The Petrogenesis of the Gaohushan A-Type Granite from the Northeastern Jiangxi Province and Its Metallogenic Implication
Abstract
:1. Introduction
2. Regional Geological Setting
3. Petrography
4. Analytical Methods
4.1. Zircon U-Pb Dating
4.2. Whole Rock Major and Trace Elements
5. Results
5.1. Zircon U-Pb Geochronology
5.2. Whole Rock Major and Trace Elements Compositions
5.2.1. Major Elements
5.2.2. Trace and Rare Earth Elements
6. Discussion
6.1. Petrogenesis
6.2. Discrimination of A1 or A2 Type for Gaohushan Granite
6.3. Tectonic Significance
6.4. Metallogenic Implication
7. Conclusions
- (1)
- The Gaohushan granitic pluton is comprised of two-mica granite, which is a member of the peraluminous high-K calc-alkaline series of rocks. It displays the features of a highly fractionated A-type granite;
- (2)
- The Gaohushan granite crystallized during the Early Cretaceous period, approximately 129.4 ± 1.9 Ma, in an extensional tectonic setting. The magma that formed the granite was derived primarily from the crust, but also had contributions from the mantle;
- (3)
- The A-type granites discovered in the Gaohushan region have similar structural environments and petrochemical characteristics to granites found in tungsten, tin, niobium, and tantalum deposits in southern China. As such, they may serve as important indicators for prospecting these valuable mineral deposits.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mao, J.W.; Cheng, Y.B.; Chen, M.H.; Franco, P. Major types and time–space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Miner. Depos. 2013, 48, 267–294. [Google Scholar] [CrossRef]
- Maruyama, S.; Liou, J.G.; Zhang, R. Tectonic evolution of the ultrahigh-pressure (UHP) and high-pressure (HP) metamorphic belts from central China. Isl. Arc 1994, 3, 112–121. [Google Scholar] [CrossRef]
- Gou, X.F.; Qin, Y.; Feng, Z.H.; Li, H.Z.; Huang, Y.G.; Wu, J.; Cui, Y.; Ma, L.F.; Wang, C.Z. U–Pb geochronology and Hf isotope characterization of detrital zircons from Nanhua System of northeastern Guangxi and their constraints on the southwestern suture zone between Yangtze and Cathaysia blocks, South China. Arab. J. Geosci. 2022, 15, 1769. [Google Scholar] [CrossRef]
- Guo, L.Z.; Shi, Y.S.; Lu, H.F.; Ma, R.S.; Dong, H.G.; Yang, S.F. The pre-Devonian tectonic patterns and evolution of South China. Southeast Asian J. Earth Sci. 1989, 3, 87–93. [Google Scholar] [CrossRef]
- Li, S.Z.; Santosh, M.; Zhao, G.C.; Zhang, G.W.; Jin, C. Intracontinental deformation in a frontier of super-convergence: A perspective on the tectonic milieu of the South China Block. Asian J. Earth Sci. 2012, 49, 313–329. [Google Scholar] [CrossRef]
- Mao, J.W.; Zhang, J.D.; Pirajno, F.; Ishiyama, D.; Su, H.M.; Guo, C.L.; Chen, Y.C. Porphyry Cu–Au–Mo–epithermal Ag–Pb–Zn–distal hydrothermal Au deposits in the Dexing area, Jiangxi province, East China—A linked ore system. Ore Geol. Rev. 2011, 43, 203–216. [Google Scholar] [CrossRef]
- Wang, X.L.; Zhou, J.C.; Qiu, J.S.; Zhang, W.L.; Liu, X.M.; Zhang, G.L. LA-ICP-MS U-Pb zircon geochronology of the Neoproterozoic igneous rocks from Northern Guangxi, South China: Implications for tectonic evolution. Precambr. Res. 2006, 145, 111–130. [Google Scholar] [CrossRef]
- Zhang, S.B.; Zheng, Y.F. Formation and evolution of Precambrian continental lithosphere in South China. Gondwana Res. 2013, 23, 1241–1260. [Google Scholar] [CrossRef]
- Deng, J.; Wang, Q.F. Gold mineralization in China: Metallogenic provinces, deposit types and tectonic framework. Gondwana Res. 2016, 36, 219–274. [Google Scholar] [CrossRef]
- Huang, X.D.; Lu, J.J.; Sizaret, S.; Wang, R.H.; Ma, D.S.; Zhang, R.Q.; Zhao, X.; Wu, J.W. Petrogenetic differences between the Middle-Late Jurassic Cu-Pb-Zn-bearing and W-bearing granites in the Nanling Range, South China: A case study of the Tongshanling and Weijia deposits in southern Hunan Province. China Earth Sci. 2017, 60, 1220–1236. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, J.; Mao, J.; Santosh, M.; Yu, M.G.; Li, Y.Q.; Hu, Y.Z.; Langmuir, C.H.; Chen, Z.X.; Cai, X.X.; et al. Zircon U–Pb geochronology and geochemistry of two episodes of granitoids from the northwestern Zhejiang Province, SE China: Implication for magmatic evolution and tectonic transition. Lithos 2013, 179, 334–352. [Google Scholar] [CrossRef]
- Yin, Y.T.; Jin, S.; Wei, W.B.; Lü, Q.T.; Ye, G.F.; Jing, J.e.; Zhang, L.; Dong, H.; Xie, C.L. Lithosphere structure and its implications for the metallogenesis of the Nanling Range, South China: Constraints from 3-D magnetotelluric imaging. Ore Geol. Rev. 2021, 131, 104064. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Mao, J.W.; Qiu, K.F.; Goryachev, N. The great Yanshanian metallogenic event of eastern Asia: Consequences from one hundred million years of plate margin geodynamics. Gondwana Res. 2021, 100, 223–250. [Google Scholar] [CrossRef]
- Li, S.Z.; Suo, Y.H.; Li, X.Y.; Zhou, J.; Santosh, M.; Wang, P.C.; Wang, G.Z.; Guo, L.L.; Yu, S.Y.; Lan, H.Y.; et al. Mesozoic tectono-magmatic response in the East Asian ocean-continent connection zone to subduction of the Paleo-Pacific Plate. Earth-Sci. Rev. 2019, 192, 91–137. [Google Scholar] [CrossRef]
- Chen, G.H.; Shu, L.S.; Shu, L.M.; Zhang, C.; Ouyang, Y.P. Geological characteristics and mineralization setting of the Zhuxi tungsten (copper) polymetallic deposit in the Eastern Jiangnan Orogen. China Earth Sci. 2016, 59, 803–823. [Google Scholar] [CrossRef]
- Shi, Y.; Xu, Y.X.; Yang, B.; Peng, Z.; Liu, S.Y. Three-dimensional audio-frequency magnetotelluric imaging of Zhuxi copper-tungsten polymetallic deposits, South China. Geoexploration 2020, 172, 103910. [Google Scholar] [CrossRef]
- Han, Y.; Yan, J.; Yang, C.; Wang, S. Zircon age dating and geochronological framwork of the granites in the Taoling-Duanxin area, eastern Jiangnan orogenicbelt. Mineral. Petrol. 2019, 39, 34–44, (In Chinese with English abstract). [Google Scholar]
- Guo, B.R.; Liu, S.W.; Yang, P.T.; Wang, Z.Q.; Luo, P.; Wang, Y.Q.; Luo, G.H.; Wang, W. Petrology, Geochemistry and Pedogenesis of Wolonggu granites and Tongchang granodioritic porphyries: Constraints on copper metallogenic geological settings in northeastern Jiangxi Province. Geol. Bull. China 2013, 32, 1035–1046, (In Chinese with English abstract). [Google Scholar]
- Bai, Y.L.; Wang, Z.Q.; Wang, T.; Wu, F.F. LA-ICP-MS zircon U-Pb age, geochemistry and petrogenesis of the Yaoli pluton in northeastern Jiangxi Province. Acta Petrol. Mineral. 2015, 34, 35–50, (In Chinese with English abstract). [Google Scholar]
- Zhao, P.; Jiang, Y.H.; Liao, S.Y.; Zhou, Q.; Jin, G.D. SHRIMP zircon U-Pb age, Sr-Nd-Hf isotopic geochemistry and petrogenesis of the Ehu pluton in northeastern Jiangxi Province. Geol. J. China Univ. 2010, 16, 218, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Li, J.H.; Dong, S.W.; Zhang, Y.Q.; Zhao, G.C.; Johnston, S.T.; Cui, J.J.; Xin, Y.J. New insights into Phanerozoic tectonics of south China: Part 1, polyphase deformation in the Jiuling and Lianyunshan domains of the central Jiangnan Orogen. J. Geophys. Res. Solid Earth 2016, 121, 3048–3080. [Google Scholar] [CrossRef]
- Li, L.M.; Lin, S.F.; Xing, G.F.; Davis, D.W.; Jiang, Y.; Davis, W.; Zhang, Y.J. Ca. 830Ma back-arc type volcanic rocks in the eastern part of the Jiangnan orogen: Implications for the Neoproterozoic tectonic evolution of South China Block. Precambrian Res. 2016, 275, 209–224. [Google Scholar] [CrossRef]
- Li, X.H.; Zhao, J.X.; McCulloch, M.T.; Zhou, G.Q.; Xing, F.M. Geochemical and Sm Nd isotopic study of Neoproterozoic ophiolites from southeastern China: Petrogenesis and tectonic implications. Precambrian Res. 1997, 81, 129–144. [Google Scholar] [CrossRef]
- Sun, J.J.; Shu, L.S.; Santosh, M.; Wang, L.S. Precambrian crustal evolution of the central Jiangnan Orogen (South China): Evidence from detrital zircon U-Pb ages and Hf isotopic compositions of Neoproterozoic metasedimentary rocks. Precambrian Res. 2018, 318, 1–24. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Wang, Y.J. Early Neoproterozoic (∼840Ma) arc magmatism: Geochronological and geochemical constraints on the metabasites in the Central Jiangnan Orogen. Precambrian Res. 2016, 275, 1–17. [Google Scholar] [CrossRef]
- Ludwig, K.R. Isoplot, version 3.0; A Geochronological Toolkit for Microsoft Excel. Special publication No. 4, Berkeley Geochronology Center: Berkeley, CA, USA, 2003.
- Cherniak, D.J.; Watson, E.B. Diffusion in zircon. Rev. Mineral. Geochem. 2003, 53, 113–143. [Google Scholar] [CrossRef]
- Poitrasson, F.; Schaltegger, U.; Hanchar, J.M. Chemistry and physics of accessory minerals: Crystallisation, transformation and geochronological applications. Chem. Geol. 2002, 191, 1. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Misc. Pap.-Geol. Soc. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Middlemost, E.A.K. Naming materials in the magma/igneous rock system. Earth-Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Liu, M.Y. Geochemical Genesis of Four Nearly EW Early Cretaceous Granitic Belts in the Eastern Yangtze Block. Bachelor’s Thesis, China University of Geosciences, Beijing, China, 2019; pp. 1–68, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Liu, S.B.; Liu, Z.Q.; Wang, C.H.; Wang, D.H.; Zhao, Z.; Hu, Z.H. Geochemical characteristics of REEs and trace elements and Sm-Nd dating of scheelite from the Zhuxi giant tungsten deposit in northeast Jiangxi. Earth Sci. Front. 2017, 24, 17–30, (In Chinese with English abstract). [Google Scholar]
- Streckeisen, A. To each plutonic rock its proper name. Earth-Sci. Rev. 1976, 12, 1–33. [Google Scholar] [CrossRef]
- Rickwood, P.C. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos 1989, 22, 247–263. [Google Scholar] [CrossRef]
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Wu, F.Y.; Sun, D.Y.; Jahn, B.M.; Wilde, S. A Jurassic garnet-bearing granitic pluton from NE China showing tetrad REE patterns. Asian J. Earth Sci. 2004, 23, 731–744. [Google Scholar] [CrossRef]
- Jahn, B.M.; Wu, F.Y.; Capdevila, R.; Martineau, F.; Zhao, Z.H.; Wang, Y.X. Highly evolved juvenile granites with tetrad REE patterns: The Woduhe and Baerzhe granites from the Great Xing’an Mountains in NE China. Lithos 2001, 59, 171–198. [Google Scholar] [CrossRef]
- Eby, G.N. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 1990, 26, 115–134. [Google Scholar] [CrossRef]
- Sylvester, P.J. Post-collisional strongly peraluminous granites. Lithos 1998, 45, 29–44. [Google Scholar] [CrossRef]
- Patiño Douce, A.E.; Johnston, A.D. Phase equilibria and melt productivity in the pelitic system: Implications for the origin of peraluminous granitoids and aluminous granulites. Contrib. Mineral. Petrol. 1991, 107, 202–218. [Google Scholar] [CrossRef]
- Breiter, K.; Škoda, R. Zircon and whole-rock Zr/Hf ratios as markers of the evolution of granitic magmas: Examples from the Teplice caldera (Czech Republic/Germany). Mineral. Petrol. 2017, 111, 435–457. [Google Scholar] [CrossRef]
- Breiter, K.; Lamarão, C.N.; Borges, R.M.K.; Dall’Agnol, R. Chemical characteristics of zircon from A-type granites and comparison to zircon of S-type granites. Lithos 2014, 192–195, 208–225. [Google Scholar] [CrossRef]
- Grebennikov, A.V. A-type granites and related rocks: Petrogenesis and classification. Russ. Geol. Geophys. 2014, 55, 1353–1366. [Google Scholar] [CrossRef]
- Eby, G.N. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology 1992, 20, 641–644. [Google Scholar] [CrossRef]
- Collins, W.J.; Beams, S.D.; White, A.J.R.; Chappell, B.W. Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib. Mineral. Petrol. 1982, 80, 189–200. [Google Scholar] [CrossRef]
- Conway, C.M.; Condie, K.C.; Noll, P.D. Geochemical and detrital mode evidence for two sources of Early Proterozoic sedimentary rocks from the Tonto Basin Supergroup, central Arizona—Reply. Sediment. Geol. 1993, 87, 241–244. [Google Scholar] [CrossRef]
- Hong, D.W.; Wang, S.G.; Han, B.F.; Jin, M.Y. Post-orogenic alkaline granites from China and comparisons with anorogenic alkaline granites elsewhere. Southeast Asian J. Earth Sci. 1996, 13, 13–27. [Google Scholar] [CrossRef]
- Loiselle, M.C. Characteristics and origin of anorogenic granites. Geol. Soc. Am. 1979, 41, 468. [Google Scholar] [CrossRef]
- Chopin, C. Ultrahigh-pressure metamorphism: Tracing continental crust into the mantle. Earth Planet. Sci. Lett. 2003, 212, 1–14. [Google Scholar] [CrossRef]
- Bonin, B. A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos 2007, 97, 1–29. [Google Scholar] [CrossRef]
- Batchelor, R.A.; Bowden, P. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chem. Geol. 1985, 48, 43–55. [Google Scholar] [CrossRef]
- Shu, L.S.; Yao, J.L.; Wang, B.; Faure, M.; Charvet, J.; Chen, Y. Neoproterozoic plate tectonic process and Phanerozoic geodynamic evolution of the South China Block. Earth-Sci. Rev. 2021, 216, 103596. [Google Scholar] [CrossRef]
- Kusky, T.M.; Windley, B.F.; Zhai, M.G. Tectonic evolution of the North China Block: From orogen to craton to orogen. Misc. Pap.-Geol. Soc. 2007, 280, 1–34. [Google Scholar] [CrossRef]
- Li, X.H.; Li, Z.X.; Ge, W.C.; Zhou, H.W.; Li, W.X.; Liu, Y.; Wingate, M.T.D. Neoproterozoic granitoids in South China: Crustal melting above a mantle plume at ca. 825 Ma? Precambrian Res. 2003, 122, 45–83. [Google Scholar] [CrossRef]
- Mai, H.A.; Chan, Y.L.; Yeh, M.W.; Lee, T.Y. Tectonic implications of Mesozoic magmatism to initiation of Cenozoic basin development within the passive South China Sea margin. Int. J. Earth Sci. 2018, 107, 1153–1174. [Google Scholar] [CrossRef]
- Zhou, J.; Li, S.Z.; Suo, Y.H.; Zhang, L.; Du, X.D.; Cao, X.Z.; Wang, G.Z.; Li, F.K.; Liu, Z.; Liu, J.; et al. NE-trending transtensional faulting in the Pearl River Mouth basin of the Northern South China Sea margin. Gondwana Res. 2022. [Google Scholar] [CrossRef]
- Wang, Z.J.; Wang, J.; Duan, T.Z.; Xie, Y.; Zhuo, J.W.; Yang, P. Geochronology of middle Neoproterozoic volcanic deposits in Yangtze Craton interior of South China and its implications to tectonic settings. China Earth Sci. 2010, 53, 1307–1315. [Google Scholar] [CrossRef]
- Cawood, P.A.; Kröner, A.; Collins, W.J.; Kusky, T.M.; Mooney, W.D.; Windley, B.F. Accretionary orogens through Earth history. Misc. Pap.-Geol. Soc. 2009, 318, 1–36. [Google Scholar] [CrossRef]
- Pirajno, F.; Ernst, R.E.; Borisenko, A.S.; Fedoseev, G.; Naumov, E.A. Intraplate magmatism in Central Asia and China and associated metallogeny. Ore Geol. Rev. 2009, 35, 114–136. [Google Scholar] [CrossRef]
- Windley, B.F.; Maruyama, S.; Xiao, W.J. Delamination/thinning of sub-continental lithospheric mantle under Eastern China: The role of water and multiple subduction. Am. J. Sci. 2010, 310, 1250–1293. [Google Scholar] [CrossRef]
- Ju, Y.W.; Yu, K.; Wang, G.Z.; Li, W.Y.; Zhang, K.J.; Li, S.H.; Guo, L.L.; Sun, Y.; Feng, H.Y.; Qiao, P.; et al. Coupling response of the Meso–Cenozoic differential evolution of the North China Craton to lithospheric structural transformation. Earth-Sci. Rev. 2021, 223, 103859. [Google Scholar] [CrossRef]
- Ma, H.M.; Wang, Y.; Huang, Y.J.; Xie, Y.T. Three-stage Mesozoic intracontinental tectonic evolution of South China recorded in an overprinted basin: Evidence from stratigraphy and detrital zircon U–Pb dating. Geol. Mag. 2019, 156, 2085–2103. [Google Scholar] [CrossRef]
- Goss, S.C.; Wilde, S.A.; Wu, F.Y.; Yang, J.H. The age, isotopic signature and significance of the youngest Mesozoic granitoids in the Jiaodong Terrane, Shandong Province, North China Craton. Lithos 2010, 120, 309–326. [Google Scholar] [CrossRef]
- Hamilton, W.B. Subduction systems and magmatism. Misc. Pap.-Geol. Soc. 1994, 81, 3–28. [Google Scholar] [CrossRef]
- Li, X.H.; Fan, H.R.; Hu, F.F.; Hollings, P.; Yang, K.F.; Liu, X. Linking lithospheric thinning and magmatic evolution of late Jurassic to early cretaceous granitoids in the Jiaobei Terrane, southeastern North China Craton. Lithos 2019, 324–325, 280–296. [Google Scholar] [CrossRef]
- Liu, J.G.; Cai, R.H.; Pearson, D.G.; Scott, J.M. Thinning and destruction of the lithospheric mantle root beneath the North China Craton: A review. Earth-Sci. Rev. 2019, 196, 102873. [Google Scholar] [CrossRef]
- Gaina, C.; Roest, W.R.; Müller, R.D. Late Cretaceous–Cenozoic deformation of northeast Asia. Earth Planet. Sci. Lett. 2002, 197, 273–286. [Google Scholar] [CrossRef]
- Kamp, P.J.J. Late Cretaceous-Cenozoic tectonic development of the southwest pacific region. Tectonophysics 1986, 121, 225–251. [Google Scholar] [CrossRef]
- Yang, Y.Z.; Wang, Y.; Ye, R.S.; Li, S.Q.; He, J.F.; Siebel, W.; Chen, F.K. Petrology and geochemistry of Early Cretaceous A-type granitoids and late Mesozoic mafic dikes and their relationship to adakitic intrusions in the lower Yangtze River belt, Southeast China. Int. Geol. Rev. 2017, 59, 62–79. [Google Scholar] [CrossRef]
- Zhu, R.X.; Zheng, T.Y. Destruction geodynamics of the North China craton and its Paleoproterozoic plate tectonics. Chin. Sci. Bull. 2009, 54, 3354–3366. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, K.D.; Lai, P.C.; Jiang, S.Y.; Chen, W. Petrogenesis of Cretaceous volcanic-intrusive complex from the giant Yanbei tin deposit, South China: Implication for multiple magma sources, tin mineralization, and geodynamic setting. Lithos 2018, 296–299, 163–180. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, Q.M.; Xia, Q.L.; Wang, X.Q. Mineral potential mapping for tungsten polymetallic deposits in the Nanling metallogenic belt, South China. J. Earth Sci. 2014, 25, 689–700. [Google Scholar] [CrossRef]
- Baker, T.; Pollard, P.J.; Mustard, R.; Mark, G.; Graham, J.L. A comparison of granite-related tin, tungsten, and gold-bismuth deposits: Implications for exploration. SEG Discov. 2005, 61, 5–17. [Google Scholar] [CrossRef]
- Plimer, I.R. Fundamental parameters for the formation of granite-related tin deposits. Geol. Rundsch. 1987, 76, 23–40. [Google Scholar] [CrossRef]
- Oosterom, M.G.; Bussink, R.W.; Vriend, S.P. Lithogeochemical studies of aureoles around the Panasqueira tin-tungsten deposit, Portugal. Miner. Depos. 1984, 19, 283–288. [Google Scholar] [CrossRef]
- Zhang, R.Q.; Lu, J.J.; Lehmann, B.; Li, C.Y.; Li, G.L.; Zhang, L.P.; Guo, J.; Sun, W.D. Combined zircon and cassiterite U–Pb dating of the Piaotang granite-related tungsten–tin deposit, southern Jiangxi tungsten district, China. Ore Geol. Rev. 2017, 82, 268–284. [Google Scholar] [CrossRef]
- Luo, Z.Y.; Li, H.; Wu, J.H.; Sun, W.B.; Zhou, J.Q.; Maulana, A. Geochronology and geochemistry of the Xianghualing granitic rocks: Insights into multi-stage Sn-polymetallic mineralization in South China. Minerals 2022, 12, 1091. [Google Scholar] [CrossRef]
- Zhao, Z.; Yang, X.Y.; Liu, Q.Y.; Lu, Y.Y.; Chen, S.S.; Sun, C.; Zhang, Z.Z.; Wang, H.; Li, S. In-situ boron isotopic and geochemical compositions of tourmaline from the Shangbao Nb–Ta bearing monzogranite, Nanling Range: Implication for magmatic-hydrothermal evolution of Nb and Ta. Lithos 2021, 386–387, 106010. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Cui, F.; Li, S. The Petrogenesis of the Gaohushan A-Type Granite from the Northeastern Jiangxi Province and Its Metallogenic Implication. Minerals 2023, 13, 588. https://doi.org/10.3390/min13050588
Liu Z, Cui F, Li S. The Petrogenesis of the Gaohushan A-Type Granite from the Northeastern Jiangxi Province and Its Metallogenic Implication. Minerals. 2023; 13(5):588. https://doi.org/10.3390/min13050588
Chicago/Turabian StyleLiu, Zhanqing, Fengzhi Cui, and Saisai Li. 2023. "The Petrogenesis of the Gaohushan A-Type Granite from the Northeastern Jiangxi Province and Its Metallogenic Implication" Minerals 13, no. 5: 588. https://doi.org/10.3390/min13050588
APA StyleLiu, Z., Cui, F., & Li, S. (2023). The Petrogenesis of the Gaohushan A-Type Granite from the Northeastern Jiangxi Province and Its Metallogenic Implication. Minerals, 13(5), 588. https://doi.org/10.3390/min13050588