Influence of Phosphatization in REY Geochemistry in Ferromanganese Crusts in Line Islands, Central Pacific
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geological Setting and Sample
2.2. Methods
3. Results
3.1. Textural and Structural Characteristics
3.2. REY Geochemistry
4. Discussion
4.1. Chemical Species of Phosphorus in MP2D32A Sample
4.2. Influence of Phosphatization in REY Enrichment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Halbach, P.E.; Jahn, A.; Cherkashov, G. Marine Co-Rich Ferromanganese Crust Deposits: Description and Formation, Occurrences and Distribution, Estimated World-wide Resources. In Deep-Sea Mining: Resource Potential, Technical and Environmental Considerations; Sharma, R., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 65–141. [Google Scholar]
- Glasby, G.P. Manganese: Predominant Role of Nodules and Crusts. In Marine Geochemistry; Schulz, H.D., Zabel, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 371–427. [Google Scholar]
- Koschinsky, A.; Hein, J.R. Marine Ferromanganese Encrustations: Archives of Changing Oceans. Elements 2017, 13, 177–182. [Google Scholar] [CrossRef]
- Toro, N.; Robles, P.; Jeldres, R.I. Seabed mineral resources, an alternative for the future of renewable energy: A critical review. Ore Geol. Rev. 2020, 126, 103699. [Google Scholar] [CrossRef]
- Bau, M.; Schmidt, K.; Koschinsky, A.; Hein, J.; Kuhn, T.; Usui, A. Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium. Chem. Geol. 2014, 381, 1–9. [Google Scholar] [CrossRef]
- Josso, P.; Pelleter, E.; Pourret, O.; Fouquet, Y.; Etoubleau, J.; Cheron, S.; Bollinger, C. A new discrimination scheme for oceanic ferromanganese deposits using high field strength and rare earth elements. Ore Geol. Rev. 2017, 87, 3–15. [Google Scholar] [CrossRef]
- Zhou, J.; Cai, P.; Yang, C.; Liu, S.; Luo, W.; Nie, X. Geochemical characteristics and genesis of ferromanganese nodules and crusts from the Central Rift Seamounts Group of the West Philippine Sea. Ore Geol. Rev. 2022, 145, 104923. [Google Scholar] [CrossRef]
- Ren, Y.; Sun, X.; Guan, Y.; Xiao, Z.; Liu, Y.; Liao, J.; Guo, Z. Distribution of Rare Earth Elements plus Yttrium among Major Mineral Phases of Marine Fe-Mn Crusts from the South China Sea and Western Pacific Ocean: A Comparative Study. Minerals 2019, 9, 8. [Google Scholar] [CrossRef]
- Kuhn, T.; Wegorzewski, A.; Rühlemann, C.; Vink, A. Composition, Formation, and Occurrence of Polymetallic Nodules. In Deep-Sea Mining: Resource Potential, Technical and Environmental Considerations; Sharma, R., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 23–63. [Google Scholar]
- Lusty, P.A.J.; Murton, B.J. Deep-Ocean Mineral Deposits: Metal Resources and Windows into Earth Processes. Elements 2018, 14, 301–306. [Google Scholar] [CrossRef]
- Hein, J.R.; Mizell, K.; Koschinsky, A.; Conrad, T.A. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources. Ore Geol. Rev. 2013, 51, 1–14. [Google Scholar] [CrossRef]
- Frank, M.; O’Nions, R.K.; Hein, J.R.; Banakar, V.K. 60 Myr records of major elements and Pb-Nd isotopes from hydrogenous ferromanganese crusts: Reconstruction of seawater paleochemistry. Geochim. Cosmochim. Acta 1999, 63, 1689–1708. [Google Scholar] [CrossRef]
- Josso, P.; van Peer, T.; Horstwood, M.S.A.; Lusty, P.; Murton, B. Geochemical evidence of Milankovitch cycles in Atlantic Ocean ferromanganese crusts. Earth Planet. Sci. Lett. 2021, 553, 116651. [Google Scholar] [CrossRef]
- Sutherland, K.M.; Wostbrock, J.A.G.; Hansel, C.M.; Sharp, Z.D.; Hein, J.R.; Wankel, S.D. Ferromanganese crusts as recorders of marine dissolved oxygen. Earth Planet. Sci. Lett. 2020, 533, 116057. [Google Scholar] [CrossRef]
- Schier, K.; Ernst, D.M.; de Sousa, I.M.C.; Garbe-Schönberg, D.; Kuhn, T.; Hein, J.R.; Bau, M. Gallium-aluminum systematics of marine hydrogenetic ferromanganese crusts: Inter-oceanic differences and fractionation during scavenging. Geochim. Cosmochim. Acta 2021, 310, 187–204. [Google Scholar] [CrossRef]
- Hein, J.R.; Koschinsky, A. Deep-ocean ferromanganese crusts and nodules. Treatise Geochem. 2014, 13, 273–291. [Google Scholar] [CrossRef]
- Hein, J.R.; Conrad, T.A.; Frank, M.; Christl, M.; Sager, W.W. Copper-nickel-rich, amalgamated ferromanganese crust-nodule deposits from Shatsky Rise, NW Pacific. Geochem. Geophys. Geosyst. 2012, 13, Q10022. [Google Scholar] [CrossRef]
- Koschinsky, A.; Stascheit, A.; Bau, M.; Halbach, P. Effects of phosphatization on the geochemical and mineralogical composition of marine ferromanganese crusts. Geochim. Cosmochim. Acta 1997, 61, 4079–4094. [Google Scholar] [CrossRef]
- Hein, J.R.; Yeh, H.-W.; Gunn, S.H.; Sliter, W.V.; Benninger, L.M.; Wang, C.-H. Two Major Cenozoic Episodes of Phosphogenesis Recorded in Equatorial Pacific Seamount Deposits. Paleoceanography 1993, 8, 293–311. [Google Scholar] [CrossRef]
- Josso, P.; Lusty, P.; Chenery, S.; Murton, B. Controls on metal enrichment in ferromanganese crusts: Temporal changes in oceanic metal flux or phosphatisation? Geochim. Cosmochim. Acta 2021, 308, 60–74. [Google Scholar] [CrossRef]
- Jahnke, R.A. The Synthesis And Solubility Of Carbonate Fluorapatite. Am. J. Sci. 1984, 284, 58–78. [Google Scholar] [CrossRef]
- Josso, P.; Rushton, J.; Lusty, P.; Matthews, A.; Chenery, S.; Holwell, D.; Kemp, S.J.; Murton, B. Late Cretaceous and Cenozoic paleoceanography from north-east Atlantic ferromanganese crust microstratigraphy. Mar. Geol. 2020, 422, 106122. [Google Scholar] [CrossRef]
- Ortiz Kfouri, L.; Millo, C.; Estela de Lima, A.; Silveira, C.S.; Sant’Anna, L.G.; Marino, E.; González, F.J.; Sayeg, I.J.; Hein, J.R.; Jovane, L.; et al. Growth of ferromanganese crusts on bioturbated soft substrate, Tropic Seamount, northeast Atlantic ocean. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2021, 175, 103586. [Google Scholar] [CrossRef]
- Yang, K.; Park, H.; Son, S.K.; Baik, H.; Park, K.; Kim, J.; Yoon, J.; Park, C.H.; Kim, J. Electron microscopy study on the formation of ferromanganese crusts, western Pacific Magellan Seamounts. Mar. Geol. 2019, 410, 32–41. [Google Scholar] [CrossRef]
- Aplin, A.C.; Cronan, D.S. Ferromanganese oxide deposits from the Central Pacific Ocean, I. Encrustations from the Line Islands Archipelago. Geochim. Cosmochim. Acta 1985, 49, 427–436. [Google Scholar] [CrossRef]
- Liu, Y.; He, G.; Yao, H.; Yang, Y.; Ren, J.; Guo, L.; Mei, Y. Global distribution characteristics of seafloor cobalt-rich encrustation resources. Miner. Depos. 2013, 32, 1275–1284. [Google Scholar]
- Ren, J.; He, G.; Yao, H.; Deng, X.; Zhu, K.; Yang, S. The Effects of phosphatization on the REY of Co-rich Fe-Mn crusts. Mar. Geol. Quat. Geol. 2017, 37, 33–43. [Google Scholar]
- Miller, K.G. 8. Middle Eocene to Oligocene Stable Isotopes, Climate, and Deep-Water History: The Terminal Eocene Event? In Eocene-Oligocene Climatic and Biotic Evolution; Donald, R.P., William, A.B., Eds.; Princeton University Press: Princeton, NJ, USA, 1992; pp. 160–177. [Google Scholar]
- Xiao, J.; He, J.; Yang, H.; Wu, C. Comparison between Datangpo-type manganese ores and modern marine ferromanganese oxyhydroxide precipitates based on rare earth elements. Ore Geol. Rev. 2017, 89, 290–308. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, N. The relationship between the growth discontinuity of polymetallic crusts and phosphatization events. Acta Oceanol. Sin. 2021, 43, 102–109. [Google Scholar]
- Pockalny, R.; Barth, G.; Eakins, B.; Kelley, K.A.; Wertman, C. Multiple melt source origin of the Line Islands (Pacific Ocean). Geology 2021, 49, 1358–1362. [Google Scholar] [CrossRef]
- Konter, J.G.; Hanan, B.B.; Blichert-Toft, J.; Koppers, A.A.P.; Plank, T.; Staudigel, H. One hundred million years of mantle geochemical history suggest the retiring of mantle plumes is premature. Earth Planet. Sci. Lett. 2008, 275, 285–295. [Google Scholar] [CrossRef]
- Kawabe, M.; Fujio, S. Pacific Ocean circulation based on observation. J. Oceanogr. 2010, 66, 389–403. [Google Scholar] [CrossRef]
- Bonatti, E.; Kraemer, T.; Harold, R. Classification and genesis of submarine iron-manganese deposits. In Ferromanganese Deposits on the Ocean Floor, 1st ed.; Horn, D.R., Ed.; IDOE Publ: Washington, DC, USA, 1972; pp. 149–166. [Google Scholar]
- Jiang, X.D.; Zhao, X.; Zhao, X.Y.; Chou, Y.M.; Roberts, A.P.; Hein, J.R.; Yu, J.M.; Sun, X.M.; Shi, X.F.; Cao, W.; et al. Abyssal Manganese Nodule Recording of Global Cooling and Tibetan Plateau Uplift Impacts on Asian Aridification. Geophys. Res. Lett. 2022, 49, e2021GL096624. [Google Scholar] [CrossRef]
- Jiang, X.; Zhao, X.; Zhao, X.; Chou, Y.-M.; Hein, J.R.; Sun, X.; Zhong, Y.; Ren, J.; Liu, Q. A magnetic approach to unravelling the paleoenvironmental significance of nanometer-sized Fe hydroxide in NW Pacific ferromanganese deposits. Earth Planet. Sci. Lett. 2021, 565, 116945. [Google Scholar] [CrossRef]
- Zawadzki, D.; Maciag, L.; Kotlinski, R.A.; Kozub-Budzyn, G.A.; Piestrzynski, A.; Wrobel, R. Geochemistry of cobalt-rich ferromanganese crusts from the Perth Abyssal Plain (E Indian Ocean). Ore Geol. Rev. 2018, 101, 520–531. [Google Scholar] [CrossRef]
- Haese, R.R. The Biogeochemistry of Iron. In Marine Geochemistry; Schulz, H.D., Zabel, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 241–270. [Google Scholar]
- Ler, A.; Stanforth, R. Evidence for surface precipitation of phosphate on goethite. Environ. Sci. Technol. 2003, 37, 2694–2700. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, R.L.; Liang, X.L.; Ma, L.Y.; Lin, X.J.; Zhu, J.X.; He, H.P.; Parker, S.C.; Molinari, M. Synergistic adsorption of Cd(II) with sulfate/phosphate on ferrihydrite: An in situ ATR-FTIR/2D-COS study. Chem. Geol. 2018, 477, 12–21. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, R.L.; Ma, L.Y.; Fu, H.Y.; Lin, X.J.; Parker, S.C.; Molinari, M. Adsorption of phosphate and cadmium on iron (oxyhydr)oxides: A comparative study on ferrihydrite, goethite, and hematite. Geoderma 2021, 383, 114799. [Google Scholar] [CrossRef]
- Jiang, X.D.; Sun, X.M.; Chou, Y.M.; Hein, J.R.; He, G.W.; Fu, Y.; Li, D.F.; Liao, J.L.; Ren, J.B. Geochemistry and origins of carbonate fluorapatite in seamount Fe-Mn crusts from the Pacific Ocean. Mar. Geol. 2020, 423, 106135. [Google Scholar] [CrossRef]
- Baturin, G.N.; Bezrukov, P.L. Phosphorites On The Sea-Floor And Their Origin. Mar. Geol. 1979, 31, 317–332. [Google Scholar] [CrossRef]
- Baturin, G.N.; Dubinchu, V. Microstructures Of Agulhas Bank Phosphorites. Mar. Geol. 1974, 16, M63–M70. [Google Scholar] [CrossRef]
- Baturin, G.N.; Yushina, I.G. Rare earth elements in phosphate-ferromanganese crusts on Pacific seamounts. Lithol. Miner. Resour. 2007, 42, 101–117. [Google Scholar] [CrossRef]
- Schijf, J.; Byrne, R.H. Speciation of yttrium and the rare earth elements in seawater: Review of a 20-year analytical journey. Chem. Geol. 2021, 584, 120479. [Google Scholar] [CrossRef]
- Ohta, A.; Kawabe, I. REE(III) adsorption onto Mn dioxide (delta-MnO2) and Fe oxyhydroxide: Ce(III) oxidation by delta-MnO2. Geochim. Cosmochim. Acta 2001, 65, 695–703. [Google Scholar] [CrossRef]
- Bau, M. Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: Experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect. Geochim. Cosmochim. Acta 1999, 63, 67–77. [Google Scholar] [CrossRef]
Elements | Non-Phosphatized Layer (n = 49) | Phosphatized Layer (n = 10) | CFA Vein (n = 6) |
---|---|---|---|
Mn (wt%) | 27.22 | 23.60 | - |
Fe | 12.33 | 10.48 | - |
Mg | 1.12 | 1.06 | - |
Si | 1.05 | 0.91 | - |
Al | 0.20 | 0.19 | - |
P | 0.38 | 1.96 | - |
Ca | 2.51 | 5.87 | - |
K | 0.24 | 0.27 | - |
Na | 0.35 | 0.50 | - |
Ti | 0.94 | 0.61 | - |
Co | 0.85 | 0.51 | - |
Ni | 0.56 | 0.55 | - |
Cu | 0.08 | 0.10 | - |
La (ppm) | 188.9 | 328.4 | 443.6 |
Ce | 847.0 | 1053.4 | 166.4 |
Pr | 32.1 | 61.4 | 35.2 |
Nd | 144.5 | 299.7 | 148.7 |
Sm | 29.5 | 63.1 | 21.4 |
Eu | 7.3 | 16.5 | 6.4 |
Gd | 40.2 | 99.8 | 36 |
Tb | 4.9 | 11.5 | 5.1 |
Dy | 30.6 | 74.1 | 41.8 |
Y | 98.9 | 566.4 | 664.5 |
Ho | 6.3 | 26.7 | 12.7 |
Er | 17.7 | 46.9 | 43.3 |
Tm | 2.6 | 6.5 | 7.1 |
Yb | 17.8 | 40.4 | 52.7 |
Lu | 2.7 | 6.3 | 9.3 |
REY | 1470.8 | 2690.9 | 1694 |
LREE/HREE | 5.69 | 2.55 | 3.95 |
CeN/CeN* 1 | 2.52 | 2.15 | 0.27 |
YN/YN* 2 | 0.57 | 1.24 | 2.28 |
EuN/EuN* 3 | 0.96 | 0.91 | 1.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Yang, S.; Cao, J.; Deng, Y.; Wei, Z.; Li, Y.; Tian, D.; Hu, G. Influence of Phosphatization in REY Geochemistry in Ferromanganese Crusts in Line Islands, Central Pacific. Minerals 2023, 13, 647. https://doi.org/10.3390/min13050647
Zhou J, Yang S, Cao J, Deng Y, Wei Z, Li Y, Tian D, Hu G. Influence of Phosphatization in REY Geochemistry in Ferromanganese Crusts in Line Islands, Central Pacific. Minerals. 2023; 13(5):647. https://doi.org/10.3390/min13050647
Chicago/Turabian StyleZhou, Junming, Shengxiong Yang, Jingya Cao, Yutian Deng, Zhenquan Wei, Yuanheng Li, Dongmei Tian, and Guang Hu. 2023. "Influence of Phosphatization in REY Geochemistry in Ferromanganese Crusts in Line Islands, Central Pacific" Minerals 13, no. 5: 647. https://doi.org/10.3390/min13050647
APA StyleZhou, J., Yang, S., Cao, J., Deng, Y., Wei, Z., Li, Y., Tian, D., & Hu, G. (2023). Influence of Phosphatization in REY Geochemistry in Ferromanganese Crusts in Line Islands, Central Pacific. Minerals, 13(5), 647. https://doi.org/10.3390/min13050647