Mineralogy and Mineral Chemistry of the Au-Ag-Te-(Bi-Se) San Luis Alta Deposit, Mid-South Peru
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results
4.1. Mineralogy
4.1.1. Sulfides
4.1.2. Native Gold
4.1.3. Au, Ag Tellurides
4.1.4. Bi Tellurides
4.1.5. Selenides
4.2. Paragenetic Sequence
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ciobanu, C.L.; Cook, N.J.; Pring, A. Bismuth tellurides as gold scavengers. In Mineral Deposit Research: Meeting the Global Challenge; Mao, J.W., Bierlein, F.P., Eds.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2005; pp. 1383–1386. [Google Scholar]
- Ciobanu, C.L.; Cook, N.J.; Spry, P.G. Preface-Special Issue: Telluride and selenide minerals in gold deposits-how and why? Mineral. Petrol. 2006, 87, 163. [Google Scholar] [CrossRef]
- Yin, C.; Liu, J.; Carranza, E.J.M.; Zhai, D.; Guo, Y. Mineralogical constraints on the genesis of the Dahu quartz vein-style Au-Mo deposit, Xiaoqinling gold district, China: Implications for phase relationships and physicochemical conditions. Ore Geol. Rev. 2019, 113, 103107. [Google Scholar] [CrossRef]
- Weng, G.; Liu, J.; Carranza, E.J.M.; Zhai, D.; Zhang, F.; Wang, Y.; Yu, C.; Zhang, B.; Liu, X.; Sun, B.; et al. Mineralogy and geochemistry of tellurides, selenides and sulfides from the Zhaishang gold deposit, western Qinling, China: Implications for metallogenic processes. J. Asian Earth Sci. 2023, 244, 105536. [Google Scholar] [CrossRef]
- Zhai, D.; Liu, J. Gold-telluride-sulfide association in the Sandaowanzi epithermal Au-Ag-Te deposit, NE China: Implications for phase equilibrium and physicochemical conditions. Miner. Pet. 2014, 108, 853–871. [Google Scholar] [CrossRef]
- Cook, N.J.; Ciobanu, C.L.; Spry, P.G.; Voudouris, P. Understanding gold-(silver)–telluride-(selenide) mineral deposits. Episodes 2009, 32, 249–263. [Google Scholar] [CrossRef]
- Spry, P.G.; Chryssoulis, S.; Ryan, C.G. Process mineralogy of gold: Gold from telluride-bearing ores. Jom 2004, 56, 60–62. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Richmond, W.; Wang, H.P. Processing technologies for gold-telluride ores. Int. J. Miner. Met. Mater. 2010, 17, 1–10. [Google Scholar] [CrossRef]
- Alfonso, P.; Anticoi, H.; Yubero, T.; Bascompta, M.; Henao, L.; Garcia-Valles, M.; Palacios, S.; Yáñez, J. The importance of mineralogical knowledge in the sustainability of artisanal gold mining: A mid-south Peru case. Minerals 2019, 9, 345. [Google Scholar] [CrossRef]
- Ellis, S. Treatment of gold-telluride ores. Developments in mineral processing. Dev. Miner. Process. 2005, 15, 973–984. [Google Scholar]
- Zhao, Z.H.; Zhang, P.H.; Xiong, X.L.; Wang, Q. Au-Te deposits associated with alkali-rich igneous rocks in China. In Mineral Deposit Research: Meeting the Global Challenge; Mao, J.W., Bierlein, F.P., Eds.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2005; pp. 1451–1454. [Google Scholar]
- Rodríguez-Terente, L.M.; Martin-Izard, A.; Arias, D.; Fuertes-Fuente, M.; Cepedal, A. The Salave Mine, a Variscan intrusion-related gold deposit (IRGD) in the NW of Spain: Geological context, hydrothermal alterations and ore features. J. Geochem. Explor. 2018, 188, 364–389. [Google Scholar] [CrossRef]
- Shackleton, J.M.; Spry, P.G.; Bateman, R. Telluride mineralogy of the golden mile deposit, Kalgoorlie, Western Australia. Can. Miner. 2003, 41, 1503–1524. [Google Scholar] [CrossRef]
- Roberts, J.A.; Groat, L.A.; Spry, P.G.; Cempírek, J. Telluride Mineralogy of the Deer Horn Au-Ag-Te-(Bi-Pb-W) Deposit, British Columbia: Implications for the Generation of Tellurides. Can. Miner. 2021, 60, 989–1011. [Google Scholar] [CrossRef]
- Vikent’eva, O.V.; Prokofiev, V.Y.; Gamyanin, G.N.; Goryachev, N.A.; Bortnikov, N.S. Intrusion-related gold-bismuth deposits of North-East Russia: PTX parameters and sources of hydrothermal fluids. Ore Geol. Rev. 2018, 102, 240–259. [Google Scholar] [CrossRef]
- Damdinov, B.B.; Huang, X.W.; Goryachev, N.A.; Zhmodik, S.M.; Mironov, A.G.; Damdinova, L.B.; Khubanov, V.B.; Reutsky, V.N.; Yudin, S.Y.; Travin, A.V.; et al. Intrusion-hosted gold deposits of the southeastern East Sayan (northern Central Asian Orogenic Belt, Russia). Ore Geol. Rev. 2021, 139, 104541. [Google Scholar] [CrossRef]
- Vargas, A.R. Estudio Geológico-Minero de la Faja Aurífera Nazca-Ocoña; Technical Report; INGEMMET: Lima, Peru, 1978; p. 179. [Google Scholar]
- Steinmüller, K. Depósitos Metálicos en el Peru. Su Metalogénia, sus Modelos, su Exploración y el Medio Ambiente; INGEMMET: Lima, Peru, 1999; p. 171. [Google Scholar]
- Sillitoe, R.H. Epochs of intrusion-related copper mineralization in the Andes. J. South Am. Earth Sci. 1988, 1, 89–108. [Google Scholar] [CrossRef]
- Sillitoe, R.H.; Thompson, J.F. Intrusion–Related Vein Gold Deposits: Types, Tectono-Magmatic Settings and Difficulties of Distinction from Orogenic Gold Deposits. Resour. Geol. 1998, 48, 237–250. [Google Scholar] [CrossRef]
- Cardozo, M.; Cedillo, E. Geologic-metallogenetic evolution of the Peruvian Andes. In Stratabound ore deposits in the Andes; Springer: Berlin/Heidelberg, Germany, 1990; pp. 37–60. [Google Scholar]
- Acosta, J. Características Metalogénicas de los Yacimientos Asociados a los Arcos Magmáticos Mesozoicos y Cenozoicos del sur del Peru (Latitudes 16°–14°S); Technical Report; INGEMET: Lima, Peru, 2006; p. 24. [Google Scholar]
- Crespo, J.; Holley, E.; Pfaff, K.; Guillen, M.; Huamani, R. Ore Mineralogy, Trace Element Geochemistry and Geochronological Constraints at the Mollehuaca and San Juan de Chorunga Au-Ag Vein Deposits in the Nazca-Ocoña Metallogenic Belt, Arequipa, Peru. Minerals 2020, 10, 1112. [Google Scholar] [CrossRef]
- Cobbing, E.J.; Pitcher, W.S.; Taylor, W.P. Segments and super-units in the Coastal Batholith of Peru. J. Geol. 1977, 85, 625–631. [Google Scholar] [CrossRef]
- Beckinsale, R.D.; Sanchez-Fernandez, A.W.; Brook, M.; Cobbing, E.J.; Taylor, W.P.; Moore, N.D. Rb-Sr whole-rock isochron and K-Ar age determinations for the Coastal Batholith of Peru. In Magmatism at a Plate Edge. The Peruvian Andes; Pitcher, W.S., Atherton, M.P., Cobbing, E.J., Beckinsale, R.D., Eds.; Blackie and Son: London, UK, 1985; pp. 177–202. [Google Scholar]
- Acosta, J.; Quispe, J.; Rivera, R.; Valencia, M.; Chirif, H.; Huanacuni, D.; Rodríguez, I.; Villarreal, E.; Paico, D.; Santisteban, A. Mapa Metalogenético del Oro en el Peru; INGEMET: Lima, Peru, 2010. [Google Scholar]
- Zhao, J.; Brugger, J.; Grundler, P.V.; Xia, F.; Chen, G.; Pring, A. Mechanism and kinetics of a mineral transformation under hydrothermal conditions: Calaverite to metallic gold. Am. Mineral. 2009, 94, 1541–1555. [Google Scholar] [CrossRef]
- Shikazono, N.; Shimizu, M. The Ag/Au ratio of native gold and electrum and the geochemical environment of gold vein deposits in Japan. Miner. Depos. 1987, 22, 309–314. [Google Scholar] [CrossRef]
- Zhao, J.; Pring, A. Mineral transformations in gold–(silver) tellurides in the presence of fluids: Nature and experiment. Minerals 2019, 9, 167. [Google Scholar] [CrossRef]
- Tolstykh, N.D.; Palyanova, G.A.; Bobrova, O.G.V.; Sidorov, E.G. Mustard gold of the Gaching ore deposit (Maletoyvayam ore Field, Kamchatka, Russia). Minerals 2019, 9, 489. [Google Scholar] [CrossRef]
- Bowell, R.J. Supergene gold mineralogy at Ashanti, Ghana: Implications for the supergene behaviour of gold. Mineral. Mag. 1992, 56, 545–560. [Google Scholar] [CrossRef]
- Kalinin, A.A.; Savchenko, Y.E.; Selivanova, E.A. Mustard Gold in the Oleninskoe Gold Deposit, Kolmozero–Voronya Greenstone Belt, Kola Peninsula, Russia. Minerals 2019, 9, 786. [Google Scholar] [CrossRef]
- Townley, B.K.; Hérail, G.; Maksaev, V.; Palacios, C.; Parseval, P.; Sepúlveda, F.; Orellana, R.; Rivas, P.; Ulloa, C. Gold grain morphology and composition as an exploration tool: Application to gold exploration in covered areas. Geochemistry: Explor. Environ. Anal. 2003, 3, 29–38. [Google Scholar] [CrossRef]
- Cabri, L.J. Phase relations in the Au-Ag-Te systems and their mineralogical significance. Econ. Geol. 1965, 60, 1569–1606. [Google Scholar] [CrossRef]
- Xu, H.; Yu, Y.; Wu, X.; Yang, L.; Tian, Z.; Gao, S.; Wang, Q. Intergrowth texture in Au-Ag-Te minerals from Sandaowanzi gold deposit, Heilongjiang Province: Implications for ore-forming environment. Chin. Sci. Bull. 2012, 57, 2778–2786. [Google Scholar] [CrossRef]
- Cook, N.J.; Ciobanu, C.L. Paragenesis of Cu-Fe ores from Ocna de Fier-Dognecea (Romania), typifying fluid plume mineralization in a proximal skarn setting. Miner. Mag. 2001, 65, 351–372. [Google Scholar] [CrossRef]
- Maslennikov, V.V.; Maslennikova, S.P.; Large, R.R.; Danyushevsky, L.V.; Herrington, R.J.; Stanley, C.J. Tellurium-bearing minerals in zoned sulfide chimneys from Cu-Zn massive sulfide deposits of the Urals, Russia. Miner. Petrol. 2013, 107, 67–99. [Google Scholar] [CrossRef]
- Savva, N.E.; Pal’Yanova, G.A.; Byankin, M.A. The problem of genesis of gold and silver sulfides and selenides in the Kupol deposit (Chukotka, Russia). Russ. Geol. Geophys. 2012, 53, 457–466. [Google Scholar] [CrossRef]
- Kuzhuget, R.V.; Ankusheva, N.N.; Pirajno, F.; Mongush, A.A.; Butanaev, Y.V.; Suge-Maadyr, N.V. The Ulug-Sair Gold Occurrence (Western Tuva, Russia): Mineralogy, Ore Genesis, and SO Isotope Systematics. Minerals 2022, 12, 712. [Google Scholar] [CrossRef]
- Marquez Zavalia, M.F.; Galliski, M.A.; Skacha, P.; Macek, I.; Sejkora, J.; Dolnícek, Z. Mineralogy of the Rincon Blanco selenide occurrence, La Rioja, Argentina. J. Geosci. 2021, 66, 1–14. [Google Scholar] [CrossRef]
- Škácha, P.; Sejkora, J.; Plášil, J. Selenide mineralization in the Příbram uranium and base-metal district (Czech Republic). Minerals 2017, 7, 91. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Huang, S.; Wei, R.; Sun, Z.; Hu, Q.; Hao, J. The gold occurrence in pyrite and Te–Bi mineralogy of the Fancha gold deposit, Xiaoqinling gold field, southern margin of the North China Craton: Implication for ore genesis. Geol. J. 2020, 55, 5791–5811. [Google Scholar] [CrossRef]
- Bi, S.J.; Li, J.W.; Zhou, M.F.; Li, Z.K. Gold distribution in As-deficient pyrite and telluride mineralogy of the Yangzhaiyu gold deposit, Xiaoqinling district, southern North China craton. Miner. Deposita 2011, 46, 925–941. [Google Scholar] [CrossRef]
- Feng, H.; Shen, P.; Zhu, R.; Tomkins, A.G.; Brugger, J.; Ma, G.; Li, C.; Wu, Y. Bi/Te control on gold mineralizing processes in the North China Craton: Insights from the Wulong gold deposit. Miner. Deposita 2003, 58, 263–286. [Google Scholar] [CrossRef]
- Ciobanu, C.L.; Birch, W.D.; Cook, N.J.; Pring, A.; Grundler, P.V. Petrogenetic significance of Au–Bi–Te–S associations: The example of Maldon, Central Victorian gold province, Australia. Lithos 2010, 116, 1–17. [Google Scholar] [CrossRef]
- Cockerton, A.B.; Tomkins, A.G. Insights into the liquid bismuth collector model through analysis of the Bi-Au Stormont skarn prospect, northwest Tasmania. Econ. Geol. 2012, 107, 667–682. [Google Scholar] [CrossRef]
- Tooth, B.; Brugger, J.; Ciobanu, C.L.; Liu, W. Modeling of gold scavenging by bismuth melts coexisting with hydrothermal fluids. Geochim. Cosmochim. Acta 2011, 75, 5423–5443. [Google Scholar] [CrossRef]
- Tooth, B.; Ciobanu, C.L.; Green, L.; O’Neill, B.; Brugger, J. Bi-melt formation and gold scavenging from hydrothermal fluids: An experimental study. Geology 2008, 36, 815–818. [Google Scholar] [CrossRef]
- Ciobanu, C.L.; Cook, N.J.; Damian, F.; Damian, G. Gold scavenged by bismuth melts: An example from Alpine shear-remobilizates in the Highiş Massif, Romania. Mineral. Petrol. 2006, 87, 351–384. [Google Scholar] [CrossRef]
- Zhou, H.; Sun, X.; Cook, N.J.; Lin, H.; Fu, Y.; Zhong, R.; Brugger, J. Nano-to micron-scale particulate gold hosted by magnetite: A product of gold scavenging by bismuth melts. Econ. Geol. 2017, 112, 993–1010. [Google Scholar] [CrossRef]
- Cave, B.J.; Barnes, S.J.; Pitcairn, I.K.; Sack, P.J.; Kuikka, H.; Johnson, S.C.; Duran, C.J. Multi-stage precipitation and redistribution of gold, and its collection by lead-bismuth and lead immiscible liquids in a reduced-intrusion related gold system (RIRGS); Dublin Gulch, western Canada. Ore Geol. Rev. 2019, 106, 28–55. [Google Scholar] [CrossRef]
- Krupp, R.E.; Weiser, T. On the stability of gold-silver alloys in the weathering environment. Miner. Deposita 1992, 27, 268–275. [Google Scholar] [CrossRef]
Element | F28-06 | F28-08 | SL21-01 | SL21-07 | SL21-21 | SL107-21 | SL13-07 | SL13-08 | SL107-17 | SL103-52 | SL103-70 |
---|---|---|---|---|---|---|---|---|---|---|---|
Au | 94.63 | 86.58 | 90.45 | 88.65 | 82.28 | 84.03 | 90.58 | 92.77 | 89.69 | 83.93 | 97.82 |
Ag | 4.00 | 12.70 | 9.74 | 10.88 | 15.53 | 13.34 | 7.13 | 6.38 | 9.13 | 10.28 | 3.36 |
Cu | 0.05 | 0.00 | 0.00 | 0.08 | 0.17 | 0.18 | 0.03 | 0.02 | 0.00 | 0.03 | 0.10 |
S | 0.08 | 0.14 | 0.04 | 0.04 | 0.32 | n.a. | 0.17 | 0.06 | n.a. | n.a. | n.a. |
Fe | 0.36 | 0.02 | 0.33 | 0.49 | 2.18 | 1.54 | 2.35 | 0.81 | 0.26 | 4.62 | 0.36 |
As | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | n.a. | 0.04 | 0.22 | n.a. | n.a. | n.a. |
Se | 0.00 | 0.12 | 0.00 | 0.00 | 0.11 | 0.18 | 0.06 | 0.06 | 0.15 | 0.13 | 0.05 |
Sb | 0.00 | 0.01 | 0.01 | 0.00 | 0.02 | 0.01 | 0.00 | 0.03 | 0.00 | 0.03 | 0.00 |
Bi | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.71 | 0.07 | 0.01 | 0.73 | 0.75 | 0.85 |
Sum | 99.18 | 99.58 | 100.56 | 100.14 | 100.61 | 99.99 | 100.43 | 100.36 | 99.97 | 99.78 | 102.54 |
A.p.f.u | |||||||||||
Au | 0.93 | 0.79 | 0.84 | 0.82 | 0.74 | 0.77 | 0.87 | 0.89 | 0.84 | 0.82 | 0.94 |
Ag | 0.07 | 0.21 | 0.16 | 0.18 | 0.26 | 0.22 | 0.13 | 0.11 | 0.16 | 0.18 | 0.06 |
Cu | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Mineral | Clv | Clv | Ptz | Ptz | Ptz | AuAg2Te2 | Ag2AuTe2 | Hes | Hes | Hes |
---|---|---|---|---|---|---|---|---|---|---|
Sample | L13-04 | L21-97 | L21-93 | L103-3 | L21-87 | L103-44 | L103-46 | L103-4 | L21-13 | L21-91 |
Au | 41.39 | 41.43 | 25.21 | 21.46 | 24.83 | 28.22 | 28.98 | 7.50 | 0.03 | 0.00 |
Ag | 0.74 | 0.91 | 40.82 | 41.17 | 40.07 | 32.02 | 32.31 | 52.72 | 61.89 | 60.93 |
Sb | 0.39 | 0.43 | 0.28 | 0.17 | 0.22 | 0.29 | 0.23 | 0.21 | 0.26 | 0.24 |
Te | 57.13 | 56.86 | 31.35 | 33.23 | 33.72 | 36.91 | 37.70 | 33.21 | 38.32 | 38.03 |
Se | 0.00 | 0.00 | 0.11 | 0.06 | 0.10 | 0.18 | 0.13 | 0.12 | 0.00 | 0.01 |
S | 0.08 | 0.14 | 0.14 | 0.83 | 0.26 | 0.39 | 0.56 | 0.92 | 0.10 | 0.09 |
Cu | 0.07 | 0.08 | 0.00 | 0.01 | 0.01 | 0.00 | 0.02 | 0.07 | 0.05 | 0.02 |
Fe | 0.99 | 1.32 | 0.68 | 2.30 | 1.42 | 2.55 | 0.50 | 2.66 | 0.56 | - |
Pb | - | - | - | 0.09 | 0.10 | - | - | 0.27 | - | 0.70 |
Bi | 0.43 | 0.35 | 0.23 | 0.23 | 0.22 | 0.29 | 0.32 | 0.09 | 0.02 | - |
Total | 101.22 | 101.52 | 98.82 | 99.54 | 100.95 | 100.85 | 100.74 | 97.77 | 101.23 | 100.02 |
a.p.f.u | 3 | 3 | 6 | 6 | 6 | 5 | 5 | 3 | 3 | 3 |
Au | 0.944 | 0.945 | 1.009 | 0.837 | 0.976 | 0.958 | 0.962 | 0.139 | 0.001 | - |
Ag | 0.031 | 0.038 | 2.982 | 2.933 | 2.877 | 1.985 | 1.958 | 1.784 | 1.955 | 1.945 |
Sb | 0.014 | 0.016 | 0.018 | 0.011 | 0.014 | 0.016 | 0.012 | 0.006 | 0.007 | 0.007 |
Te | 2.011 | 2.001 | 1.936 | 2.001 | 2.047 | 1.934 | 1.932 | 0.950 | 1.023 | 1.026 |
Se | 0.000 | 0.000 | 0.011 | 0.006 | 0.010 | 0.015 | 0.011 | 0.006 | 0.000 | 0.000 |
S | 0.011 | 0.019 | 0.035 | 0.198 | 0.063 | 0.082 | 0.113 | 0.105 | 0.010 | 0.010 |
Cu | 0.005 | 0.006 | 0.000 | 0.001 | 0.001 | 0.000 | 0.002 | 0.004 | 0.003 | 0.001 |
Pb | - | 0.000 | - | 0.003 | 0.004 | - | - | 0.005 | - | 0.012 |
Bi | 0.009 | 0.008 | 0.008 | 0.008 | 0.008 | 0.009 | 0.010 | 0.001 | - | - |
Mineral | Tbi | Tbi | Ttd | Vol | Vol | Ruk | Ruk | Koc | Koc | Mnb | Fis |
---|---|---|---|---|---|---|---|---|---|---|---|
Sample | L103-28 | L21-99 | R1-10 | L21-114 | L21-83 | L21-84 | L21-89 | L21-90 | L21-03 | L103-42 | |
Au | 0.00 | 0.00 | 0.02 | 0.00 | 1.08 | 0.00 | 0.00 | 0.00 | 0.00 | 26.55 | 26.86 |
Ag | 0.00 | 0.12 | 0.03 | 18.75 | 14.75 | 1.23 | 4.69 | 0.77 | 2.53 | 0.86 | 47.20 |
Sb | 0.33 | 0.42 | 0.18 | 0.27 | 0.30 | 0.27 | 0.34 | 0.32 | 0.33 | 0.27 | 0.00 |
Te | 46.87 | 47.39 | 35.60 | 43.96 | 43.93 | 45.96 | 42.55 | 44.47 | 45.61 | 44.94 | 0.12 |
Se | 0.14 | 0.14 | 0.16 | 0.26 | 0.26 | 0.14 | 0.10 | 0.22 | 0.21 | 0.07 | 24.05 |
S | 0.28 | 0.10 | 4.31 | 0.06 | 0.43 | 0.07 | 0.12 | 0.30 | 0.13 | 1.32 | 0.10 |
Cu | 0.00 | 0.02 | 0.03 | 0.00 | 0.01 | 0.00 | 0.02 | 0.02 | 0.02 | 0.09 | 0.04 |
Fe | 2.24 | 1.36 | 1.65 | 0.88 | 2.62 | 0.31 | 1.28 | 1.76 | 1.05 | 3.22 | 0.65 |
Pb | 0.00 | 0.08 | 0.00 | 0.09 | 3.68 | 12.33 | 11.18 | 9.46 | 9.68 | 0.13 | 0.09 |
Bi | 50.39 | 51.07 | 56.94 | 35.76 | 33.16 | 40.46 | 39.40 | 40.88 | 42.25 | 20.73 | 0.22 |
Total | 100.25 | 100.69 | 98.92 | 100.03 | 100.22 | 100.77 | 99.68 | 98.19 | 101.81 | 98.17 | 104.33 |
a.p.f.u | 5 | 5 | 5 | 4 | 4 | 7 | 7 | 12 | 12 | 61 | 6 |
Au | 0.000 | 0.000 | 0.001 | 0.000 | 0.032 | 0.000 | 0.000 | 0.000 | 0.000 | 12.840 | 0.913 |
Ag | 0.000 | 0.009 | 0.002 | 0.997 | 0.802 | 0.127 | 0.485 | 0.139 | 0.440 | 0.756 | 2.929 |
Sb | 0.021 | 0.027 | 0.010 | 0.013 | 0.015 | 0.024 | 0.031 | 0.051 | 0.051 | 0.210 | 0.000 |
Te | 2.954 | 2.967 | 2.021 | 1.976 | 2.019 | 3.997 | 3.720 | 6.834 | 6.707 | 33.549 | 0.006 |
Se | 0.014 | 0.014 | 0.015 | 0.019 | 0.019 | 0.020 | 0.015 | 0.054 | 0.049 | 0.083 | 2.039 |
S | 0.070 | 0.025 | 0.974 | 0.012 | 0.078 | 0.023 | 0.040 | 0.186 | 0.076 | 3.921 | 0.021 |
Cu | 0.000 | 0.002 | 0.004 | 0.000 | 0.001 | 0.000 | 0.003 | 0.005 | 0.007 | 0.131 | 0.004 |
Pb | 0.000 | 0.003 | 0.000 | 0.002 | 0.104 | 0.660 | 0.602 | 0.895 | 0.877 | 0.061 | 0.003 |
Bi | 1.939 | 1.952 | 1.974 | 0.982 | 0.931 | 2.148 | 2.103 | 3.836 | 3.794 | 9.449 | 0.007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alfonso, P.; Ccolqque, E.; Garcia-Valles, M.; Martínez, A.; Yubero, M.T.; Anticoi, H.; Sidki-Rius, N. Mineralogy and Mineral Chemistry of the Au-Ag-Te-(Bi-Se) San Luis Alta Deposit, Mid-South Peru. Minerals 2023, 13, 568. https://doi.org/10.3390/min13040568
Alfonso P, Ccolqque E, Garcia-Valles M, Martínez A, Yubero MT, Anticoi H, Sidki-Rius N. Mineralogy and Mineral Chemistry of the Au-Ag-Te-(Bi-Se) San Luis Alta Deposit, Mid-South Peru. Minerals. 2023; 13(4):568. https://doi.org/10.3390/min13040568
Chicago/Turabian StyleAlfonso, Pura, Elsa Ccolqque, Maite Garcia-Valles, Arnau Martínez, Maria Teresa Yubero, Hernan Anticoi, and Nor Sidki-Rius. 2023. "Mineralogy and Mineral Chemistry of the Au-Ag-Te-(Bi-Se) San Luis Alta Deposit, Mid-South Peru" Minerals 13, no. 4: 568. https://doi.org/10.3390/min13040568
APA StyleAlfonso, P., Ccolqque, E., Garcia-Valles, M., Martínez, A., Yubero, M. T., Anticoi, H., & Sidki-Rius, N. (2023). Mineralogy and Mineral Chemistry of the Au-Ag-Te-(Bi-Se) San Luis Alta Deposit, Mid-South Peru. Minerals, 13(4), 568. https://doi.org/10.3390/min13040568