Response of High Swelling Montmorillonite Clays with Aqueous Polymer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soils
2.2. Polymer Treatement
2.3. Testing
3. Results and Discussion
3.1. Index Properties
3.2. Compaction Characteristics
3.3. Swelling Behavior of Treated Soils
3.4. Electrical Impedance of Treated Soils
3.5. Micro-Structural Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Petry, T.M.; Little, D.N. Review of stabilization of clays and expansive soils in pavements and lightly loaded structures—History, practice, and future. J. Mater. Civ. Eng. 2002, 14, 447–460. [Google Scholar] [CrossRef]
- Ikeagwuani, C.C. Estimation of modified expansive soil CBR with multivariate adaptive regression splines, random forest and gradient boosting machine. Innov. Infrastruct. Solut. 2021, 6, 199. [Google Scholar] [CrossRef]
- Zheng, J.L.; Zhang, R.; Yang, H.P. Highway subgrade construction in expansive soil areas. J. Mater. Civ. Eng. 2009, 21, 154–162. [Google Scholar] [CrossRef]
- Cheng, Y.; Huang, X. Effect of mineral additives on the behavior of an expansive soil for use in highway subgrade soils. Appl. Sci. 2018, 9, 30. [Google Scholar] [CrossRef]
- Djellali, A.; Houam, A.; Saghafi, B.; Hamdane, A.; Benghazi, Z. Static analysis of flexible pavements over expansive soils. Int. J. Civ. Eng. 2017, 15, 391–400. [Google Scholar] [CrossRef]
- Rao, A.S.; Sridevi, G. Utilization of industrial wastes in pavements laid over expansive clay sub-grades. In Geo-Frontiers 2011: Advances in Geotechnical Engineering; American Society of Civil Engineers: Reston, VA, USA, 2011; pp. 4418–4427. [Google Scholar]
- Firoozi, A.A.; Guney Olgun, C.; Firoozi, A.A.; Baghini, M.S. Fundamentals of soil stabilization. Int. J. Geo-Eng. 2017, 8, 26. [Google Scholar] [CrossRef]
- Bahadori, H.; Hasheminezhad, A.; Taghizadeh, F. Experimental study on marl soil stabilization using natural pozzolans. J. Mater. Civ. Eng. 2019, 31, 04018363. [Google Scholar] [CrossRef]
- Asgari, M.R.; Baghebanzadeh Dezfuli, A.; Bayat, M. Experimental study on stabilization of a low plasticity clayey soil with cement/lime. Arab. J. Geosci. 2015, 8, 1439–1452. [Google Scholar] [CrossRef]
- Jalal, F.E.; Xu, Y.; Jamhiri, B.; Memon, S.A. On the recent trends in expansive soil stabilization using calcium-based stabilizer materials (CSMs): A comprehensive review. Adv. Mater. Sci. Eng. 2020, 2020, 1510969. [Google Scholar] [CrossRef]
- Veith, G. Essay competition: Green, ground and great: Soil stabilization with slag. Build. Res. Inf. 2000, 28, 70–72. [Google Scholar] [CrossRef]
- Rahgozar, M.A.; Saberian, M.; Li, J. Soil stabilization with non-conventional eco-friendly agricultural waste materials: An experimental study. Transp. Geotech. 2018, 14, 52–60. [Google Scholar] [CrossRef]
- Yadav, A.K.; Gaurav, K.; Kishor, R.; Suman, S.K. Stabilization of alluvial soil for subgrade using rice husk ash, sugarcane bagasse ash and cow dung ash for rural roads. Int. J. Pavement Res. Technol. 2017, 10, 254–261. [Google Scholar] [CrossRef]
- Khandelwal, A.; Kishor, R.; Singh, V.P. Sustainable utilization of sugarcane bagasse ash in highway subgrade—A critical review. Mater. Today Proc. 2022, 78, 114–119. [Google Scholar] [CrossRef]
- Soltani, A.; Deng, A.; Taheri, A.; Mirzababaei, M. A sulphonated oil for stabilisation of expansive soils. Int. J. Pavement Eng. 2019, 20, 1285–1298. [Google Scholar] [CrossRef]
- Tingle, J.S.; Santoni, R.L. Stabilization of clay soils with nontraditional additives. Transp. Res. Rec. 2003, 1819, 72–84. [Google Scholar] [CrossRef]
- Kariuki, P.C.; Woldai, T.; Van Der Meer, F. Effectiveness of spectroscopy in identification of swelling indicator clay minerals. Int. J. Remote Sens. 2004, 25, 455–469. [Google Scholar] [CrossRef]
- Klopp, H.W.; Arriaga, F.J.; Likos, W.J.; Bleam, W.F. Atterberg limits and shrink/swell capacity of soil as indicators for sodium sensitivity within a gradient of soil exchangeable sodium percentage and salinity. Geoderma 2019, 353, 449–458. [Google Scholar] [CrossRef]
- Suppaso, C.; Pongkan, N.; Intachai, S.; Inchongkol, Y.; Bureekaew, S.; Khaorapapong, N. Tin sulfides and cadmium sulfide mixture in montmorillonite with enhanced visible-light photocatalytic activity. Appl. Clay Sci. 2023, 241, 106999. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, P.; Zhang, Y.; Sun, K.; Shi, X.; Li, L. The preparation of conjugated microporous polymer composite materials with montmorillonite template and its improvement in photocatalytic degradation for multiple antibiotics. Appl. Clay Sci. 2023, 231, 106752. [Google Scholar] [CrossRef]
- Zahri, A.M.; Zainorabidin, A. An overview of traditional and non traditional stabilizer for soft soil. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Chiyoda, Tokyo, 2019; Volume 527, p. 012015. [Google Scholar]
- Cui, Q.; Chen, B. Review of polymer-amended bentonite: Categories, mechanism, modification processes and application in barriers for isolating contaminants. Appl. Clay Sci. 2023, 235, 106869. [Google Scholar] [CrossRef]
- Panda, G.P.; Vipulanandan, C. Clay soil stabilization by polymers. In Proceeding of the Center for Innovative Grouting Material and Technology; University of Houston: Houston, TX, USA, 2016. [Google Scholar]
- Panda, G.P. Real-Time Monitoring and Characterization of Smart Cement and Soil with Polymer Modification to Control Gas Leakage and Corrosion. Doctoral Dissertation, University of Houston, Houston, TX, USA, 2020. [Google Scholar]
- Zhao, H.; Ge, L.; Petry, T.M.; Sun, Y.Z. Effects of chemical stabilizers on an expansive clay. KSCE J. Civ. Eng. 2014, 18, 1009–1017. [Google Scholar] [CrossRef]
- Al-Bazali, T. Insight on the inhibitive property of potassium ion on the stability of shale: A diffuse double-layer thickness (κ − 1) perspective. J. Pet. Explor. Prod. Technol. 2021, 11, 2709–2723. [Google Scholar] [CrossRef]
- Pooni, J.; Robert, D.; Giustozzi, F.; Gunasekara, C.; Setunge, S. A review on soil stabilisation of unsealed road pavements from an Australian perspective. Road Mater. Pavement Des. 2022, 24, 1005–1049. [Google Scholar] [CrossRef]
- Ramdas, V.M.; Mandree, P.; Mgangira, M.; Mukaratirwa, S.; Lalloo, R.; Ramchuran, S. Review of current and future bio-based stabilisation products (enzymatic and polymeric) for road construction materials. Transp. Geotech. 2021, 27, 100458. [Google Scholar] [CrossRef]
- Sarker, D.; Shahrear Apu, O.; Kumar, N.; Wang, J.X.; Lynam, J.G. Application of sustainable lignin stabilized expansive soils in highway subgrade. In Proceedings of the International Foundations Congress and Equipment Expo, Dallas, TX, USA, 10–14 May 2021; pp. 336–348. [Google Scholar]
- Khodabandeh, M.A.; Nagy, G.; Török, Á. Stabilization of collapsible soils with nanomaterials, fibers, polymers, industrial waste, and microbes: Current trends. Constr. Build. Mater. 2023, 368, 130463. [Google Scholar] [CrossRef]
- Kang, X.; Xia, Z.; Chen, R.; Sun, H.; Yang, W. Effects of inorganic ions, organic polymers, and fly ashes on the sedimentation characteristics of kaolinite suspensions. Appl. Clay Sci. 2019, 181, 105220. [Google Scholar] [CrossRef]
- Liu, W.; Fu, H.; Bao, M.; Luo, C.; Han, X.; Zhang, D.; Liu, H.; Li, Y.; Lu, J. Emulsions stabilized by asphaltene-polyacrylamide-soil three-phase components: Stabilization mechanism and concentration effects. Sep. Purif. Technol. 2022, 302, 122157. [Google Scholar] [CrossRef]
- Huang, J.; Kogbara, R.B.; Hariharan, N.; Masad, E.A.; Little, D.N. A state-of-the-art review of polymers used in soil stabilization. Constr. Build. Mater. 2021, 305, 124685. [Google Scholar] [CrossRef]
- Soltani, A.; Deng, A.; Taheri, A.; O’Kelly, B.C. Intermittent swelling and shrinkage of a highly expansive soil treated with polyacrylamide. J. Rock Mech. Geotech. Eng. 2022, 14, 252–261. [Google Scholar] [CrossRef]
- Soltani, A.; Deng, A.; Taheri, A.; Mirzababaei, M. Rubber powder–polymer combined stabilization of South Australian expansive soils. Geosynth. Int. 2018, 25, 304–321. [Google Scholar] [CrossRef]
- Zhang, D.; Cao, Z.; Fan, L.; Liu, S.; Liu, W. Evaluation of the influence of salt concentration on cement stabilized clay by electrical resistivity measurement method. Eng. Geol. 2014, 170, 80–88. [Google Scholar] [CrossRef]
- Liu, J.; Zha, F.; Xu, L.; Kang, B.; Tan, X.; Deng, Y.; Yang, C. Mechanism of stabilized/solidified heavy metal contaminated soils with cement-fly ash based on electrical resistivity measurements. Measurement 2019, 141, 85–94. [Google Scholar] [CrossRef]
- Alsharari, B.; Olenko, A.; Abuel-Naga, H. Modeling of electrical resistivity of soil based on geotechnical properties. Expert Syst. Appl. 2020, 141, 112966. [Google Scholar] [CrossRef]
- Vipulanandan, C.; Amani, N. Characterizing the pulse velocity and electrical resistivity changes in concrete with piezoresistive smart cement binder using Vipulanandan models. Constr. Build. Mater. 2018, 175, 519–530. [Google Scholar] [CrossRef]
- Derdar, H.; Mitchell, G.R.; Mahendra, V.S.; Benachour, M.; Haoue, S.; Cherifi, Z.; Bachari, K.; Harrane, A.; Meghabar, R. Green nanocomposites from rosin-limonene copolymer and Algerian clay. Polymers 2020, 12, 1971. [Google Scholar] [CrossRef]
- Derdar, H.; Mitchell, G.R.; Chaibedraa, S.; Mahendra, V.S.; Cherifi, Z.; Bachari, K.; Chebout, R.; Touahra, F.; Meghabar, R.; Belbachir, M. Synthesis and characterization of copolymers and nanocomposites from limonene, styrene and organomodified-clay using ultrasonic assisted method. Polymers 2022, 14, 2820. [Google Scholar] [CrossRef]
- Amiri, E.; Emami, H.; Mosaddeghi, M.R.; Astaraei, A.R. Shear strength of an unsaturated loam soil as affected by vetiver and polyacrylamide. Soil Tillage Res. 2019, 194, 104331. [Google Scholar] [CrossRef]
- Lei, H.; Lou, J.; Li, X.; Jiang, M.; Tu, C. Stabilization effect of anionic polyacrylamide on marine clay treated with lime. Int. J. Geomech. 2020, 20, 04020050. [Google Scholar] [CrossRef]
- Lentz, R.D. Polyacrylamide and biopolymer effects on flocculation, aggregate stability, and water seepage in a silt loam. Geoderma 2015, 241, 289–294. [Google Scholar] [CrossRef]
Parameter | Test Method | Soil-A | Soil-B | Soil-C |
---|---|---|---|---|
Specific gravity | ASTM D854 | 2.67 | 2.66 | 2.66 |
Liquid limit (%) | ASTM D4318 | 36 | 86.41 | 53.91 |
Plastic limit (%) | ASTM D4318 | 18 | 22.5 | 18.5 |
Free swell index (%) | ASTM D4546-14 | 66 | 95 | 83 |
Optimum moisture content (%) | ASTM D698 | 22 | 18 | 17 |
Maximum dry density (g/cc) | ASTM D698 | 2.01 | 1.83 | 1.95 |
USCS classification | ASTM D2487 | CL | CH | CH |
Mix-1 | Mix-2 | ||
---|---|---|---|
AV-100 | 2.5%, 5%, 7.5% | AV-102 | 0.5% |
AV-101 | 0.5% | ||
Water | 50 mL | Water | 50 mL |
Percentage of Polymer Content | Soil-A | Soil-B | Soil-C | ||||||
---|---|---|---|---|---|---|---|---|---|
LL | PL | PI | LL | PL | PI | LL | PL | PI | |
0 | 36 | 18 | 18 | 86.41 | 22.5 | 63.91 | 53.91 | 18.5 | 35.41 |
2.5 | 34.5 | 17.6 | 16.9 | 68.81 | 20.5 | 48.31 | 47.21 | 17.5 | 29.71 |
5 | 32.5 | 17 | 15.5 | 56.05 | 19.5 | 36.55 | 43.21 | 16.5 | 26.71 |
7.5 | 30.5 | 16.75 | 13.75 | 51.04 | 18 | 33.04 | 39.41 | 16 | 23.41 |
Soil-A | Holtz–Gibbs Criteria | Chen Criteria | Soil-B | Holtz–Gibbs Criteria | Chen Criteria | Soil-C | Holtz–Gibbs Criteria | Chen Criteria |
---|---|---|---|---|---|---|---|---|
0% | Low | Low | 0% | Very high | Very high | 0% | Very high | Very high |
2.5% | Low | Low | 2.5% | Very high | Very high | 2.5% | Medium | Medium |
5% | Low | Low | 5% | Very high | Medium | 5% | Medium | Medium |
7.5% | Low | Low | 7.5% | Medium | Medium | 7.5% | Medium | Medium |
Soil Type | Polymer Addition (%) | A | B | R2 |
---|---|---|---|---|
Soil A | 0 | 11.86 | 0.58 | 0.99 |
Soil A | 2.5 | 26.75 | 1.74 | 0.99 |
Soil A | 5 | 41.57 | 2.55 | 0.98 |
Soil A | 7.5 | 148.28 | 4.83 | 0.98 |
Soil B | 0 | 0.81 | 0.18 | 0.98 |
Soil B | 2.5 | 8.70 | 0.50 | 0.98 |
Soil B | 5 | 18.42 | 0.62 | 0.99 |
Soil B | 7.5 | 15 | 1.09 | 0.97 |
Soil C | 0 | 4.40 | 0.25 | 0.95 |
Soil C | 2.5 | 42.10 | 0.79 | 0.98 |
Soil C | 5 | 67.01 | 1.17 | 0.99 |
Soil C | 7.5 | 146.81 | 4.85 | 0.96 |
Soil Type | Percentage of Polymer Content | Electrical Resistivity (Ո.m) | |||
---|---|---|---|---|---|
10% Moisture Content | 20% Moisture Content | 30% Moisture Content | 40% Moisture Content | ||
Soil-A | 0 | 35.33 | 8.38 | 5.71 | 3.22 |
2.5 | 528.51 | 17.61 | 7.84 | 3.65 | |
5 | 650.94 | 20.05 | 10.56 | 7.27 | |
7.5 | 786.96 | 23.66 | 12.16 | 8.45 | |
Soil-B | 0 | 43.80 | 7.40 | 4.40 | 1.80 |
2.5 | 521.20 | 44.30 | 9.50 | 3.40 | |
5 | 861.30 | 56.00 | 11.40 | 5.30 | |
7.5 | 1185.70 | 72.00 | 13.30 | 6.10 | |
Soil-C | 0 | 27.41 | 7.78 | 6.51 | 2.82 |
2.5 | 687.11 | 30.10 | 10.96 | 4.29 | |
5 | 1177.88 | 41.82 | 12.16 | 5.95 | |
7.5 | 1468.75 | 60.38 | 16.12 | 7.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panda, G.P.; Bahrami, A.; Nagaraju, T.V.; Isleem, H.F. Response of High Swelling Montmorillonite Clays with Aqueous Polymer. Minerals 2023, 13, 933. https://doi.org/10.3390/min13070933
Panda GP, Bahrami A, Nagaraju TV, Isleem HF. Response of High Swelling Montmorillonite Clays with Aqueous Polymer. Minerals. 2023; 13(7):933. https://doi.org/10.3390/min13070933
Chicago/Turabian StylePanda, Guru Prasad, Alireza Bahrami, T. Vamsi Nagaraju, and Haytham F. Isleem. 2023. "Response of High Swelling Montmorillonite Clays with Aqueous Polymer" Minerals 13, no. 7: 933. https://doi.org/10.3390/min13070933
APA StylePanda, G. P., Bahrami, A., Nagaraju, T. V., & Isleem, H. F. (2023). Response of High Swelling Montmorillonite Clays with Aqueous Polymer. Minerals, 13(7), 933. https://doi.org/10.3390/min13070933