Major and Trace Element Compositions of Clinopyroxene Phenocrysts in Altered Basaltic Rocks from Yüksekova Complex within Bitlis Suture Zone (Elazığ, Eastern Turkey): Implications for the Tholeiitic to Calc-Alkaline Magmatism
Abstract
:1. Introduction
2. Geological Framework
The Yüksekova Complex (YC)
3. Analytical Techniques
4. Results
4.1. Petrography
4.2. Major Element Composition of Clinopyroxene
4.3. Trace Element Composition of Clinopyroxene
5. Discussion
5.1. Pressure-Temperature Estimates
5.2. Parental Magma Compositions
5.3. Sources of the Clinopyroxene Phenocrysts
6. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leterrier, J.; Maury, R.C.; Thonon, P.; Girard, D.; Marchal, M. Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series. Earth Planet. Sci. Lett. 1982, 59, 139–154. [Google Scholar] [CrossRef]
- Marks, M.; Halama, R.; Wenzel, T.; Markl, G. Trace element variations in clinopyroxene and amphibole from alkaline to peralkaline syenites and granites: Implications for mineral–melt trace-element partitioning. Chem. Geol. 2004, 211, 185–215. [Google Scholar] [CrossRef]
- Muravyeva, N.S.; Belyatsky, B.V.; Senin, V.G.; Ivanov, A.V. Sr–Nd–Pb isotope systematics and clinopyroxene-host disequilibrium in ultra-potassic magmas from Toro-Ankole and Virunga, East-African Rift: Implications for magma mixing and source heterogeneity. Lithos 2014, 210, 260–277. [Google Scholar] [CrossRef]
- Nisbet, E.G.; Pearce, J.A. Clinopyroxene Composition in Marie Lavas from Different Tectonic Settings. Contrib. Miner. Petrol. 1977, 63, 149–160. [Google Scholar] [CrossRef]
- Vannucci, R.; Rampone, E.; Picardo, G.B.; Ottolini, L.; Bottazzi, P. Ophiolitic magmatism in the Ligurian Tethys: An ion microprobe study of basaltic clinopyroxenes. Contrib. Mineral. Petrol. 1993, 115, 123–137. [Google Scholar] [CrossRef]
- Zack, T.; Foley, S.F.; Jenner, G.A. A consistent partition coefficient set for clinopyroxene, amphibole and garnet from laser ablation microprobe analysis of garnet pyroxenites from Kakanui, New Zealand. Neues Jahrb. Für Mineral. 1997, 172, 23–41. [Google Scholar] [CrossRef]
- Hill, E.; Blundy, J.D.; Wood, B.J. Clinopyroxene-melt trace element partitioning and the development of a predictive model for HFSE and Sc. Contrib. Mineral. Petrol. 2011, 161, 423–438. [Google Scholar] [CrossRef]
- Bédard, J.H. Parental magmas of the Nain Plutonic Suite anorthosites and mafic cumulates: A trace element modeling approach. Contrib. Mineral. Petrol. 2001, 141, 747–771. [Google Scholar] [CrossRef]
- Bédard, J.H. Parameterizations of calcic clinopyroxene—Melt trace element partition coefficients. Geochem. Geophys. Geosystems 2014, 15, 303–336. [Google Scholar] [CrossRef]
- Perincek, D. The Geology of Hazro-Korudag-Cüngüs-Maden-Ergani-Hazar-Elazığ-Malatya Area, Guide Book MTA, Ankara; 1979, 33p. Available online: https://www.researchgate.net/publication/291997458_The_Geology_of_Hazro-Korudag-Cungus-Maden-Ergani-Hazar-Elazig-_Malatya_area (accessed on 7 February 2023).
- Robertson, A.H.F.; Parlak, O.; Rızaoğlu, T.; Ünlügenç, U.C.; Inan, N.; Taslı, K.; Ustaömer, T. Tectonic evolution of the South Tethyan ocean: Evidence from the Eastern Taurus mountains (Elazığ region, SE Turkey). In Deformation of the Continental Crust: The Legacy of Mike Coward; Ries, A.C., Butler, R.W.H., Graham, R.H., Eds.; Geological Society: London, UK, 2007; Volume 272, pp. 233–272. [Google Scholar]
- Ural, M.; Arslan, M.; Göncüoğlu, M.C.; Tekin, U.K.; Kürüm, S. Late Cretaceous arc and back-arc formation within the Southern Neotethys: Whole-rock, trace element and Sr-Nd-Pb isotopic data from basaltic rocks of the Yüksekova Complex (Malatya-Elazığ, SE Turkey). Ofioliti 2015, 40, 57–72. [Google Scholar]
- MTA. 1/500.000 Scaled Geological Maps of Turkey. In General Directorate of Mineral Research and Exploration; Department of Geological Research of General Directorate of MTA: Ankara, Turkey, 2002. [Google Scholar]
- MTA. 1/100000 Scaled Geological Maps of Turkey. In General Directorate of Mineral Research and Exploration; Department of Geological Research of General Directorate of MTA: Ankara, Turkey, 2011. [Google Scholar]
- Şengör, A.M.C.; Yilmaz, Y. Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics 1981, 75, 181–241. [Google Scholar] [CrossRef]
- Göncüoğlu, M.C.; Turhan, N.; Tekin, U.K. Evidence for the Triassic rifting and opening of the Neotethyan Izmir-Ankara Ocean and discussion on the presence of Cimmerian events at the northern edge of the Tauride-Anatolide Platform, Turkey. Boll. Soc. Geol. Ital. 2003, 2, 203–212. [Google Scholar]
- Uzunçimen, S.; Tekin, U.K.; Bedi, Y.; Perincek, D.; Varol, E.; Soycan, H. Discovery of the late Triassic (Middle Carnian–Rhaetian) radiolarians in the volcanosedimentary sequences of the Kocali complex, SE Turkey: Correlation with the other Tauride units. J. Asian Earth Sci. 2011, 40, 180–200. [Google Scholar] [CrossRef]
- Akal, C.; Candan, O.; Koralay, O.E.; Oberhänsli, R.; Chen, F.; Prelević, D. Early Triassic potassic volcanism in the Afyon Zone of the Anatolides/Turkey: Implications for the rifting of the Neo-Tethys. Int. J. Earth Sci. 2012, 101, 177–194. [Google Scholar] [CrossRef]
- Agard, P.; Omrani, J.; Jolivet, L.; Mouthereau, F. Convergence history across Zagros (Iran): Constraints from collisional and earlier deformation. Int. J. Earth Sci. 2005, 94, 401–419. [Google Scholar] [CrossRef]
- Okay, A.I.; Zattin, M.; Cavazza, W. Apatite fission-track data for the Miocene Arabia-Eurasia collision. Geology 2010, 38, 35–38. [Google Scholar] [CrossRef]
- Jolivet, L.; Faccenna, C.; Agard, P.; Frizon de Lamotte, D.; Menant, A.; Sternai, P.; Guillocheau, F. Neo-Tethys geodynamics and mantle convection: From extension to compression in Africa and a conceptual model for obduction. Can. J. Earth Sci. 2016, 53, 1190–1204. [Google Scholar] [CrossRef]
- Göncüoğlu, M.C.; Turhan, N. Geology of the Bitlis metamorphic belt. In International Symposium on the Geology of the Taurus Belt; Tekeli, O., Göncüoğlu, M.C., Eds.; Proceedings: Ankara, Turkey, 1984; pp. 237–244. [Google Scholar]
- Robertson, A.H.F. Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region. Lithos 2002, 65, 1–67. [Google Scholar] [CrossRef]
- Dilek, Y.; Thy, P. Island arc tholeiite to boninitic melt evolution of the Cretaceous Kizildag (Turkey) ophiolite: Model for multi-stage early arc–forearc magmatism in Tethyan subduction factories. Lithos 2009, 113, 68–87. [Google Scholar] [CrossRef]
- Oberhänsli, R.; Candan, O.; Bousquet, R.; Rimmele, G.; Okay, A.; Goff, J. Alpine high pressure evolution of the eastern Bitlis complex, SE Turkey. Geol. Soc. Lond. Spec. Publ. 2010, 340, 461–483. [Google Scholar] [CrossRef]
- Oberhänsli, R.; Bousquet, R.; Candan, O.; Okay, A.I. Dating subduction events in east Anatolia, Turkey. Turk. J. Earth Sci. 2012, 21, 1–17. [Google Scholar]
- Oberhänsli, R.; Koralay, E.; Candan, O.; Pourteau, A.; Bousquet, R. Late Cretaceous eclogitic high-pressure relics in the Bitlis Massif. Geodin. Acta 2013, 26, 175–190. [Google Scholar] [CrossRef]
- Yazgan, E. Geodynamic evolution of the Eastern Taurus region. In The International Symposium on Geology of the Taurus Belt; Tekeli, O., Göncüoğlu, M.C., Eds.; MTA: Ankara, Turkey, 1984; pp. 199–208. [Google Scholar]
- Rolland, Y.; Perincek, D.; Kaymakci, N.; Sosson, M.; Barrier, E.; Avagyan, A. Evidence for∼ 80–75 Ma subduction jump during Anatolide–Tauride–Armenian block accretion and∼ 48 Ma Arabia–Eurasia collision in Lesser Caucasus–East Anatolia. J. Geodyn. 2012, 56–57, 76–85. [Google Scholar] [CrossRef]
- Göncüoğlu, M.C.; Turhan, N. New results on the age of Bitlis Metamorphics. Bull. Miner. Res. Explor. 1983, 95, 1–5. [Google Scholar]
- Göncüoğlu, M.C.; Turhan, N. Rock units and metamorphism of the basement and Lower Paleozoic cover of the Bitlis Metamorphic Complex, SE Turkey. In Lower Paleozoic Evolution in Northwest Gondwana; Göncüoğlu, M.C., Derman, A.S., Eds.; Turkish Association of Petroleum Geology: Ankara, Turkey, 1997; Volume 3, pp. 75–81. [Google Scholar]
- Yazgan, E.; Chessex, R. Geology and tectonic evolution of the southestern Taurides in the region of Malatya. Turk. Assoc. Petr. Geol. Bull. 1991, 3, 1–42. [Google Scholar]
- Bozkaya, O.; Yalcin, H.; Basibuyuk, Z.; Ozfirat, O.; Yilmaz, H. Origin and evolution of the southeast Anatolian metamorphic complex (Turkey). Geol. Carp. Bratisl. 2007, 58, 197. [Google Scholar]
- Topuz, G.; Candan, O.; Zack, T.; Yılmaz, A. East Anatolian plateau constructed over a continental basement: No evidence for the East Anatolian accretionary complex. Geology 2017, 45, 791–794. [Google Scholar] [CrossRef]
- Hempton, M. Structure and deformation history of the Bitlis suture near Lake Hazar, SE Turkey. Geol. Soc. Am. Bull. 1985, 96, 223–243. [Google Scholar] [CrossRef]
- Parlak, O.; Rızaoğlu, T.; Bağcı, U.; Karaoğlan, F.; Höck, V. Tectonic significance of the geochemistry and petrology of ophiolites in southeast Anatolia, Turkey. Tectonophysics 2009, 473, 173–187. [Google Scholar] [CrossRef]
- Karaoğlan, F.; Parlak, O.; Klötzli, U.; Thöni, M.; Koller, F. U–Pb and Sm–Nd geochronology of the ophiolites from the SE Turkey: Implications for the Neotethyan evolution. Geodin. Acta 2012, 25, 146–161. [Google Scholar] [CrossRef]
- Bağcı, U.; Parlak, O.; Höck, V. Geochemistry and tectonic environment of diverse magma generations forming the crustal units of the Kızıldağ (Hatay) ophiolite, Southern Turkey. Turk. J. Earth Sci. 2008, 17, 43–71. [Google Scholar]
- Parlak, O.; Karaoğlan, F.; Rizaoğlu, T.; Nurlu, N.; Bağci, U.; Höck, V.; Öztüfekçi-Önal, A.; Kürüm, S.; Topak, Y. Petrology of the İspendere (Malatya) ophiolite from the Southeast Anatolia: Implications for the Late Mesozoic evolution of the southern Neotethyan ocean. Geol. Soc. Lond. Spec. Publ. 2013, 372, 219–247. [Google Scholar] [CrossRef]
- Varol, E.; Bedi, Y.; Tekin, U.K.; Uzuncimen, S. Geochemical and Petrological characteristics of Late Triassic basic volcanic rocks from the Kocali complex; SE Turkey: Implications for the Triassic Evolution of Southern Tethys. Ofioliti 2011, 36, 101–115. [Google Scholar]
- Ural, M.; Sayit, K.; Koralay, O.E.; Goncuoglu, M.C. Geochemistry and Zircon U-Pb Dates of Felsic-Intermediate Members of the Late Cretaceous Yüksekova Arc Basin: Constraints on the Evolution of the Bitlis–Zagros Branch of Neotethys (Elazığ, E Turkey). Acta Geol. Sin. Engl. Ed. 2021, 95, 1199–1216. [Google Scholar] [CrossRef]
- Ural, M.; Sayit, K.; Tekin, U.K. Whole-rock and Nd-Pb isotope geochemistry and radiolarian ages of the volcanics from the Yüksekova Complex (Maden Area, Elazığ, E Turkey): Implıcatıons for a Late Cretaceous (Santonıan-Campanıan) back-arc basin in the southern Neotethys. Ofioliti 2022, 47, 65–83. [Google Scholar]
- Tekin, U.K.; Ural, M.; Göncüoğlu, M.C.; Arslan, M.; Kürüm, S. Upper Cretaceous Radiolarian ages from an arc–back-arc within the Yüksekova Complex in the southern Neotethys mélange, SE Turkey. Comptes. Rendus. Palevol. 2015, 14, 73–84. [Google Scholar] [CrossRef]
- Ural, M.; Sarı, B. New planktonic foraminifera data from the Upper Cretaceous pelagic limestones of the Yüksekova Complex in the Maden area (southeast of Elazığ, Eastern Turkey). In Proceedings of the IOP Conference Series: Earth and Environmental Science, The World Multidisciplinary Earth Sciences Symposium (WMESS), Prague, Czech Republic, 9–13 September 2019. [Google Scholar]
- Ural, M.; Kaya-Sarı, M. Paleogeographic and age findings on planktonic foraminiferal assemblages of Yüksekova Complex in the northeast of Elazig (Eastern Turkey). In Proceedings of the IOP Conference Series: Earth and Environmental Science 2019 (WMESS), Prague, Czech Republic, 9–13 September 2019. [Google Scholar]
- Çelik, H. The effects of linear coarse-grained slope channel bodies on the orientations of fold developments: A case study from the Middle Eocene-Lower Oligocene Kırkgeçit Formation, Elazığ, eastern Turkey. Turk. J. Earth Sci. 2013, 22, 320–338. [Google Scholar] [CrossRef]
- Yılmaz, Y.; Yigitbas, E.; Genc, S. Ophiolitic and metamorphic assemblages of southeast Anatolia and their significance in the geological evolution of the orogenic belt. Tectonics 1993, 12, 1280–1297. [Google Scholar] [CrossRef]
- Aksoy, E.; Türkmen, İ.; Turan, M.; Meriç, E. New findings on stratigraphic position and depositional environment of Harami Formation (Upper Campanian-Maastrichtian), South of Elazig. Bull. Turk. Assoc. Pet. Geol. 1999, 11, 1–15. [Google Scholar]
- İnceöz, M. Stratigraphy and depositional environments of Harami Formation (Upper Maastrichtian) in the north of Elazığ. Bull. Assoc. Turk. Pet. Geol. 1999, 8, 130–136. [Google Scholar]
- Ural, M.; Aktaş, M.A. Quantitative new findings about formation and origin of pillow lavas in the Yüksekova Arc Complex, Elazığ (Eastern Turkey). J. Fac. Eng. Archit. Gazi Univ. 2023, 38, 535–545. [Google Scholar]
- Morimoto, N. The Nomenclature of Pyroxenes. Mineral. Mag. 1988, 52, 425–433. [Google Scholar] [CrossRef]
- Boynton, W.V. Geochemistry of the rare earth elements: Meteorite studies. In Rare Earth Element Geochemistry; Henderson, P., Ed.; Elsevier: New York, NY, USA, 1984; pp. 63–114. [Google Scholar]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Putirka, K.D. Thermometers and barometers for volcanic systems. Rev. Mineral. Geochem. 2008, 69, 61–120. [Google Scholar] [CrossRef]
- Putirka, K. Clinopyroxene+ liquid equilibria to 100 kbar and 2450 K. Contrib. Mineral. Petrol. 1999, 135, 151–163. [Google Scholar] [CrossRef]
- Nimis, P.; Taylor, W.R. Single clinopyroxene thermobarometry for garnet peridotites. Part 1. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib. Mineral. Petrol. 2000, 139, 541–554. [Google Scholar] [CrossRef]
- Nimis, P.A. Clinopyroxene geobarometer for basaltic systems based on crystal-structure modeling. Contrib. Mineral. Petrol. 1995, 121, 115–125. [Google Scholar] [CrossRef]
- Jagoutz, O.; Müntener, O.; Ulmer, P.; Pettke, T.; Burg, J.P.; Dawood, H.; Hussain, S. Petrology and mineral chemistry of lower crustal intrusions: The Chilas Complex, Kohistan (NW Pakistan). J. Petrol. 2007, 48, 1895–1953. [Google Scholar] [CrossRef]
- Tribuzio, R.; Tiepolo, M.; Fiameni, S. A mafic-ultramafic cumulate sequence derived from boninite-type melts (Niagara Icefalls, northern Victoria Land, Antarctica). Contrib. Mineral. Petrol. 2008, 155, 619–633. [Google Scholar] [CrossRef]
- Topuz, G.; Altherr, R.; Candan, O.; Wang, J.M.; Okay, A.I.; Wu, F.Y.; Ergen, A.; Zack, T.; Siebel, W.; Shangh, C.K.; et al. Carboniferous mafic-ultramafic intrusions in the Eastern Pontides (Pulur complex): Implications for the source of coeval voluminous granites. Lithos 2023, 436–437, 106946. [Google Scholar] [CrossRef]
- Ross, P.S.; Bédard, J.H. Magmatic affinity of modern and ancient subalkaline volcanic rocks determined from trace-element discriminant diagrams. Can. J. Earth Sci. 2009, 46, 823–839. [Google Scholar] [CrossRef]
- Shore, M.; Fowler, A.D. Oscillatory zoning in minerals; a common phenomenon. Can. Mineral. 1996, 34, 1111–1126. [Google Scholar]
- Streck, M.J. Mineral Textures and zoning as evidence for open system processes. Rev. Mineral. Geochem. 2008, 69, 595–622. [Google Scholar] [CrossRef]
- Nixon, G.T.; Pearce, T.H. Laser-interferometry of oscillatory zoning in plagioclase: The record of magma mixing and phenocryst recycling in calc-alkaline magma chambers, Iztaccihuat Volcano, Mexico. Am. Mineral. 1987, 72, 1144–1162. [Google Scholar]
- Aldanmaz, E. Mineral-chemical constraints on the Miocene calc-alkaline and shoshonitic volcanic rocks of western Turkey: Disequilibrium phenocryst assemblages as indicators of magma storage and mixing conditions. Turk. J. Earth Sci. 2006, 15, 47–73. [Google Scholar]
- Kontak, D.J.; Clark, A.H.; Pearce, T.H. Recognition of simple and complex zoning in olivine and orthopyroxene phenocrysts using laser interference microscopy. Mineral. Mag. 1984, 48, 547–550. [Google Scholar] [CrossRef]
- Luhr, J.F.; Carmichael, S.E. The Colima volcanic complex, Mexico i. Post-caldera andesites from Colima volcano. Contrib. Mineral. Petrol. 1980, 71, 343–372. [Google Scholar] [CrossRef]
- Grunder, A.L.; Mahood, G.A. Physical and chemical models of zoned silicic magmas: The Loma Seca Tuff and Calabozos caldera, southern Andes. J. Petrol. 1988, 29, 831–867. [Google Scholar] [CrossRef]
Sample Rock Setting | MDN7 | MD12 | TP1 | TP1 | CVZ2 | AY2 | AY2 | ALC3 | CB21 | PM3 | CB5 | CB5 | SVC3 | PL5 | KR2 | PM1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BA | BA | BA | BA | PBA | PBA | PBA | PBA | PBA | PBA | DO | DO | DO | ABA | ABA | ABA | |
Core | Rim | Core | Rim | Core | Core | Rim | Core | Core | Core | Core | Rim | Core | Core | Core | Core | |
Weight % | ||||||||||||||||
SiO2 | 53.33 | 51.25 | 53.60 | 52.31 | 50.10 | 49.73 | 52.20 | 50.22 | 51.58 | 52.26 | 52.30 | 49.55 | 51.25 | 49.55 | 49.85 | 53.01 |
TiO2 | 0.18 | 0.49 | 0.14 | 0.20 | 0.87 | 0.56 | 0.39 | 0.85 | 0.38 | 0.21 | 0.39 | 1.12 | 0.59 | 1.06 | 1.28 | 0.35 |
Al2O3 | 1.72 | 3.66 | 1.68 | 3.01 | 3.44 | 4.64 | 2.56 | 4.30 | 3.87 | 3.13 | 1.80 | 3.28 | 3.38 | 5.40 | 3.83 | 1.90 |
Cr2O3 | 0.28 | 0.38 | 0.25 | 0.24 | 0.01 | 0.53 | 0.20 | 0.51 | 0.80 | 0.65 | 0.17 | 0.02 | 0.46 | 0.72 | 0.09 | 0.49 |
FeOt | 5.26 | 5.66 | 3.65 | 5.01 | 8.74 | 6.17 | 5.84 | 6.00 | 4.55 | 3.92 | 6.50 | 12.69 | 6.03 | 6.14 | 9.18 | 5.31 |
MnO | 0.18 | 0.15 | 0.11 | 0.13 | 0.32 | 0.13 | 0.18 | 0.15 | 0.11 | 0.12 | 0.19 | 0.35 | 0.16 | 0.14 | 0.20 | 0.17 |
MgO | 19.19 | 16.50 | 17.99 | 17.09 | 15.21 | 15.31 | 17.07 | 16.07 | 17.76 | 17.80 | 17.42 | 15.08 | 16.78 | 15.51 | 14.77 | 18.77 |
CaO | 19.43 | 21.50 | 22.52 | 21.56 | 19.92 | 22.08 | 21.38 | 21.09 | 20.48 | 21.59 | 20.50 | 16.88 | 20.70 | 20.84 | 20.19 | 19.67 |
Na2O | 0.11 | 0.19 | 0.14 | 0.20 | 0.37 | 0.21 | 0.14 | 0.24 | 0.25 | 0.17 | 0.21 | 0.29 | 0.27 | 0.32 | 0.29 | 0.19 |
K2O | 0.01 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.01 | 0.02 | 0.01 | 0.02 | 0.02 | 0.02 | 0.01 | 0.01 |
Total | 99.67 | 99.79 | 100.08 | 99.76 | 99.00 | 99.37 | 99.98 | 99.46 | 99.78 | 99.85 | 99.49 | 99.28 | 99.65 | 99.70 | 99.70 | 99.87 |
Cations based on 6 oxygens and 4 cations | ||||||||||||||||
Si | 1.941 | 1.879 | 1.945 | 1.911 | 1.870 | 1.838 | 1.909 | 1.851 | 1.878 | 1.900 | 1.923 | 1.864 | 1.881 | 1.825 | 1.855 | 1.929 |
Ti | 0.005 | 0.014 | 0.004 | 0.006 | 0.025 | 0.016 | 0.011 | 0.024 | 0.010 | 0.006 | 0.011 | 0.032 | 0.016 | 0.029 | 0.036 | 0.009 |
Al | 0.074 | 0.158 | 0.072 | 0.129 | 0.152 | 0.202 | 0.110 | 0.187 | 0.166 | 0.134 | 0.078 | 0.146 | 0.146 | 0.235 | 0.168 | 0.082 |
Cr | 0.008 | 0.011 | 0.007 | 0.007 | 0.000 | 0.016 | 0.006 | 0.015 | 0.023 | 0.019 | 0.005 | 0.001 | 0.013 | 0.021 | 0.003 | 0.014 |
Fe3+ | 0.034 | 0.061 | 0.035 | 0.044 | 0.086 | 0.090 | 0.054 | 0.067 | 0.052 | 0.048 | 0.065 | 0.084 | 0.065 | 0.060 | 0.069 | 0.041 |
Fe2+ | 0.126 | 0.113 | 0.076 | 0.109 | 0.187 | 0.101 | 0.125 | 0.118 | 0.087 | 0.071 | 0.135 | 0.315 | 0.120 | 0.129 | 0.216 | 0.120 |
Mn | 0.005 | 0.005 | 0.003 | 0.004 | 0.010 | 0.004 | 0.005 | 0.005 | 0.003 | 0.004 | 0.006 | 0.011 | 0.005 | 0.004 | 0.006 | 0.005 |
Mg | 1.041 | 0.902 | 0.973 | 0.931 | 0.846 | 0.844 | 0.931 | 0.883 | 0.964 | 0.965 | 0.955 | 0.846 | 0.918 | 0.851 | 0.820 | 1.018 |
Ca | 0.758 | 0.845 | 0.875 | 0.844 | 0.797 | 0.874 | 0.838 | 0.833 | 0.799 | 0.841 | 0.808 | 0.680 | 0.814 | 0.822 | 0.805 | 0.767 |
Na | 0.008 | 0.014 | 0.010 | 0.014 | 0.026 | 0.015 | 0.010 | 0.017 | 0.017 | 0.012 | 0.015 | 0.021 | 0.019 | 0.023 | 0.021 | 0.013 |
K | 0.000 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.000 | 0.001 | 0.000 | 0.001 | 0.001 | 0.001 | 0.000 | 0.000 |
Mg# | 0.89 | 0.89 | 0.93 | 0.90 | 0.82 | 0.89 | 0.88 | 0.88 | 0.92 | 0.93 | 0.88 | 0.73 | 0.88 | 0.87 | 0.79 | 0.89 |
Mg# melt * | 0.69 | 0.69 | 0.78 | 0.70 | 0.55 | 0.70 | 0.67 | 0.67 | 0.75 | 0.79 | 0.66 | 0.42 | 0.68 | 0.64 | 0.51 | 0.70 |
Sample | Coordinates (UTM) | Texture | Minerals | Alteration |
---|---|---|---|---|
Basalt | ||||
MD12 | 37S560825 4253261 | aphyric | Pl + Cpx + Ol + Op | calcite, chlorite, sericite |
MDN7 | 37S553439 4257519 | aphyric | Pl + Cpx + Op | calcite, chlorite, sericite |
PA1 | 37S580292 4283765 | aphyric | Pl + Cpx + Op | calcite, chlorite, sericite, clay |
TP1 | 37S498550 4259330 | aphyric | Pl + Cpx | calcite, chlorite, sericite, clay |
Porphyric basalt | ||||
ALC3 | 37S522903 4257144 | porphyric | Pl + Cpx + Op | calcite, chlorite, sericite, clay |
AY2 | 37S536505 4271335 | porphyric | Pl + Cpx | calcite, chlorite, sericite, clay |
CB21 | 37S548988 4288191 | porphyric | Pl + Cpx | calcite, chlorite, sericite, clay |
CVZ2 | 37S532173 4262311 | porphyric | Pl + Cpx + Op | calcite, chlorite, sericite, clay |
KR2 | 37S456350 4221784 | porphyric | Pl + Cpx + Op | calcite, chlorite, sericite |
PM3 | 37S555140 4277462 | porphyric | Pl + Cpx | calcite, chlorite, sericite |
Dolerite | ||||
CB5 | 37S552281 4289953 | subophitic | Pl + Cpx + Op | calcite, chlorite, sericite |
SVC3 | 37S521987 | subophitic | Pl + Cpx + Op | calcite, chlorite |
4254380 | ||||
Anorogenic basalts | ||||
PL5 | 37S461316 4230366 | porphyric | Pl + Cpx + Op | calcite, chlorite, sericite, epidote |
KR2 | 37S456350 | aphyric | Pl + Cpx + Op | calcite, chlorite |
4221784 | ||||
PM1 | 37S555023 4277561 | subophitic | Pl + Cpx + Op | calcite, chlorite, sericite, epidote |
P kbar 1 | T °C 1 | P kbar 2 | T °C 2 | P kbar 3 | T °C 4 | ||
---|---|---|---|---|---|---|---|
Basalt | |||||||
MD12-37a | type-I | 0.40 | 1180 | 1163 | 0.05 | 1086 | |
MD12-37b | type-I | 2.13 | 1173 | 0.46 | 1167 | 0.98 | 991 |
MD12-38a | type-I | 2.88 | 1174 | 1.06 | 1174 | 0.91 | 997 |
MDN7-40a | type-I | 0.38 | 1198 | 0.92 | 1214 | 0.70 | 1158 |
MDN7-41a | type-I | 0.36 | 1190 | 0.38 | 1207 | 0.41 | 1134 |
MDN7-42a | type-I | 3.47 | 1207 | 2.96 | 1226 | 1.64 | 1027 |
MDN7-43a | type-I | 1.80 | 1217 | 2.89 | 1225 | 0.84 | 1087 |
PA1-19a | type-II | 0.10 | 1167 | 1173 | 1067 | ||
PA1-20a | type-II | 1162 | 1173 | 1105 | |||
TP1-34a | 0.92 | 1144 | 0.34 | 1026 | 0.24 | 980 | |
TP1-35a | 1132 | 1019 | 954 | ||||
TP1-35b | 2.29 | 1148 | 1.31 | 1036 | 1.11 | 1001 | |
TP1-36a | 2.09 | 1123 | 2.25 | 1042 | 978 | ||
Porphyric basalt | |||||||
AY2-10a | type-I | 1.96 | 1150 | 1175 | 1.07 | 898 | |
AY2-11a | type-I | 1167 | 1171 | 1.27 | 943 | ||
AY2-12a | type-I | 1.43 | 1149 | 1173 | 0.12 | 909 | |
AY2-12b | type-I | 1146 | 1155 | 1010 | |||
ALC3-24a | type-II | 8.89 | 1232 | 11.53 | 1233 | 0.28 | 1159 |
ALC3-25a | type-II | 12.29 | 1242 | 14.13 | 1249 | 1.42 | 1042 |
ALC3-26a | type-II | 13.25 | 1236 | 14.31 | 1250 | 1.42 | 1006 |
ALC3-27a | type-II | 9.17 | 1232 | 11.76 | 1232 | 1137 | |
CB21-16a | type-II | 1192 | 1166 | 3.10 | 1080 | ||
CB21-17a | type-II | 1186 | 1161 | 1.64 | 1094 | ||
CB21-18a | type-II | 1172 | 1167 | 1.53 | 1041 | ||
CB21-19a | type-II | 1166 | 1154 | 1094 | |||
CVZ2-28a | type-II | ||||||
CVZ2-29a | type-II | ||||||
PM3-1a | type-II | 5.48 | 1181 | 3.84 | 1177 | 0.94 | 963 |
PM3-2a | type-II | 5.01 | 1196 | 3.52 | 1177 | 1.87 | 1029 |
PM3-2b | type-II | 3.62 | 1176 | 2.21 | 1165 | 0.68 | 1031 |
PM3-3a | type-II | 3.45 | 1186 | 2.60 | 1168 | 0.89 | 1050 |
PM3-4a | type-II | 9.29 | 1179 | 7.09 | 1212 | 1009 | |
PM3-4b | type-II | 3.63 | 1167 | 2.40 | 1167 | 1047 | |
PM3-5a | type-II | 6.70 | 1175 | 5.51 | 1191 | 977 | |
PM3-5b | type-II | 3.46 | 1166 | 1.71 | 1165 | 1087 | |
Dolerite | |||||||
CB5-13a | 2.06 | 1178 | 0.52 | 1196 | 1108 | ||
CB5-14a | 5.13 | 1187 | 2.03 | 1206 | 1.77 | 998 | |
CB5-15a | 1.89 | 1171 | 0.24 | 1189 | 1054 | ||
CB5-15b | 6.68 | 1159 | 3.78 | 1238 | 1096 | ||
SVC3-21a | 8.83 | 1204 | 10.12 | 1130 | 0.05 | 1073 | |
SVC3-22a | 8.90 | 1196 | 9.58 | 1127 | 0.17 | 1064 | |
SVC3-23a | 9.86 | 1196 | 9.71 | 1128 | 1.01 | 1035 | |
Anorogenic basalt | |||||||
PL5-47a | 11.03 | 1200 | 9.83 | 1184 | 2.86 | 996 | |
PL5-48a | 11.26 | 1203 | 9.86 | 1185 | 2.85 | 1006 | |
PL5-49a | 10.08 | 1207 | 9.77 | 1182 | 2.71 | 1019 | |
KR2-30a | 5.59 | 1172 | 3.81 | 1225 | 998 | ||
KR2-31a | 4.99 | 1180 | 4.51 | 1231 | 1014 | ||
KR2-32a | 6.86 | 1181 | 4.32 | 1229 | 0.94 | 955 | |
KR2-33a | 6.58 | 1179 | 4.57 | 1230 | 960 | ||
PM1-6a | 5.58 | 1187 | 2.06 | 1192 | 2.36 | 1055 | |
PM1-7a | 5.89 | 1167 | 2.05 | 1186 | 0.92 | 967 | |
PM1-8a | 1.81 | 1189 | 0.19 | 1174 | 0.67 | 1129 | |
PM1-9a | 4.63 | 1184 | 1.50 | 1182 | 1.82 | 1007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ural, M. Major and Trace Element Compositions of Clinopyroxene Phenocrysts in Altered Basaltic Rocks from Yüksekova Complex within Bitlis Suture Zone (Elazığ, Eastern Turkey): Implications for the Tholeiitic to Calc-Alkaline Magmatism. Minerals 2023, 13, 266. https://doi.org/10.3390/min13020266
Ural M. Major and Trace Element Compositions of Clinopyroxene Phenocrysts in Altered Basaltic Rocks from Yüksekova Complex within Bitlis Suture Zone (Elazığ, Eastern Turkey): Implications for the Tholeiitic to Calc-Alkaline Magmatism. Minerals. 2023; 13(2):266. https://doi.org/10.3390/min13020266
Chicago/Turabian StyleUral, Melek. 2023. "Major and Trace Element Compositions of Clinopyroxene Phenocrysts in Altered Basaltic Rocks from Yüksekova Complex within Bitlis Suture Zone (Elazığ, Eastern Turkey): Implications for the Tholeiitic to Calc-Alkaline Magmatism" Minerals 13, no. 2: 266. https://doi.org/10.3390/min13020266
APA StyleUral, M. (2023). Major and Trace Element Compositions of Clinopyroxene Phenocrysts in Altered Basaltic Rocks from Yüksekova Complex within Bitlis Suture Zone (Elazığ, Eastern Turkey): Implications for the Tholeiitic to Calc-Alkaline Magmatism. Minerals, 13(2), 266. https://doi.org/10.3390/min13020266