Magnetostratigraphy of Early Oligocene-Middle Miocene Deposits in the Xunhua Basin on the Tibet Plateau, China, and Their Paleoclimate Significance
Abstract
:1. Introduction
2. Geological Setting and Section Lithology
3. Materials and Methods
4. Results
4.1. Magnetostratigraphy
4.2. Magnetic Susceptibility
5. Discussion
6. Conclusions
- (1)
- Magnetostratigraphy results show that the Cenozoic sedimentary sequence of the Xunhua Basin in the northeastern margin of the Tibet Plateau records a continuous geomagnetic polarity sequence from C5ACn to C10r. Therefore, the interval span of this section is 30–14.3 Ma from the early Oligocene to the middle Miocene.
- (2)
- The enhancement events of the East Asian summer monsoon at approximately 27 Ma and 15 Ma are mainly controlled by the uplift of the Tibetan Plateau. The East Asian summer monsoon is mainly controlled by global temperature in 30~14.3 Ma.
- (3)
- Rock magnetic analysis reveals that the reason for the increase in magnetic susceptibility of sediments is because of the increase in superparamagnetic particles caused by soil formation and the input of near-source magnetic materials resulted in the uplift of mountains around the Xunhua basin, while the plateau expanded to the northeast. The climate in this area is controlled by the combination of the global temperature and the Plateau uplift.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manabe, S.; Terpstra, T.B. The Effects of Mountains on the General Circulation of the Atmosphere as Identified by Numerical Experiments. J. Atmos. Sci. 1974, 31, 3–42. [Google Scholar] [CrossRef]
- Kutzbach, J.E.; Guetter, P.J.; Ruddiman, W.F.; Prell, W.L. Sensitivity of climate to late Cenozoic uplift in southern Asia and the American west: Numerical experiments. J. Geophys. Res. 1989, 94, 18393–18407. [Google Scholar] [CrossRef]
- Guo, Z.T.; Ruddiman, W.F.; Hao, Q.Z.; Wu, H.B.; Qiao, Y.S.; Zhu, R.X.; Peng, S.Z.; Wei, J.J.; Yuan, B.Y.; Liu, T.S. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature 2002, 416, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wen, S.; Zhang, Q.; Wang, F.; Zheng, B.; Li, B. A discussion on the period, amplitude and type of the uplift of the qinghai-xizang plateau. Sci. China Ser. A 1979, 11, 1314–1328. [Google Scholar]
- Liu, T.; Ding, Z. Chinese Loess and the Paleomonsoon. Annu. Rev. Earth Planet. Sci. 1998, 26, 111–146. [Google Scholar] [CrossRef]
- Rea, D.K. Delivery of Himalayan Sediment to the Northern Indian Ocean and Its Relation to Global Climate, Sea Level, Uplift, and Seawater Strontium. In Synthesis of Results from Scientific Drilling in the Indian Ocean; American Geophysical Union: Washington, DC, USA, 1992; pp. 387–402. [Google Scholar]
- Shen, X. Mechanism of thermo-tectonic evolution of the uplift of the qinghai-xizang plateau. Chin. J. Geol. 1986, 27, 101–113. [Google Scholar]
- Coleman, M.; Hodges, K. Evidence for Tibetan plateau uplift below 14 Myr ago from a new minimum age for east-west extension. Nature 1995, 374, 49. [Google Scholar] [CrossRef]
- Chung, S.; Lo, C.; Lee, T.; Zhang, Y.; Xie, Y.; Li, X.; Wang, K.; Wang, P. Diachronous uplift of the Tibetan plateau starting 40 Myr ago. Nature 1998, 394, 769–773. [Google Scholar] [CrossRef]
- Cerling, T.E.; Harris, J.M.; Macfadden, B.J.; Leakey, M.G.; Quade, J.; Eisenmann, V.; Ehleringer, J.R. Global vegetation change through the Miocene/Pliocene boundary. Nature 1997, 389, 153–158. [Google Scholar] [CrossRef]
- Miller, K.G.; Fairbanks, R.G.; Mountain, G.S. Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. Paleoceanography 1987, 2, 1–19. [Google Scholar] [CrossRef]
- Zachos, J.; Pagani, M.; Sloan, L.; Thomas, E.; Billups, K. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science 2001, 292, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Boulila, S. Coupling between Grand cycles and Events in Earth’s climate during the past 115 million years. Sci. Rep. 2019, 9, 327. [Google Scholar] [CrossRef]
- Westerhold, T.; Marwan, N.; Drury, A.J.; Liebrand, D.; Agnini, C.; Anagnostou, E.; Barnet, J.S.K.; Bohaty, S.M.; De Vleeschouwer, D.; Florindo, F.; et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 2020, 369, 1383–1387. [Google Scholar] [CrossRef]
- Fang, X.; Garzione, C.; Van der Voo, R.; Li, J.; Fan, M. Flexural subsidence by 29 Ma on the NE edge of Tibet from the magnetostratigraphy of Linxia Basin, China. Earth Planet. Sci. Lett. 2003, 210, 545–560. [Google Scholar] [CrossRef]
- Xiao, G.; Guo, Z.; Dupont-Nivet, G.; Lu, H.; Wu, N.; Ge, J.; Hao, Q.; Peng, S.; Li, F.; Abels, H.A.; et al. Evidence for northeastern Tibetan Plateau uplift between 25 and 20Ma in the sedimentary archive of the Xining Basin, Northwestern China. Earth Planet. Sci. Lett. 2012, 317–318, 185–195. [Google Scholar] [CrossRef]
- Bian, S.; Gong, J.; Zuza, A.V.; Yang, R.; Yu, X. Late Pliocene onset of the Cona rift, eastern Himalaya, confirms eastward propagation of extension in Himalayan-Tibetan orogen. Earth Planet. Sci. Lett. 2020, 544, 116383. [Google Scholar] [CrossRef]
- Pares; Josep, M. Northeastward growth and uplift of the Tibetan Plateau: Magnetostratigraphic insights from the Guide Basin. J. Geophys. Res. Solid Earth 2003, 108, EPM 10-1-2. [Google Scholar] [CrossRef]
- Hough, B.; Garzione, C.; Wang, Z.; Lease, R.; Burbank, D.; Yuan, D. Stable Isotope Evidence for Topographic Growth and Basin Segmentation: Implications for the Evolution of the NE Tibetan Plateau. Geol. Soc. Am. Bull. 2011, 123, 168–185. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, P.; Liu, C.; Zheng, D.; Yu, J.; Zheng, W.; Wang, Y.; Zhang, H.; Chen, X. Pulsed growth of the West Qinling at ~30 Ma in northeastern Tibet: Evidence from Lanzhou Basin magnetostratigraphy and provenance. J. Geophys. Res. Solid Earth 2016, 121, 7754–7774. [Google Scholar] [CrossRef]
- Fang, X.; Fang, Y.; Zan, J.; Zhang, W.; Song, C.; Appel, E.; Meng, Q.; Miao, Y.; Dai, S.; Lu, Y.; et al. Cenozoic magnetostratigraphy of the Xining Basin, NE Tibetan Plateau, and its constraints on paleontological, sedimentological and tectonomorphological evolution. Earth-Sci. Rev. 2019, 190, 460–485. [Google Scholar] [CrossRef]
- Lease, R.O.; Burbank, D.W.; Hough, B.; Wang, Z.; Yuan, D. Pulsed Miocene range growth in northeastern Tibet: Insights from Xunhua Basin magnetostratigraphy and provenance. GSA Bull. 2012, 124, 657–677. [Google Scholar] [CrossRef]
- Song, C.; Fang, X.; Gao, J.; Sun, D.; Fan, M. Cenozoic sedimentary evolution and tectonic uplift in Guide Basin in northeast Qinghai-Tibet Plateau. J. Sedi. 2001, 19, 493–500. (In Chinese) [Google Scholar]
- Fang, X.; Li, G.; Zhu, J.; Chen, H.; Cao, J. Absolute dating and division of Cenozoic stratigraphy in Linxia Basin of Gansu Province. Sci. Bull. 1997, 14, 1457–1471. (In Chinese) [Google Scholar]
- Zhang, K.; Wang, G.; Luo, M.; Ji, J.; Xu, Y.; Chen, R.; Chen, F.; Song, B.; Liang, Y.; Zhang, J.; et al. Cenozoic tectono-lithofacies paleogeographic evolution of the Qinghai-Tibet Plateau and its response to tectonic uplift. Sci. China Ser. D Earth Sci. 2010, 35, 697–712. (In Chinese) [Google Scholar]
- Qiang, X.; An, Z.; Song, Y.; Chang, H.; Sun, Y.; Liu, W.; Ao, H.; Dong, J.; Fu, C.; Wu, F.; et al. New eolian red clay sequence on the western Chinese Loess Plateau linked to onset of Asian desertification about 25 Ma ago. Sci. China Ser. D Earth Sci. 2011, 54, 136–144. [Google Scholar]
- Zijderveld, J.D.A. AC Demagnetization of Rocks: Analysis of Results. Dev. Solid Earth Geophys. 1967, 3, 254–286. [Google Scholar]
- Kirschvink, J.L. The least-squares line and plane and the analysis of palaeomagnetic data. Geophys. J. Int. 1980, 62, 699–718. [Google Scholar] [CrossRef]
- Maher, B.A. Environmental Magnetism; Springer: Dordrecht, The Netherlands, 1986; pp. 56–57. [Google Scholar]
- Fang, X.; Zhang, W.; Meng, Q.; Gao, J.; Wang, X.; King, J.; Song, C.; Dai, S.; Miao, Y. High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau. Earth Planet. Sci. Lett. 2007, 258, 293–306. [Google Scholar] [CrossRef]
- Torii, M.; Fukuma, K.; Horng, C.S.; Lee, T.Q. Magnetic discrimination of pyrrhotite- and greigite-bearing sediment samples. Geophys. Res. Lett. 1996, 23, 1813–1816. [Google Scholar] [CrossRef]
- Fu, C.; Qiang, X.; Xu, X.; Xi, J.; Zuo, J.; An, Z. Late Miocene magnetostratigraphy of Jianzha Basin in the northeastern margin of the Tibetan Plateau and changes in the East Asian summer monsoon. Geol. J. 2018, 53, 282–292. [Google Scholar]
- Fu, C.; Bloemendal, J.; Qiang, X.; Hill, M.J.; An, Z. Occurrence of greigite in the Pliocene sediments of Lake Qinghai, China, and its paleoenvironmental and paleomagnetic implications. Geochem. Geophys. Geosys. 2015, 16, 1293–1306. [Google Scholar] [CrossRef]
- Gradstein, F.M.; Ogg, J.G. Chapter 2—The Chronostratigraphic Scale. In The Geologic Time Scale; Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M., Eds.; Elsevier: Boston, MA, USA, 2012; pp. 31–42. [Google Scholar]
- Gradstein, F.M.; Ogg, J.G.; Hilgen, F.J. On The Geologic Time Scale. Newsl. Stratigr. 2012, 45, 171–188. [Google Scholar] [CrossRef]
- Liu, X.; Rolph, T.; Bloemendal, J.; Shaw, J.; Liu, T. Quantitative estimates of palaeoprecipitation at Xifeng, in the Loess Plateau of China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1995, 113, 243–248. [Google Scholar] [CrossRef]
- Maher, B.A. Characterisation of soils by mineral magnetic measurements. Phys. Earth Planet. Inter. 1986, 42, 76–92. [Google Scholar] [CrossRef]
- Zhisheng, A.; Tunghseng, L.; Yanchou, L.; Porter, S.C.; Kukla, G.; Xihao, W.; Yingming, H. The long-term paleomonsoon variation recorded by the loess-paleosol sequence in Central China. Quat. Int. 1990, 7–8, 91–95. [Google Scholar] [CrossRef]
- An, Z.; Kukla, G.J.; Porter, S.C.; Xiao, J. Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 years. Quat. Res. 1991, 36, 29–36. [Google Scholar] [CrossRef]
- Hesse, P.; Chlachula, J. Two pedogenic models for paleoclimatic records of magnetic susceptibility from Chinese and Siberian loess. Sci. China Ser. D Earth Sci. 2008, 51, 284–293. [Google Scholar]
- Dai, S.; Fang, X.; Dupont-Nivet, G.; Song, C.; Gao, J.; Krijgsman, W.; Langereis, C.; Zhang, W. Magnetostratigraphy of Cenozoic sediments from the Xining Basin: Tectonic implications for the northeastern Tibetan Plateau. J. Geophys. Res. 2006, 111, B11102. [Google Scholar] [CrossRef]
- Zan, J.; Fang, X.; Kang, J.; Li, X.; Yan, M. Spatial and altitudinal variations in the magnetic properties of eolian deposits in the northern Tibetan Plateau and its adjacent regions: Implications for delineating the climatic boundary. Earth-Sci. Rev. 2020, 208, 103271. [Google Scholar] [CrossRef]
- Xinbo, G.; Hao, Q.; Wang, L.; Oldfield, F.; Bloemendal, J.; Deng, C.; Song, Y.; Ge, J.; Wu, H.; Xu, B.; et al. The different climatic response of pedogenic hematite and ferrimagnetic minerals: Evidence from particle-sized modern soils over the Chinese Loess Plateau. Quat. Sci. Rev. 2018, 179, 69–86. [Google Scholar]
- Liu, Z.; Liu, Q.; Torrent, J.; Barrón, V.; Hu, P. Testing the magnetic proxy χFD/HIRM for quantifying paleoprecipitation in modern soil profiles from Shaanxi Province, China. Glob. Planet. Change 2013, 110, 368–378. [Google Scholar] [CrossRef]
- Song, Y.; Hao, Q.; Ge, J.; Zhao, D.; Zhang, Y.; Li, Q.; Zuo, X.; Lü, Y.; Wang, P. Quantitative relationships between magnetic enhancement of modern soils and climatic variables over the Chinese Loess Plateau. Quat. Int. 2014, 334–335, 119–131. [Google Scholar] [CrossRef]
- Balsam, W.L.; Ellwood, B.B.; Ji, J.; Williams, E.R.; Long, X.; El Hassani, A. Magnetic susceptibility as a proxy for rainfall: Worldwide data from tropical and temperate climate. Quat. Sci. Rev. 2011, 30, 2732–2744. [Google Scholar] [CrossRef]
- Nie, J.; King, J.W.; Fang, X. Enhancement mechanisms of magnetic susceptibility in the Chinese red-clay sequence. Geophys. Res. Lett. 2007, 34, L19705. [Google Scholar] [CrossRef]
- Liu, Q.; Jackson, M.J.; Banerjee, S.K.; Maher, B.A.; Deng, C.; Pan, Y.; Zhu, R. Mechanism of the magnetic susceptibility enhancements of the Chinese loess. J. Geophys. Res. 2004, 109, B12107. [Google Scholar] [CrossRef]
- Sun, Z.; Yang, Z.; Pei, J.; Ge, X.; Wang, X.; Yang, T.; Li, W.; Yuan, S. Magnetostratigraphy of Paleogene sediments from northern Qaidam Basin, China: Implications for tectonic uplift and block rotation in northern Tibetan plateau. Earth Planet. Sci. Lett. 2005, 237, 635–646. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, P.; Duan, L.; Zhang, B.; Liu, K.; Huang, R.; Liu, C.; Zhang, Z.; Zheng, D.; Zheng, W.; et al. Cenozoic stratigraphic chronology and sedimentary-tectonic evolution of the Qaidam Basin. Chin. Sci. Bull. 2022, 67, 3452–3475. [Google Scholar] [CrossRef]
- Lei, D.; Boxuan, Z.; Weitao, W.; Peizhen, Z.; Qing, T.; Qian, C.; Jiabao, J.; Yonggang, Y.; Rong, H.; Wenjun, Z. Magnetostratigraphy age and tectonic deformation of Lulehe section in Qaidam Basin. Sci. Bull. 2022, 67, 872–887. (In Chinese) [Google Scholar]
- Huocan, Y.C.; Weitao, W.; Lei, D.; Boxuan, Z.; Kang, L.; Rong, H.; Peizhen, Z. Paleomagnetic evidence of Cenozoic tectonic deformation in Lulehe area, Qaidam Basin, northeastern margin of Qinghai-Tibet Plateau. Acta Geolog. Sin. 2022, 96, 3345–3359. (In Chinese) [Google Scholar]
- Yin, A.; Dang, Y.; Wang, L.; Jiang, W.; Zhou, S.; Chen, X.; Gehrels, G.E.; Mcrivette, M.W. Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (Part 1): The southern Qilian Shan-Nan Shan thrust belt and northern Qaidam basin. GSA Bull. 2008, 120, 813–846. [Google Scholar] [CrossRef]
- Dewen, Z.; Peizhen, Z.; Jinglin, W.; Chuanyou, L.; Jixiu, C. Sequence of Late Cenozoic tectonic deformation in the northeastern margin of the Qinghai-Tibet Plateau-Detrital apatite fission track record in Linxia Basin. Sci. China Ser. D 2003, 33, 190–198. (In Chinese) [Google Scholar]
- Zhang, R.; Jiang, D.; Zhang, Z. The impact of the uplifts of the manin part and marginal area of the tibetan plateau on the Asian monsoon climate. Quat. Sci. 2016, 36, 945–952. [Google Scholar]
- Wu, G.X.; Liu, Y.M.; He, B.; Bao, Q.; Duan, A.M.; Jin, F.F. Thermal Controls on the Asian Summer Monsoon. Sci. Rep. 2012, 2, 404. [Google Scholar] [CrossRef]
- Zhisheng, A.; Kutzbach, J.E.; Prell, W.L.; Porter, S.C. Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene times. Nature 2001, 411, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Qiang, X.; An, Z.; Song, Y. Magnetic properties of Jiaxian red clay sequences from northern Chinese Loess Plateau and its paleoclimatic significance. Sci. China Ser. D Earth Sci. 2005, 48, 1234–1245. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Fu, C.; Saimaiti, A.; Chang, H.; Tian, J.; Chen, L.; Qiang, X. Magnetostratigraphy of Early Oligocene-Middle Miocene Deposits in the Xunhua Basin on the Tibet Plateau, China, and Their Paleoclimate Significance. Minerals 2023, 13, 671. https://doi.org/10.3390/min13050671
Li P, Fu C, Saimaiti A, Chang H, Tian J, Chen L, Qiang X. Magnetostratigraphy of Early Oligocene-Middle Miocene Deposits in the Xunhua Basin on the Tibet Plateau, China, and Their Paleoclimate Significance. Minerals. 2023; 13(5):671. https://doi.org/10.3390/min13050671
Chicago/Turabian StyleLi, Pengfei, Chaofeng Fu, Akemu Saimaiti, Hong Chang, Ju’e Tian, Lin Chen, and Xiaoke Qiang. 2023. "Magnetostratigraphy of Early Oligocene-Middle Miocene Deposits in the Xunhua Basin on the Tibet Plateau, China, and Their Paleoclimate Significance" Minerals 13, no. 5: 671. https://doi.org/10.3390/min13050671
APA StyleLi, P., Fu, C., Saimaiti, A., Chang, H., Tian, J., Chen, L., & Qiang, X. (2023). Magnetostratigraphy of Early Oligocene-Middle Miocene Deposits in the Xunhua Basin on the Tibet Plateau, China, and Their Paleoclimate Significance. Minerals, 13(5), 671. https://doi.org/10.3390/min13050671