 0 |
5 | T-1-0.3-92-0 | 1 | 0.3 | 92 | 0 |
6 | T-1-0.3-138-0 | 1 | 0.3 | 138 | 0 |
7 | T-1-0.3-460-0 | 1 | 0.3 | 460 | 0 |
8 | T-1-0.3-920-0 | 1 | 0.3 | 920 | 0 |
9 | T-0-0-460-0 | 0 | 0 | 460 | 0 |
10 | T-1-0-460-0 | 1 | 0 | 460 | 0 |
11 | T-0.3-0.3-460-0 | 0.3 | 0.3 | 460 | 0 |
12 | T-0.6-0.3-460-0 | 0.6 | 0.3 | 460 | 0 |
13 | T-1.5-0.3-460-0 | 1.5 | 0.3 | 460 | 0 |
14 | T-2-0.3-460-0 | 2 | 0.3 | 460 | 0 |
15 | T-0-0-0-0.6 | 0 | 0 | 0 | 0.6 |
16 | T-1-0.3-0-0.6 | 1 | 0.3 | 0 | 0.6 |
17 | T-1-0.3-4.6-0.6 | 1 | 0.3 | 4.6 | 0.6 |
18 | T-1-0.3-46-0.6 | 1 | 0.3 | 46 | 0.6 |
19 | T-1-0.3-92-0.6 | 1 | 0.3 | 92 | 0.6 |
20 | T-1-0.3-138-0.6 | 1 | 0.3 | 138 | 0.6 |
21 | T-1-0.3-460-0.6 | 1 | 0.3 | 460 | 0.6 |
22 | T-1-0.3-920-0.6 | 1 | 0.3 | 920 | 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, Y.; Chen, J. Laboratory Study on the Use of Urease-Induced Calcium Carbonate Precipitation for Stabilization of Coal Fly Ash. Minerals 2023, 13, 185. https://doi.org/10.3390/min13020185
Jia Y, Chen J. Laboratory Study on the Use of Urease-Induced Calcium Carbonate Precipitation for Stabilization of Coal Fly Ash. Minerals. 2023; 13(2):185. https://doi.org/10.3390/min13020185
Chicago/Turabian StyleJia, Yinggang, and Jian Chen. 2023. "Laboratory Study on the Use of Urease-Induced Calcium Carbonate Precipitation for Stabilization of Coal Fly Ash" Minerals 13, no. 2: 185. https://doi.org/10.3390/min13020185
APA StyleJia, Y., & Chen, J. (2023). Laboratory Study on the Use of Urease-Induced Calcium Carbonate Precipitation for Stabilization of Coal Fly Ash. Minerals, 13(2), 185. https://doi.org/10.3390/min13020185