Origin of Banded Iron Formations: Links with Paleoclimate, Paleoenvironment, and Major Geological Processes
Abstract
:1. Introduction
2. Classification of Banded Iron Formations
3. Formation Conditions of BIFs
3.1. Material Sources
3.1.1. Submarine Hydrothermal Sources
3.1.2. Terrigenous Sources
3.2. Anoxic Marine Environment
3.3. Oxidation Mechanism
- (1)
- Fe2+ was oxidized by oxygen produced by cyanobacteria: the traditional view is that the oxygen in the Archean oceans mainly came from the photosynthesis of cyanobacteria. Substantial evidence supports that there were no eukaryotes prior to 1.9 Ga based on the fossil record [103]; cyanobacteria were the most important photosynthetic oxygen releasers in Archean oceans. Fe2+ reacts with oxygen as follows:
- (2)
- Fe2+ oxidation caused by bacterial metabolism: a large amount of iron bacteria (such as ciliated bacteria and trichoderma bacteria) has been found in modern iron-rich groundwater and streams. It can be speculated that such micro-aerobic microbial oxidation also plays an important role in the formation of BIFs [3]. Iron-oxidizing bacteria, oxygen, carbon dioxide, and water produce the following reaction:
- (3)
- Cairns-Smith (1978) [113] proposed that Fe2+ could be photochemically oxidized by UV (ultraviolet light) before the appearance of atmospheric oxygen, and this reaction could easily occur in acidic water with UV wavelength of 200~300 nm:
4. The Deposition and Demise of the BIFs
4.1. Early Precambrian BIFs
4.2. The Demise of the BIFs in the Mesoproterozoic
4.3. Neoproterozoic BIFs
4.4. Rare Phanerozoic BIFs
5. Discussions
5.1. GOE
5.2. Submarine Magmatic–Hydrothermal Activities
5.3. Perspectives
- ▪
- Element migration and enrichment in metamorphic and mineralization processes.
- ▪
- The relationship between metamorphic, supercontinental events, and GOE.
- ▪
- What are the fluid sources of mineralization under different metamorphism degrees, especially in the middle and high degree?
- ▪
- The influence of ore-forming fluid migration, oxygen fugacity, and variable CO2 on BIFs and enrichment.
- ▪
- The mechanism of environmental mutation and metamorphism on the accumulation of ore-forming elements and BIF mineralization. There is still much space for exploration and study.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gross, G.A. A classification of iron formations based on depositional environments. Can. Mineral 1980, 18, 215–222. [Google Scholar]
- James, H.L. Sedimentary facies of iron-formation. Econ. Geol. 1954, 49, 235–249. [Google Scholar] [CrossRef]
- Bekker, A.; Slack, J.F.; Planavsky, A.; Krapež, B.; Hofmann, A.; Konhauser, K.O.; Rouxel, O.J. Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Econ. Geol. 2010, 105, 467–508. [Google Scholar] [CrossRef] [Green Version]
- O’Neil, J.; Carlson, R.W.; Francis, D.; Stevens, R.K. Neodymium-142 evidence for Hadean mafic crust. Science 2008, 321, 1828–1831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilyin, A.V. Neoproterozoic banded iron formations. Lithol. Miner. Resour. 2009, 44, 78–86. [Google Scholar] [CrossRef]
- Cox, G.M.; Halverson, G.P.; Minarik, W.G.; LeHeron, D.P.; Macdonald, F.A.; Bellefroid, E.J.; Strauss, J.V. Neoproterozoic iron formation: An evaluation of its temporal, environmental and tectonic significance. Chem. Geol. 2013, 362, 232–249. [Google Scholar] [CrossRef] [Green Version]
- Klein, C. Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin. Am. Mineral 2005, 90, 1473–1499. [Google Scholar] [CrossRef]
- Heard, A.W.; Dauphas, N.; Hinz, I.L.; Johnson, J.E.; Blanchard, M.; Alp, E.E.; Hu, M.Y.; Zhao, J.; Lavina, B.; Fornace, M.E.; et al. Isotopic Constraints on the Nature of Primary Precipitates in Archean–Early Paleoproterozoic Iron Formations from Determinations of the Iron Phonon Density of States of Greenalite and 2L- and 6L-Ferrihydrite. ACS Earth Space Chem. 2023, 1–16. [Google Scholar] [CrossRef]
- Li, H.M.; Zhang, Z.J.; Li, L.L.; Zhang, Z.C.; Chen, J.; Yao, T. Types and general characteristics of the BIF-related iron deposits in China. Ore Geol. Rev. 2014, 57, 264–287. [Google Scholar] [CrossRef]
- Zhang, Z.C.; Hou, T.; Santosh, M.; Li, H.M.; Li, J.; Zhang, Z.; Song, X.; Wang, M. Spatial-temporal distribution and tectonic settings of the major iron deposits in China: An overview. Ore Geol. Rev. 2014, 57, 247–263. [Google Scholar] [CrossRef]
- Richards, S.M. The banded iron formations at Broken Hill, Australia, and their relationship to the lead-zinc orebodies. Econ. Geol. 1966, 61, 72–96. [Google Scholar] [CrossRef]
- Slack, J.F.; Grenne, T.; Bekker, A. Seafloor-hydrothermal Si-Fe Mn exhalites in the Pecos greenstone belt, New Mexico, and the redox state of ca. 1720 Ma deep seawater. Geosphere 2009, 5, 302–314. [Google Scholar] [CrossRef] [Green Version]
- Comin-Chiaramonti, P.; Girardi, V.A.V.; De Min, A.; Boggiani, P.C.; Correia, C.T. Iron-rich formations at the Cerro Manomó region, southeastern Bolivia: Remnant of a BIF? Episodes 2011, 34, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Lascelles, D.F. Plate tectonics caused the demise of banded iron formations. Appl. Earth Sci. Imm Trans. 2013, 122, 230–241. [Google Scholar] [CrossRef]
- Yang, X.Q.; Zhang, Z.H.; Duan, S.G.; Zhao, X.M. Petrological and geochemical features of the Jingtieshan banded iron formation (BIF): A unique type of BIF from the Northern Qilian Orogenic Belt, NW China. J. Asian Earth Sci. 2015, 113, 1218–1234. [Google Scholar] [CrossRef]
- Yang, X.Q.; Zhang, Z.H.; Guo, S.F.; Chen, J.; Wang, D.C. Geochronological and geochemical studies of the metasedimentary rocks and diabase from the Jingtieshan deposit, north Qilian, NW China: Constraints on the associated banded iron formations. Ore Geol. Revs 2016, 73, 42–58. [Google Scholar] [CrossRef]
- Li, Z.Q.; Zhang, L.C.; Xue, C.J.; Zhu, M.T.; Robbins, L.J.; Slack, J.F.; Planavsky, N.J.; Konhauser, K.O. Earth’s youngest banded iron formation implies ferruginous conditions in the early Cambrian ocean. Sci. Rep. 2018, 8, 9970. [Google Scholar] [CrossRef] [Green Version]
- Chi Fru, E.; Kilias, S.; Ivarsson, M.; Rattray, J.E.; Gkika, K.; McDonald, I.; He, Q.; Broman, C. Sedimentary mechanisms of a modern banded iron formation on Milos Island, Greece. Solid Earth 2018, 9, 573–598. [Google Scholar] [CrossRef] [Green Version]
- Cloud, P.E. Paleoecological significance of the banded iron formation. Econ. Geol. 1973, 68, 1135–1143. [Google Scholar] [CrossRef]
- Planavsky, N.; Bekker, A.; Rouxel, O.J.; Kamber, B.; Hofmann, A.; Knudsen, A.; Lyons, T.W. Rare Earth Element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: New perspectives on the significance and mechanisms of deposition. Geochim. Cosmochim. Acta 2010, 74, 6387–6405. [Google Scholar] [CrossRef]
- Johnson, J.E.; Molnar, P.H. Widespread and persistent deposition of iron formations for two billion years. Geophys. Res. Lett. 2019, 46, 3327–3339. [Google Scholar] [CrossRef] [Green Version]
- Posth, N.R.; Canfield, D.E.; Kappler, A. Biogenic Fe(Ⅲ) minerals: From formation to diagenesis and preservation in the rock record. Earth-Sci. Rev. 2014, 135, 103–121. [Google Scholar] [CrossRef]
- Konhauser, K.O.; Planavsky, N.J.; Hardisty, D.S.; Robbins, L.J.; Warchola, T.J.; Haugaard, R.; Lalonde, S.; Partin, C.A.; Oonk, P.B.H.; Tsikos, H.; et al. Iron formations: A global record of Neoarchaean to Palaeoproterozoic environmental history. Earth-Sci. Rev. 2017, 172, 140–177. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.Q.; Zhang, Z.H.; Santosh, M.; Duan, S.G.; Liang, T. Anoxic to suboxic Mesoproterozoic ocean: Evidence from iron isotope and geochemistry of siderite in the Banded Iron Formations from North Qilian, NW China. Precambrian Res. 2018, 307, 115–124. [Google Scholar] [CrossRef]
- Johnson, C.M.; Beard, B.L.; Klein, C.; Beukes, N.J.; Roden, E.E. Iron isotopes constrain biologic and abiologic processes in banded iron formation genesis. Geochim. Cosmochim. Acta 2008, 72, 151–169. [Google Scholar] [CrossRef]
- Heimann, A.; Johnson, C.M.; Beard, B.L.; Valley, J.W.; Roden, E.E.; Spicuzza, M.J.; Beukes, N.J. Fe, C, and O isotope compositions of banded iron formation carbonates demonstrate a major role for dissimilatory iron reduction in ~2.5 Ga marine environments. Earth Planet Sci. Lett. 2010, 294, 8–18. [Google Scholar] [CrossRef]
- Zhai, M.G. Multi-stage crustal growth and cratonization of the North China Craton. Geosci. Front. 2014, 5, 457–469. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.C.; Zhai, M.G.; Wan, Y.S.; Guo, J.H.; Dai, Y.P.; Wang, C.L.; Liu, L. Study of the Precambrian BIF-iron deposits in the North China Craton: Progresses and questions. Acta Petrol. Sin. 2012, 28, 3431–3445, (In Chinese with English abstract). [Google Scholar]
- Beukes, N.J. Dating the rise of atmospheric oxygen. Nature 2004, 427, 117–120. [Google Scholar]
- Bekker, A.; Kaufman, A.J. Oxidative forcing of global climate change: A biogeochemical record across the oldest Paleoproterozoic ice age in North America. Earth Planet. Sci. Lett. 2007, 258, 486–499. [Google Scholar] [CrossRef]
- Holland, H.D. Volcanic gases, black smokers, and the Great Oxidation Event. Geochim. Cosmochim. Acta 2002, 66, 3811–3826. [Google Scholar] [CrossRef]
- Och, L.M.; Shields-Zhou, G.A. The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling. Earth-Sci. Rev. 2012, 110, 26–57. [Google Scholar] [CrossRef]
- Lyons, T.W.; Reinhard, C.T.; Planavsky, N.J. The rise of oxygen in earth’s early ocean and atmosphere. Nature 2014, 506, 307–315. [Google Scholar] [CrossRef]
- Hoffman, P.F.; Kaufman, A.J.; Halverson, G.P.; Schrag, D.P. A Neoproterozoic snowball earth. Science 1998, 281, 1342–1346. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, B.; Fletcher, I.R.; Bekker, A.; Muhling, J.R.; Gregory, C.J.; Thorne, A.M. Deposition of 1.88-billion-year-old iron formations as a consequence of rapid crustal growth. Nature 2012, 484, 498–501. [Google Scholar] [CrossRef]
- Barley, M.E.; Pickard, A.L.; Sylvester, P.J. Emplacement of a large igneous province as a possible cause of banded iron formation 2.45 billion years ago. Nature 1997, 385, 55–58. [Google Scholar] [CrossRef]
- Isley, A.E.; Abbott, D.H. Plume-related mafic volcanism and the deposition of banded iron formation. J. Geophys. Res. Solid Earth 1999, 104, 15461–15477. [Google Scholar] [CrossRef]
- Glikson, A.; Vickers, J. Asteroid mega-impacts and Precambrian banded iron formations: 2.63 Ga and 2.56 Ga impact ejecta/fallout at the base of BIF/argillite units, hamersley basin, pilbara craton, western Australia. Earth Planet. Sci. Lett. 2007, 254, 214–226. [Google Scholar] [CrossRef]
- Huston, D.L.; Logan, G.A. Barite, BIFs and bugs: Evidence for the evolution of the Earth’s early hydrosphere. Earth Planet. Sci. Lett. 2004, 220, 41–55. [Google Scholar] [CrossRef] [Green Version]
- Clout, J.M.F. Iron formation-hosted iron ores in the Hamersley Province of western Australia. Appl. Earth Sci. 2006, 115, 115–125. [Google Scholar] [CrossRef]
- Li, B.L.; Huo, L.; Li, Y.S. Several problems involved in the study of banded iron formations (BIFs). Acta Mineral. Sin. 2007, 27, 205–210, (In Chinese with English abstract). [Google Scholar]
- Li, Y.H.; Hou, K.J.; Wan, D.F.; Zhang, Z.J.; Le, G.L. Formation mechanism of Precambrian banded iron formation and atmosphere and ocean during early stage of the Earth. Acta Geol. Sin. 2010, 84, 1359–1373, (In Chinese with English abstract). [Google Scholar]
- Li, Y.H.; Hou, K.J.; Wan, D.F.; Zhang, Z.J. A compare geochemistry study for Algoma—And Superior-type banded iron formations. Acta Petrol. Sin. 2012, 28, 3513–3519, (In Chinese with English abstract). [Google Scholar]
- Zhang, L.C.; Peng, Z.D.; Zhai, M.G.; Tong, X.X.; Zhu, M.T.; Wang, C.L. Tectonic setting and genetic relationship between BIF and VMS- in the Qingyuan Neoarchean Greenstone Belt, northern North China Craton. Earth Sci. 2020, 45, 1–16, (In Chinese with English abstract). [Google Scholar]
- Wang, C.L.; Zhang, L.C.; Liu, L.; Dai, Y.P. Research progress and some problems deserving further discussion of Precambrian iron formations. Miner. Depos. 2012, 31, 1311–1325, (In Chinese with English abstract). [Google Scholar]
- Yang, X.Q.; Li, H.M.; Li, L.X.; Yao, T.; Chen, J.; Liu, M.J. Geochemical characteristics of banded iron formations in Liaoning Eastern Hebei area: I. Characteristics of major elements. Acta Petrol. Sin. 2014, 30, 1218–1238, (In Chinese with English abstract). [Google Scholar]
- Liu, L.; Zhang, L.C.; Dai, Y.P. Research progress on the genesis of BIF. Chin. J. Geol. 2014, 29, 1018–1033, (In Chinese with English abstract). [Google Scholar]
- Bjerrum, C.J.; Canfield, D.E. Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides. Nature 2002, 417, 159–162. [Google Scholar] [CrossRef]
- Tong, X.X.; Wang, C.L.; Peng, Z.D.; Nan, J.B.; Huang, H.; Zhang, L.C. Primary mineral information and depositional models of relevant mineral facies of the Early Precambrian BIF-A preliminary review. Adv. Earth Sci. 2018, 33, 152–165, (In Chinese with English abstract). [Google Scholar]
- Hall, W.D.M.; Goode, A.D.T. The early Proterozoic Nabberu basin and associated iron formations of Western Australia. Pre Cambr. Res. 1978, 7, 129–184. [Google Scholar] [CrossRef]
- Beukes, N.J. Sedimentology of the Kuruman and Griquatown iron-formations, Transvaal Supergroup, Griqualand West, South Africa. Precambrian Res. 1984, 24, 47–84. [Google Scholar] [CrossRef]
- Derry, L.A.; Jacobsen, S.B. The chemical evolution of Precambrian seawater-evidence from REEs in banded iron formations. Geochim. Cosmochim. Acta 1990, 54, 2965–2977. [Google Scholar] [CrossRef]
- Danielson, A.; Möller, P.; Dulski, P. The europium anomalies in banded iron formations and the thermal history of the oceanic crust. Chem. Geol. 1992, 97, 89–100. [Google Scholar] [CrossRef]
- Barrett, T.J.; Fralick, P.W.; Jarvis, I. Rare-earth-element geochemistry of some Archean iron formations north of Lake Superior, Ontario. Can. J. Earth Sci. 1988, 25, 570–580. [Google Scholar] [CrossRef]
- Hagemann, S.G.; Angerer, T.; Duuring, P. BIF-hosted iron mineral system: A review. Ore Geol. Rev. 2016, 76, 317–359. [Google Scholar] [CrossRef]
- Gross, G.A. Tectonic systems and the deposition of iron-formation. Precambrian Res. 1983, 20, 171–187. [Google Scholar] [CrossRef]
- Weill, D.F.; Drake, M.J. Europium anomaly in plagioclase feldspar: Experimental results and semiquantitative model. Science 1973, 180, 1059–1060. [Google Scholar] [CrossRef]
- Ching-Oh, S.; Williams, R.J.; Shine-Soon, S. Distribution coefficients of Eu and Sr for plagioclase-liquid and clinopyroxene-liquid equilibria in oceanic ridge basalt: An experimental study. Geochim. Cosmochim Acta 1974, 38, 1415–1433. [Google Scholar] [CrossRef]
- Drake, M.J.; Weill, D.F. Partition of Sr, Ba, Ca, Y, Eu2+, Eu3+, and other REE between plagioclase feldspar and magmatic liquid: An experimental study. Geochim. Cosmochim. Acta 1975, 39, 689–712. [Google Scholar] [CrossRef]
- Klein, C.; Ladeira, E.A. Geochemistry and mineralogy of Neoproterozoic banded iron-formations and some selected siliceous manganese formations from the Urucum District, Matto Grosso do Sul, Brazil. Econ. Geol. 2004, 99, 1233–1244. [Google Scholar] [CrossRef]
- Force, E.R.; Eidel, J.J.; Maynard, J.B. Sedimentary and Diagenetic Mineral Deposits: A Basin Analysis Approach to Exploration; Reviews in Economic Geology; Society of Economic Geologists: Chelsea, MI, USA, 1991; Volume 5, 216p. [Google Scholar]
- Klein, C.; Beukes, N.J. Sedimentology and geochemistry of the glaciogenic Late Proterozoic Rapitan Iron-formation in Canada. Econ. Geol. 1993, 88, 542–565. [Google Scholar] [CrossRef]
- Viehmann, S.; Bau, M.; Bühn, B.; Dantas, E.L.; Andrade, F.R.D.; Walde, D.H.G. Geochemical characterisation of Neoproterozoic marine habitats: Evidence from trace elements and Nd isotopes in the Urucum iron and manganese formations, Brazil. Precambrian Res. 2016, 282, 74–96. [Google Scholar] [CrossRef]
- Cloud, P.E. Significance of the Gunflint (Precambrian) microflora. Science 1965, 148, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Cloud, P.E. Atmospheric and hydrospheric evolution on the primitive Earth. Science 1968, 160, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Holland, H. The Chemical Evolution of the Atmosphere and Oceans; Princeton University Press: New York, NY, USA, 1984; p. 582. [Google Scholar]
- Habicht, K.S.; Gade, M.; Thamdrup, B.; Berg, P.; Canfield, D.E. Calibration of sulfate levels in the Archean ocean. Science 2002, 298, 2372–2374. [Google Scholar] [CrossRef] [Green Version]
- Johnson, C.M.; Beard, B.L.; Beukes, N.J.; Klein, C.; O’Leary, J.M. Ancient geochemical cycling in the Earth as inferred from Fe isotope studies of banded iron formations from the Transvaal Craton. Contrib. Mineral. Petrol. 2003, 144, 523–547. [Google Scholar] [CrossRef]
- Planavsky, N.J.; Rouxel, O.J.; Bekker, A.; Hoffmann, A.; Little, C.T.; Lyons, T.W. Iron isotope composition of some Archean and Proterozoic iron formations. Geochim. Cosmochim. Acta 2012, 80, 158–169. [Google Scholar] [CrossRef]
- Raiswell, R.; Canfield, D.E. The iron biogeochemical cycle past and present. Geochem. Perspect. 2012, 1, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Fryer, B.J.; Fyfe, W.S.; Kerrich, R. Archean volcanogenic oceans. Chem. Geol. 1979, 24, 25–33. [Google Scholar] [CrossRef]
- Raye, U.; Pufahl, P.K.; Kyser, T.K.; Ricard, E.; Hiatt, E.E. The role of sedimentology, oceanography, and alteration on the δ56 Fe value of the Sokoman Iron Formation, Labrador Trough, Canada. Geochim. Cosmochim. Acta 2015, 164, 205–220. [Google Scholar] [CrossRef]
- Zhou, S.T. Geology of BIF-Related Iron Deposits in Anshan-Benxi District; Geological Publishing House: Beijing, China, 1994; pp. 1–278. (In Chinese) [Google Scholar]
- Li, W.; Beard, L.; Johnson, C.M. Biologically recycled continental iron is a major component in banded iron formations. Proc. Natl. Acad. Sci. USA 2015, 112, 8193–8198. [Google Scholar] [CrossRef] [Green Version]
- Kang, N.; Schmidt, M.W. The melting of subducted banded iron formations. Earth Planet. Sci. Lett. 2017, 476, 165–178. [Google Scholar] [CrossRef]
- Saito, M.A.; Noble, A.E.; Tagliabue, A.; Goepfert, T.J.; Lamborg, C.H.; Jenkins, W.J. Slow-preading submarine ridges in the South Atlantic as a significant oceanic iron source. Nat. Geosci. 2013, 6, 775–779. [Google Scholar] [CrossRef]
- Viehmann, S.; Hoffmann, J.E.; Münker, C.; Bau, M. Decoupled Hf-Nd isotopes in Neoarchean seawater reveal weathering of emerged continents. Geology 2014, 42, 115–118. [Google Scholar] [CrossRef]
- Cox, G.M.; Halverson, G.P.; Poirier, A.; Heron, D.L.; Strauss, J.V.; Stevenson, R. A model for Cryogenian iron formation. Earth Planet. Sci. Lett. 2016, 433, 280–292. [Google Scholar] [CrossRef]
- Alexander, B.W.; Bau, M.; Andersson, P. Neodymium isotopes in Archean seawater and implications for the marine Nd cycle in Earth’s early oceans. Earth Planet. Sci. Lett. 2009, 283, 144–155. [Google Scholar] [CrossRef]
- Hannington, M.D.; Cornell, D.J.R.; Petersen, S. Sea-floor tectonics and submarine hydrothermal systems. Econ. Geol. 2005, 100, 111–141. [Google Scholar]
- Kump, L.R.; Seyfried, W.E. Hydrothermal Fe fluxes during the Precambrian: Effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers. Earth Planet. Sci. Lett. 2005, 235, 654–662. [Google Scholar] [CrossRef]
- Isley, A. Hydrothermal plumes and the delivery of iron to banded iron formation. J. Geol. 1995, 103, 169–185. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, H.; Merino, E.; Konishi, H. Generation of banded iron formations by internal dynamics and leaching of oceanic crust. Nat. Geosci. 2009, 2, 781–784. [Google Scholar] [CrossRef]
- Poulton, S.W.; Raiswell, R. The low-temperature geochemical cycle of iron: From continental fluxes to marine sediment deposition. Am. J. Sci. 2002, 302, 774–805. [Google Scholar] [CrossRef]
- Lyons, T.W.; Severmann, S. A critical look at iron paleoredox proxies: New insights from modern euxinic marine basins. Geochim. Cosmochim. Acta 2006, 70, 5698–5722. [Google Scholar] [CrossRef]
- Jacobsen, S.B.; Pimentel-Klose, M.R. Nd isotopic variations in Precambrian banded iron formations. Geophys. Res. Lett. 1988, 15, 393–396. [Google Scholar] [CrossRef]
- Frei, R.; Bridgwater, D.; Rosing, M.; Stecher, O. Controversial Pb-Pb and Sm-Nd isotope results in the early Archean Isua (West Greenland) oxide iron formation: Preservation of primary signatures versus secondary disturbances. Geochim. Cosmochim. Acta 1999, 63, 473–488. [Google Scholar] [CrossRef]
- Døssing, L.N.; Frei, R.; Stendal, H.; Mapeo, R.B.M. Characterization of enriched lithospheric mantle components in ∼2.7Ga banded iron formations: An example from the Tati greenstone belt, northeastern Botswana. Precambrian Res. 2009, 172, 334–356. [Google Scholar] [CrossRef]
- Haugaard, R.; Frei, R.; Stendal, H.; Konhauser, K. Petrology and geochemistry of the ∼2.9 Ga Itilliarsuk banded iron formation and associated supracrustal rocks, West Greenland: Source characteristics and depositional environment. Precambrian Res. 2013, 229, 150–176. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, L.; Dai, Y.; Li, W. Source characteristics of the 2.5 Ga Wangjiazhuang banded iron formation from the Wutai greenstone belt in the North China Craton: Evidence from neodymium isotopes. J. Asian Earth Sci. 2014, 93, 288–300. [Google Scholar] [CrossRef]
- Wang, C.; Wu, H.; Li, W.; Peng, Z.; Zhang, L.; Zhai, M. Changes of Ge/Si, REE+Y and Sm-Nd isotopes in alternating Fe- and Si-rich mesobands reveal source heterogeneity of the ~2.54 Ga Sijiaying banded iron formation in eastern Hebei, China. Ore Geol. Rev. 2017, 80, 363–376. [Google Scholar] [CrossRef]
- Smith, A.J.B.; Beukes, N.J.; Gutzmer, J. The composition and depositional environments of Mesoarchean iron formations of the West Rand Group of the Witwatersrand Supergroup, South Africa. Econ. Geol. 2013, 108, 111–134. [Google Scholar] [CrossRef]
- Hamade, T.; Konhauser, K.O.; Raiswell, R.; Goldsmith, S.; Morris, R.C. Using Ge/Si ratios to decouple iron and silica fluxes in Precambrian banded iron formations. Geology 2003, 31, 35–38. [Google Scholar] [CrossRef]
- Frei, R.; Polat, A. Source heterogeneity for the major components of ∼3.7 Ga Banded Iron Formations (Isua Greenstone Belt, Western Greenland): Tracing the nature of interacting water masses in BIF formation. Earth Planet. Sci. Lett. 2007, 253, 266–281. [Google Scholar] [CrossRef]
- Pokrovsky, O.S.; Pokrovski, G.S.; Schott, J.; Galy, A. Experimental study of germanium adsorption on goethite and germanium coprecipitation with iron hydroxide: X-ray absorption fine structure and macroscopic characterization. Geochim. Cosmochim. Acta 2006, 70, 3325–3341. [Google Scholar] [CrossRef]
- Rouxel, O.; Galy, A.; Elderfield, H. Germanium isotopic variations in igneous rocks and marine sediments. Geochim. Cosmochim. Acta 2006, 70, 3387–3400. [Google Scholar] [CrossRef]
- Poulton, S.W.; Henkel, S.; März, M.; Urquhart, H.; Flögel, S.; Kasten, S.; Damsté, J.S.S.; Wagner, T. A continental-weathering control on orbitally driven redox-nutrient cycling during Cretaceous Oceanic Anoxic Event 2. Geology 2015, 43, 963–966. [Google Scholar] [CrossRef] [Green Version]
- Hou, K.; Ma, X.; Li, Y.; Liu, F.; Han, D. Chronology, geochemical, Si and Fe isotopic constraints on the origin of Huoqiu banded iron formation (BIF), southeastern margin of the North China Craton. Precambrian Res. 2017, 298, 351–364. [Google Scholar] [CrossRef]
- Conway, T.M.; John, S.G.; Lacan, F. Intercomparison of dissolved iron isotope profiles from reoccupation of three GEOTRACES stations in the Atlantic Ocean. Mar. Chem. 2016, 183, 50–61. [Google Scholar] [CrossRef] [Green Version]
- Thibon, T.; Blichert-Toft, J.; Tsikos, H.; Foden, J.; Albalat, E.; Albarede, F. Dynamics of oceanic iron prior to the Great Oxygenation Event. Earth Planet. Sci. Lett. 2019, 506, 360–370. [Google Scholar] [CrossRef]
- Sumner, D.Y. Carbonate precipitation and oxygen stratification in late Archean seawater as deduced from facies and stratigraphy of the Gamohaan and Frisco formations, Transvaal Supergroup, South Africa. Am. J. Sci. 1997, 297, 455–487. [Google Scholar] [CrossRef]
- Canfield, D.E. A new model for Proterozoic ocean chemistry. Nature 1998, 396, 450–453. [Google Scholar] [CrossRef]
- Hoashi, M.; Bevacqua, D.C.; Otake, T.; Watanabe, Y.; Hickman, A.H.; Utsunomiya, S.; Ohmoto, H. Primary hematite formation in an oxygenated sea 3.46 billion years ago. Nat. Geosci. 2009, 2, 301–306. [Google Scholar] [CrossRef]
- Frei, R.; Gaucher, C.; Poulton, S.W.; Canfield, D.E. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature 2009, 461, 250–253. [Google Scholar] [CrossRef]
- Cardona, T. Thinking twice about the evolution of photosynthesis. Open Biol. 2019, 9, 180246. [Google Scholar] [CrossRef] [Green Version]
- Kendall, B.; Reinhard, C.D.; Lyons, T.D.; Kaufman, A.J.; Poulton, S.W.; Anbar, A.D. Pervasive oxygenation along late Archaean ocean margins. Nat. Geosci. 2010, 3, 646–652. [Google Scholar] [CrossRef]
- Halevy, I.; Alesker, M.; Schuster, E.M.; Popovitz-Biro, R.; Feldman, Y. A key role for green rust in the Precambrian oceans and the genesis of iron formations. Nat. Geosci. 2017, 10, 135–139. [Google Scholar] [CrossRef]
- Tsikos, H.; Siahi, M.; Rafuza, S.; Mhlanga, X.R.; Oonk, P.B.H.; Papadopoulos, V.; Boyce, A.J.P.; Mason, R.D.; Harris, C.D.; Gröcke, R.; et al. Carbon isotope stratigraphy of Precambrian iron formations and possible significance for the early biological pump. Gondwana Res. 2022, 109, 416. [Google Scholar] [CrossRef]
- Ehrenreich, A.; Widdel, F. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Appl. Environ. Microbiol. 1994, 60, 4517–4526. [Google Scholar] [CrossRef] [Green Version]
- Konhauser, K.O.; Hamade, T.; Raiswell, R.; Morris, R.C.; Ferris, F.G.; Southam, G.; Canfield, D.E. Could bacteria have formed the Precambrian banded iron formations? Geology 2002, 30, 1079–1082. [Google Scholar] [CrossRef]
- Kappler, A.; Pasquero, C.; Konhauser, K.O.; Newman, D.K. Deposition of banded iron formations by anoxygenic phototrophic Fe (II) -oxidizing bacteria. Geology 2005, 33, 865–868. [Google Scholar] [CrossRef]
- Canfield, D.E.; Zhang, S.; Wang, H.; Wang, X.; Zhao, W.; Su, J.; Bjerrum, C.J.; Haxen, E.R.; Hammarlund, E.A. Mesoproterozoic iron formation. Proc. Natl. Acad. Sci. 2018, 115, 3895–3904. [Google Scholar] [CrossRef] [Green Version]
- Cairns-Smith, A.G. Precambrian solution photochemistry, inverse segregation, and banded iron formations. Nature 1978, 276, 807–808. [Google Scholar] [CrossRef]
- Busigny, V.; Planavsky, N.J.; Goldbaum, E.; Lechte, M.A.; Feng, L.J.; Lyons, T.M. Origin of the Neoproterozoic Fulu iron formation, South China: Insights from iron isotopes and rare earth element patterns. Geochim. Cosmochim. Acta 2018, 242, 123–142. [Google Scholar] [CrossRef]
- Lechte, M.A.; Wallace, M.W.; Ashleigh, V.S.H.; Planavsky, N. Cryogenian iron formations in the glaciogenic Kingston Peak Formation, California. Precambrian Res. 2018, 310, 443–462. [Google Scholar] [CrossRef]
- Farquhar, J.; Savarino, J.; Airieau, S.; Thiemens, M.H. Observation of wavelength- sensitive mass- independent sulfur iso tope effects during SO2 photolysis: Implications for the Early atmosphere. J. Geophys. Res. Planets 2001, 106, 32829–32839. [Google Scholar] [CrossRef]
- Pavlov, A.A.; Kasting, J.F. Mass-independent fractionation of sulfur isotopes in Archean sediments: Strong evidence for an anoxic Archean atmosphere. Astrobiology 2002, 2, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Siebert, C.; Kramers, J.D.; Meisel, T.; Morel, P.; Nägler, T.F. PGE, Re-Os, and Mo isotope systematics in Archean and Early Proterozoic sedimentary systems as proxies for redox conditions on the early Earth. Geochim. Cosmochim. Acta 2005, 69, 1787–1812. [Google Scholar] [CrossRef]
- Rye, R.; Holland, H.D. Paleosols and the evolution of the atmosphere: A critical review. Am. J. Sci. 1998, 298, 621–672. [Google Scholar] [CrossRef]
- Klein, C.; Beukes, N.J. Geochemistry and sedimentology of a facies transition from limestone to iron-formation deposition in the Early Proterozoic Transvaal Supergroup, South Africa. Econ. Geol. 1989, 84, 1733–1774. [Google Scholar] [CrossRef]
- Lascelles, D.F. Black smokers and density currents: A uniformitarian model for the genesis of banded iron-formations. Ore Geol. Rev. 2007, 32, 381–411. [Google Scholar] [CrossRef]
- Prasad, J.; Venkatesh, A.S.; Sahoo, P.R. A submarine hydrothermal origin of banded iron formations from Archean Kiriburu-Meghahatuburu iron ore deposit, Singhbhum Craton, eastern India. Ore Geol. Rev. 2022, 150, 105125. [Google Scholar] [CrossRef]
- Ohmoto, H. Non-redox transformations of magnetite-hematite in hydrothermal systems. Econ. Geol. 2003, 98, 157–161. [Google Scholar] [CrossRef]
- Nutman, A.P.; McGregor, V.R.; Shiraishi, K.; Friend, C.; Bennett, V.; Kinny, P.D. 3850 Ma BIF and mafic inclusions in the early Archaean Itsaq Gneiss Complex around Akilia, southern West Greenland? The difficulties of precise dating of zircon-free protoliths in migmatites. Precambrian Res. 2002, 117, 185–224. [Google Scholar] [CrossRef]
- Zhai, M.G.; Sills, J.D.; Windley, B.F. Metamorphic minerals and metamorphism of Anshan group in Anshan-Benxi area Liaoning. Acta Petrol. Et Mineral. 1990, 9, 148–158, (In Chinese with English abstract). [Google Scholar]
- Planavsky, N.J.; McGoldrick, P.; Scott, C.T.; Li, C.; Reinhard, C.T.; Kelly, A.E.; Chu, X.L.; Bekker, A.; Love, G.D.; Lyons, T.W. Widespread iron-rich conditions in the Mid-Proterozoic ocean. Nature 2011, 477, 448–495. [Google Scholar] [CrossRef]
- Poulton, S.W.; Canfield, D.E. Ferruginous conditions: A dominant feature of the ocean through Earth’s history. Elements 2011, 7, 107–112. [Google Scholar] [CrossRef] [Green Version]
- Reinhard, C.T.; Planavsky, N.J.; Robbins, L.J.; Partin, C.A.; Gill, B.C.; Lalonde, S.V.; Bekker, A.; Konhauser, K.O.; Lyons, T.W. Proterozoic ocean redox and biogeochemical stasis. Proc. Natl. Acad. Sci. USA 2013, 110, 5357–5362. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Zhu, X.; Wood, R.A.; Shi, Y.; Gao, Z.; Poulton, S.W. Oxygenation of the Mesoproterozoic ocean and the evolution of complex eukaryotes. Nat. Geosci. 2018, 11, 345–350. [Google Scholar] [CrossRef]
- Shang, M.; Tang, D.; Shi, X.; Zhou, L.; Zhou, X.; Song, H.; Jiang, G. A pulse of oxygen increase in the Early Mesoproterozoic ocean at ca. 1.57~1.56 Ga. Earth Planet. Sci. Lett. 2019, 527, 115797. [Google Scholar] [CrossRef]
- Porter, S.M. Insights into eukaryogenesis from the fossil record. Interface Focus 2020, 10, 20190105. [Google Scholar] [CrossRef]
- Planavsky, N.J.; Slack, J.F.; Cannon, W.F.; O’Connell, B.; Isson, T.T.; Asael, D.; Jackson, J.C.; Hardisty, D.S.; Lyons, T.W.; Bekker, A. Evidence for episodic oxygenation in a weakly redox-buffered deep mid-proterozoic ocean. Chem. Geol. 2018, 483, 581–594. [Google Scholar] [CrossRef] [Green Version]
- Slack, J.F.; Grenne, T.; Bekker, A.; Rouxel, O.J.; Lindberg, P.A. Suboxic deep seawater in the Late Paleoproterozoic: Evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, central Arizona, USA. Earth Planet. Sci. Lett. 2007, 255, 243–256. [Google Scholar] [CrossRef]
- Mhlanga, X.R.; Tsikos, H.; Lee, B.; Rouxel, O.J.; Boyce, A.C.; Harris, C.; Lyons, T.W. The Palaeoproterozoic Hotazel BIF-Mn Formation as an archive of Earth’s earliest oxygenation. Earth-Sci. Rev. 2023, 240, 104389. [Google Scholar] [CrossRef]
- Kirschvink, J.L.; Gaidos, E.J.; Bertani, L.E.; Beukes, N.J.; Gutzmer, J.; Maepa, L.N.; Steinberger, R.E. Paleoproterozoic snowball Earth: Extreme climatic and geochemical global change and its biological consequences. Proc. Natl. Acad. Sci. USA 2000, 97, 1400–1405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, J.E.; Webb, S.M.; Ma, C.; Fischer, W.W. Manganese mineralogy and diagenesis in the sedimentary rock record. Geochim. Cosmochim. Acta 2016, 173, 210–231. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, B.; Runnegar, A.R.; Prave, K.H.; Hoffmann, M.A. Two or four Neoproterozoic glaciations? Geology 1998, 26, 1059–1063. [Google Scholar] [CrossRef]
- Young, G.M. Iron-formation and glaciogenic rocks of the Rapitan Group, Northwest Territories, Canada. Precambrian Res. 1976, 3, 137–158. [Google Scholar] [CrossRef]
- El-Rahman, Y.A.; Gutzmer, J.; Li, X.; Seifert, T.; Li, C.; Ling, X.; Li, J. Not all Neoproterozoic iron formations are glaciogenic: Sturtian-aged non-Rapitan exhalative iron formations from the Arabian-Nubian Shield. Miner. Depos. 2020, 55, 577–596. [Google Scholar] [CrossRef]
- Xu, D.R.; Wang, Z.L.; Cai, J.X.; Wu, C.; Bakun-Czubarow, N.; Wang, L.; Chen, H.; Baker, M.J.; Kusiak, M.A. Geological characteristics and metallogenesis of the Shilu Fe-ore deposit in Hainan Province, South China. Ore Geol. Rev. 2013, 53, 318–342. [Google Scholar] [CrossRef]
- Xu, D.R.; Wang, Z.L.; Chen, H.Y.; Hollings, P.; Jansen, N.H.; Zhang, Z.C.; Wu, C.J. Petrography and geochemistry of the Shilu Fe-Co Cu ore district, South China: Implications for the origin of a Neoproterozoic BIF system. Ore Geol. Rev. 2014, 57, 322–350. [Google Scholar] [CrossRef]
- Sun, J.; Zhu, X.K.; Li, Z.H. Confirmation and global significance of a large-scale Early Neoproterozoic banded iron formation on Hainan Island, China. Precambrian Res. 2018, 307, 82–92. [Google Scholar] [CrossRef]
- Lei, R.X.; Wu, C.Z.; Feng, Y.G.; Xia, M.Z.; Jian, J.G. Formation age and geodynamic setting of the Neoproterozoic Shalong iron formation in the Central Tianshan, NW China: Constraints from zircon U-Pb dating, geochemistry, and Hf-Nd isotopes of the host rocks. Geol. J. 2018, 53, 345–361. [Google Scholar] [CrossRef]
- Stern, R.J.; Mukherjee, S.K.; Miller, N.R.; Ali, K.; Johnson, P.R. ~750 Ma banded iron formation from the Arabian-Nubian shield implications for understanding Neoproterozoic tectonics, volcanism, and climate change. Precambrian Res. 2013, 239, 79–94. [Google Scholar] [CrossRef]
- Gao, B.F.; Wu, C.Z.; Li, W.Q.; Yang, T.; Ye, H.; Lei, R.X.; Liu, Q. Oxidation and deposition of iron-rich saline water below glacier cap: Genesis of Neoproterozoic Quruqsay iron deposit on northern margin of Tarim craton. Miner. Depos. 2018, 37, 1–26, (In Chinese with English abstract). [Google Scholar]
- Gao, B.F.; Wu, C.Z.; Yang, T.M.; Santosh, M.; Dong, L.H.; Zhao, T.Y.; Ye, H.; Lei, R.X.; Li, W. The Neoproterozoic “Blood falls” in Tarim Craton and their possible connection with Snowball Earth. J. Geophys. Res. Earth Surf. 2019, 124, 229–244. [Google Scholar] [CrossRef] [Green Version]
- Basta, F.F.; Maurice, A.E.; Fontboté, L.; Favarger, P.Y. Petrology and geochemistry of the banded iron formation (BIF) of WadiKarim and Um Anab, eastern Desert, Egypt: Implications for the origin of Neoproterozoic BIF. Precambrian Res. 2011, 187, 277–292. [Google Scholar] [CrossRef]
- Freitas, B.T.; Warren, L.V.; Boggiani, P.C.; Almeida, R.P.D.; Piacentini, T. Tectono-sedimentary evolution of the Neoproterozoic BIF-bearing Jacadigo Group, SW-Brazil. Sediment. Geol. 2011, 238, 48–70. [Google Scholar] [CrossRef]
- Berner, R.A. Atmospheric oxygen over Phanerozoic time. Proc. Natl. Acad. Sci. USA 1999, 96, 10955–10957. [Google Scholar] [CrossRef] [Green Version]
- Lenton, T.M.; Dahl, T.W.; Daines, S.J.; Mills, B.J.; Ozaki, K.; Saltzman, M.R.; Porada, P. Earliest land plants created modern levels of atmospheric oxygen. Proc. Natl. Acad. Sci. USA 2016, 113, 9704–9709. [Google Scholar] [CrossRef] [Green Version]
- Wallace, M.W.; Hood, A.V.; Shuster, A.; Greig, A.; Planavsky, N.J.; Reed, C.P. Oxygenation history of the Neoproterozoic to Early Phanerozoic and the rise of land plants. Earth Planet. Sci. Lett. 2017, 466, 12–19. [Google Scholar] [CrossRef]
- Krause, A.J.; Mills, B.J.; Zhang, S.; Planavsky, N.J.; Lenton, T.M.; Poulton, S.W. Stepwise oxygenation of the Paleozoic atmosphere. Nat. Commun. 2018, 9, 4081. [Google Scholar] [CrossRef] [Green Version]
- Clarkson, M.O.; Wood, R.A.; Poulton, S.W.; Richoz, S.; Newton, R.J.; Kasemann, S.A.; Bowyer, F.; Krystyn, L. Dynamic anoxic ferruginous conditions during the end-Permian mass extinction and recovery. Nat. Commun. 2016, 7, 12236. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Jiang, G.; Poulton, S.W.; Wignall, P.B.; Wang, C. The onset of widespread marine red beds and the evolution of ferruginous oceans. Nat. Commun. 2017, 8, 399. [Google Scholar] [CrossRef] [PubMed]
- Ramanaidou, E.R.; Wells, M.A. Sedimentary hosted iron ores. Treatise Geochem. 2014, 313–355. [Google Scholar]
- Flick, H.; Nerbor, H.D.; Heidelberg, R.B. Iron ore of the LahnDill type formed by diagenetic seeping of pyroclastic sequences-a case study on the Schalstein section at Gäinsberg (Weilburg). Geol. Rundscchau 1990, 79, 401–415. [Google Scholar] [CrossRef]
- Yang, X.Q.; Mao, J.W.; Jiang, Z.S.; Santosh, M.; Zhang, Z.H.; Duan, S.G.; Wang, D.C. The carboniferous Shikebutai iron deposit in Western Tianshan, northwestern China: Petrology, Fe-O-C-Si isotopes, and implications for iron pathways. Econ. Geol. 2019, 114, 1207–1222. [Google Scholar] [CrossRef]
- Klatt, J.M.; Chennu, A.B.; Arbic, K.B.; Biddanda, A.J.; Dick, G. Possible link between Earth’s rotation rate and oxygenation. Nat. Geosci. 2021, 14, 564. [Google Scholar] [CrossRef]
- Knoll, A.H. The geological consequences of evolution. Geobiology 2003, 1, 3–14. [Google Scholar] [CrossRef]
- Knoll, A.H.; Javaux, E.J.; Hewitt, D.; Cohen, P. Eukaryotic organisms in Proterozoic oceans. Philos. Trans. R. Soc. Biol. Sci. 2006, 361, 1023–1038. [Google Scholar] [CrossRef] [Green Version]
- Moczydlowska, M. The Ediacaran microbiota and the survival of Snowball Earth conditions. Precambrian Res. 2008, 167, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Walcott, C.D. Precambrian fossiliferous formations. Bull. Geol. Soc. Am. 1899, 10, 199–204. [Google Scholar] [CrossRef]
- Sprigg, R.C. Early Cambrian (?) jellyfishes from the Flinders ranges, South Australia. Trans. R. Soc. South Aust. 1947, 71 (Pt. 2), 212–224. [Google Scholar]
- McMenamin, M.A.S.; McMenamin, D.L.S. The Emergence of Animals: The Cambrian Breakthrough; Columbia University Press: New York, NY, USA, 1990; p. 217. [Google Scholar]
- Peterson, K.J.; McPeek, M.A.; Evans, D.A.D. Tempo and mode of early animal evolution: Inferences from rocks, Hox, and molecular clocks. Paleobiology 2005, 31 (Suppl. 2), 36–55. [Google Scholar] [CrossRef]
- Knoll, A.H. Learning to tell Neoproterozoic time. Precambrian Res. 2000, 100, 3–20. [Google Scholar] [CrossRef]
- Narbonne, G.M.; Kaufman, A.J.; Knoll, A.H. Integrated chemostratigraphy and biostratigraphy of the Windermere Supergroup, northwestern Canada: Implications for Neoproterozoic correlations and the early evolution of animals. Geol. Soc. Am. Bull. 1994, 106, 1281–1292. [Google Scholar] [CrossRef]
- Erwin, D.H. Dates and rates: Temporal resolution in the deep time stratigraphic record. Annu. Rev. Earth Planet. Sci. 2006, 34, 569–590. [Google Scholar] [CrossRef] [Green Version]
- Marshall, C.R. Explaining the Cambrian “Explosion” of Animals. Annu. Rev. Earth Planet. Sci. 2006, 34, 355–384. [Google Scholar] [CrossRef] [Green Version]
- McCall, G.J.H. The Vendian (Ediacaran) in the geological record: Enigmas in geology’s prelude to the Cambrian explosion. Earth-Sci. Rev. 2006, 77, 1–229. [Google Scholar] [CrossRef]
- Meert, J.G.; Lieberman, B.S. The Neoproterozoic assembly of Gondwana and its relationship to the Ediacaran–Cambrian radiation. Gondwana Res. 2008, 14, 5–21. [Google Scholar] [CrossRef]
- Payne, J.L.; Boyer, A.G.; Brown, J.H.; Finnegan, S.; Kowalewski, M.; Krause, R.A., Jr.; Lyons, S.K.; McClain, C.R.; McShea, D.W.; Novack-Gottshall, P.M.; et al. Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity. Proc. Natl. Acad. Sci. 2009, 106, 24. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.L.; Konhauser, K.O.; Zhang, L.C. Depositional environment of the Paleoproterozoic Yuanjiacun banded iron formation in Shanxi Province, China. Econ. Geol. 2015, 110, 1515–1539. [Google Scholar] [CrossRef]
- Condie, K.C. Episodic continental growth and supercontinents: A mantle avalanche connection? Earth Planet. Sci. Lett. 1998, 163, 97–108. [Google Scholar] [CrossRef]
- Condie, K.C. Continental growth during a 1.9-Ga superplume event. J. Geodyn. 2002, 34, 249–264. [Google Scholar] [CrossRef]
- Franklin, J.M.; Gibson, H.L.; Jonasson, I.R.; Galley, A.G. Volcanogenic massive sulfide deposits. Econ. Geol. 2005, 100, 523–560. [Google Scholar]
- Meert, L.M.; Peck, D.; Toope, K. Timing and geochemistry of 1.88 Ga Molson Igneous Events, Manitoba: Insights into the formation of a craton-scale magmatic and metallogenic province. Precambr. Res. 2009, 172, 143–162. [Google Scholar]
- Meert, J.G.; Pandit, M.K.; Pradhan, V.R.; Kamenov, G. Preliminary report on the paleomagnetism of 1.88 Ga dykes from the Bastar and Dharwar cratons, peninsular India. Gondwana Res. 2011, 20, 335–343. [Google Scholar] [CrossRef]
- Blum, N.; Crocker, J.H. Repetitive cyclical volcanism in the Late Archean Larder Lake Group near Kirkland Lake, Ontario: Implications of geochemistry on magma genesis. Precambrian Res. 1992, 54, 173–194. [Google Scholar] [CrossRef]
- Jackson, S.L.; Fyon, J.A.; Corfu, F. Review of Archean supracrustal assemblages of the southern Abitibi greenstone belt in Ontario, Canada: Products of microplate interaction within a large-scale plate-tectonic setting. Precambrian Res. 1994, 65, 183–205. [Google Scholar] [CrossRef]
- Stevenson, R. Crust and mantle evolution in the Late Archean: Evidence from a Sm-Nd studyof the North Spirit Lake Greenstone Belt, northwestern Ontario, Canada, Geol. Soc. Am. Bull. 1995, 107, 1458–1467. [Google Scholar] [CrossRef]
- Thurston, P.C.; Ayer, J.A.; Goutier, J. Depositional Gaps in Abitibi Greenstone Belt Stratigraphy: A Key to Exploration for Syngenetic Mineralization. Econ. Geol. 2008, 103, 1097–1134. [Google Scholar] [CrossRef] [Green Version]
- Veizer, J.; Laznicka, P.; Jansen, S.L. Mineralization through Geologic Time; Recycling Perspective. Am. J. Sci. 1989, 289, 484–524. [Google Scholar] [CrossRef]
- Huston, D.L.; Champion, D.C.; Cassidy, K.F. Tectonic Controls on the Endowment of Neoarchean Cratons in Volcanic⁃Hosted Massive Sulfide Deposits: Evidence from Lead and Neodymium Isotopes. Econ. Geol. 2014, 109, 11–26. [Google Scholar] [CrossRef]
- Dreher, A.M.; Xavier, R.P.; Taylor, B.E. New Geologic, Fluid Inclusion and Stable Isotope Studies on the Controversial Igarapé Bahia Cu-Au Deposit, Carajás Province, Brazil. Miner. Depos. 2008, 43, 161–184. [Google Scholar] [CrossRef]
- Qi, S.J.; Wang, C.Y.; Yang, J.P. The Origin of the Precambrian Metavolcanic⁃Sedimentary Rock Systems and the Massive Sulfide Deposits in Xingshutai Neiqiu, Hebei Province. J. Hebei Coll. Geol. 1983, 22, 1–16. (In Chinese) [Google Scholar]
- Zhu, M.T.; Zhang, L.C.; Dai, Y.P. In Situ Zircon U-Pb Dating and O Isotopes of the Neoarchean Hongtoushan VMS Cu-Zn Deposit in the North China Craton: Implication for the Ore Genesis. Ore Geol. Rev. 2019, 67, 354–367. [Google Scholar] [CrossRef]
- Peng, Z.D.; Wang, C.L.; Zhang, L.C. Geochemistry of Metamorphosed Volcanic Rocks in the Neoarchean Qingyuan Greenstone Belt, North China Craton: Implications for Geodynamic Evolution and VMS Mineralization. Precambrian Res. 2017, 326, 196–221. [Google Scholar] [CrossRef]
- DeWit, M.J.; Roering, C.R.; Hart, J.; Armstrong, R.A.; de Ronde, C.E.J.; Green, R.W.E.; Tredoux, M.; Peberdy, E.; Hart, R.A. Formation of an Archean continent. Nature 1992, 357, 553–562. [Google Scholar] [CrossRef]
- Card, K.D. A review of the Superior Province of the Canadian Shield, a product of Archean accretion. Precambrian Res. 1990, 48, 99–156. [Google Scholar] [CrossRef]
- Malinowski, M.; White, D.J.; Mwenifumbo, C.J. Seismic Exploration for VMS Deposits within the Paleoproterozoic Flin Flon Belt, Trans-Hudson Orogen, Canada. Geophys. Res. 2008, 10, 37–45. [Google Scholar]
- Schneider, D.A.; Bickford, M.E.; Cannon, W.F. Age of Volcanic Rocks and Syndepositional Iron Formations, Marquette Range Supergroup: Implications for the Tectonic Setting of Paleoproterozoic Iron Formations of the Lake Superior Region. Can. J. Earth Sci. 2002, 39, 999–1012. [Google Scholar] [CrossRef] [Green Version]
BIFs Types | Formation Age | Tectonic Settings | Rock Assemblages | Significant Deposits/Regions |
---|---|---|---|---|
Algoma | Archean and Paleoproterozoic | Intracraton rifts or volcanic arcs settings | Greywacke, fine-grained volcanic (clastic) rocks | Archean Yilgarn and Pilbara deposits |
Superior | Neoarchean and Paleoproterozoic | Passive continental margin | Sedimentary formations, such as carbonate rocks, quartz sandstones, and black shales | Hamersley and the Transvaal deposits in Australia and South Africa |
Rapitan | Early Neoproterozoic | Rifted basin | Glaciogenic lithologies such as diamictites and dropstone layers | Urucum in the Mato Grosso State, Brazil, and Rapitan in the Northwest Territories of Canada |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, J.; Li, H.; Xiao, K. Origin of Banded Iron Formations: Links with Paleoclimate, Paleoenvironment, and Major Geological Processes. Minerals 2023, 13, 547. https://doi.org/10.3390/min13040547
Yin J, Li H, Xiao K. Origin of Banded Iron Formations: Links with Paleoclimate, Paleoenvironment, and Major Geological Processes. Minerals. 2023; 13(4):547. https://doi.org/10.3390/min13040547
Chicago/Turabian StyleYin, Jiangning, Han Li, and Keyan Xiao. 2023. "Origin of Banded Iron Formations: Links with Paleoclimate, Paleoenvironment, and Major Geological Processes" Minerals 13, no. 4: 547. https://doi.org/10.3390/min13040547