The Origin of the Upper Cambrian Basin-Scale Massive Dolostones of the Xixiangchi Formation, Sichuan Basin, China
Abstract
:1. Introduction
2. Geologic Setting
3. Samples and Methods
4. Results
4.1. Petrographic Characteristics
4.1.1. Fine Crystalline Dolomite (Type 1)
4.1.2. Granular Dolomite (Type 2)
4.1.3. Grain-Texture Relict Dolomite (Type 3)
4.2. Geochemical Characteristics
4.2.1. Stable Isotope Characteristics
4.2.2. Rare Earth Element Characteristics
4.2.3. Fluid-Inclusion Characteristics
5. Discussion
5.1. Diagenetic Fluids
5.2. Dolomitization
5.3. Dolomitization Model
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fairbridge, R.W. The Dolomite Question. Regional Aspects of Carbonate Deposition SEPM Society for Sedimentary. Geology 1957, 5, 125–178. [Google Scholar] [CrossRef]
- Warren, J. Dolomite: Occurrence, evolution and economically important associations. Earth-Sci. Rev. 2000, 51, 1–81. [Google Scholar] [CrossRef]
- Friedman, G.M.; Sanders, J.E. Chapter 6 Origin and Occurrence of Dolostones. Dev. Sedimentol. 1967, 9, 267–348. [Google Scholar] [CrossRef]
- Kuznetsov, V.G.; Bourrouilh-Le Jan, F.D. Dolomieu: A Scientist of the Evolution Period of Geology as an Independent Science. Lithol. Miner. Resour. 2006, 41, 475–482. [Google Scholar] [CrossRef]
- Ryan, B.H.; Kaczmarek, S.E.; Rivers, J.M. Early and pervasive dolomitization by near-normal marine fluids: New lessons from an Eocene evaporative setting in Qatar. Sedimentology 2020, 67, 2917–2944. [Google Scholar] [CrossRef]
- Badiozamani, K. The dorag dolomitization model- application to the Middle Ordovician of Wisconsin. J. Sediment. Petrol. 1973, 43, 965–984. [Google Scholar] [CrossRef]
- Barnaby, R.J.; Read, J.F. Dolomitization of a carbonate platform during late burial: Lower to middle cambrian shady dolomite, Virginia appalachians. J. Sediment. Res. 1992, 62, 1023–1043. [Google Scholar]
- Davies, G.R.; Smith Jr, L.B. Structurally controlled hydrothermal dolomite reservoir facies: An overview. AAPG Bulletin. 2006, 90, 1641–1690. [Google Scholar] [CrossRef]
- Morrow, D.W. Zebra and boxwork fabrics in hydrothermal dolomites of northern Canada: Indicators for dilational fracturing, dissolution or in situ replacement? Sedimentology 2014, 61, 915–951. [Google Scholar] [CrossRef]
- Vasconcelos, C.; McKenzie, J.A.; Bernasconi, S.; Grujic, D.; Tiens, A.J. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature 1995, 377, 220–222. [Google Scholar] [CrossRef]
- Chang, B.; Li, C.; Liu, D.; Foster, I.; Tripati, A.; Lloyd, M.K.; Maradiaga, I.; Luo, G.; Zhihui An, Z.; She, Z.; et al. Massive formation of early diagenetic dolomite in the Ediacaran ocean: Constraints on the “dolomite problem”. Proc. Natl. Acad. Sci. USA 2020, 117, 14005–14014. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Ren, G.; Ye, C.; Zhou, Y.; Qin, Q. Research on the Genesis of Dolomites in the Cambrian Xixiangchi Formation in the Eastern Sichuan Basin. Henan Sci. Technol. 2021, 40, 150–152. [Google Scholar]
- Yang, X.F.; Huang, Z.S.; Wang, X.Z.; Wang, Y.P.; Li, K.; Zeng, D.M. Origin of crystal dolomite and its reservoir formation mechanism in the Xixiangchi Formation, Upper Cambrian in Southeastern Sichuan basin. Carbonates Evaporites 2019, 34, 1537–1549. [Google Scholar] [CrossRef]
- Jiang, W.; Hou, M.; Xing, F.; Xu, S.; Ling, L. Diagenetic characteristics of dolomites in the Cambrian Loushanguan Group in southeastern Sichuan Basin. Pet. Geol. Exp. 2016, 38, 311–319. [Google Scholar]
- Liu, C.; Xie, Q.; Wang, G.; He, W.; Song, Y.; Tang, Y.; Wang, Y. Rare earth element characteristics of the carboniferous Huanglong Formation dolomites in eastern Sichuan Basin, southwest China: Implications for origins of dolomitizing and diagenetic fluids. Mar. Pet. Geol. 2017, 81, 33–49. [Google Scholar] [CrossRef]
- Liu, L.; Du, X.; Xu, S.; Wen, H. Characteristics and Formation of the Cambrian Dolomite in Middle-South Sichuan Basin, China. J. Jilin Univ. (Earth Sci. Ed.) 2017, 47, 775–784. [Google Scholar]
- Tucker, M.E.; Wright, V.P. Carbonate Sedimentology; Blackwell Publishing: Oxford, UK, 1990; pp. 25–28. [Google Scholar]
- Machel, H.G. Concepts and models of dolomitization: A critical reappraisal. Geol. Soc. Lond. Spec. Publ. 2004, 235, 7–63. [Google Scholar] [CrossRef]
- Gomez-Rivas, E.; Corbella, M.; Martin-Martin, J.D.; Stafford, S.L.; Teixell, A.; Bons, P.D.; Griera, A.; Cardellach, E. Reactivity of dolomitizing fluids and Mg source evaluation of fault-controlled dolomitization at the Benicassim outcrop analogue (Maestrat basin, E Spain). Mar. Petrol. Geol. 2014, 55, 26–42. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Zhu, H.; Huang, D.; Li, G.H.; Yuan, B.G.; Ying, D.L. Characteristics and exploration potential of the super gas-rich Sichuan Basin. Nat. Gas Explor. Dev. 2020, 43, 1–7, (In Chinese with English Abstract). [Google Scholar]
- Liu, S.G.; Yang, Y.; Deng, B.; Zhong, Y.; Wen, L.; Sun, W.; Li, Z.W.; Jansa, L.; Li, J.X.; Song, J.M.; et al. Tectonic evolution of the Sichuan Basin, Southwest China. Earth-Sci. Rev. 2021, 213, 103470. [Google Scholar] [CrossRef]
- Du, J.; Zou, C.; Xu, C.; He, H.; Shen, P.; Yang, Y.; Li, Y.; Wei, G.; Wang, Z.; Yang, Y. Theoretical and technical innovations in strategic discovery of a giant gas field in Cambrian Longwangmiao Formation of central Sichuan paleo-uplift, Sichuan Basin. Pet. Explor. Dev. 2014, 41, 268–277. [Google Scholar] [CrossRef]
- Zou, C.; Du, J.; Xu, C.; Wang, Z.; Zhang, B.; Wei, G.; Wang, T.; Yao, G.; Deng, S.; Liu, J.; et al. Formation, distribution, resource potential and discovery of the Sinian-Cambrian giant gas field, Sichuan Basin, SW China. Pet. Explor. Dev. 2014, 41, 278–293. [Google Scholar] [CrossRef]
- Xu, A.; Hu, S.; Wang, Z.; Bo, D.; Li, M.; Lu, W.; Zhai, X. Sedimentary mode and reservoir distribution of the Cambrian carbonate & evaporite paragenesis system in the Sichuan Basin. Nat. Gas Ind. 2016, 36, 11–20. [Google Scholar]
- Lin, Y.; Chen, C.; Shan, S.; Zeng, Y.; Liu, X.; Chen, Y. Reservoir characteristics and main controlling factors of the Cambrian Xixiangchi Formation in the Sichuan Basin. Pet. Geol. Exp. 2017, 39, 610–617. [Google Scholar]
- Li, L.; Liang, J.; Liu, S.; Guo, Y.; Li, K.; He, Y.; Jin, J. Diagenesis and pore evolution of dolomite reservoirs of Cambrian Xixiangchi Formation in central Sichuan Basin. Lithol. Reserv. 2022, 34, 39–48. [Google Scholar]
- Wang, J.; Liu, S.; Huang, W.; Zhang, C.; Zeng, X. Oil and Gas Exploration Prospects of Cambrian in Southern Sichuan Basin. Geol. Sci. Technol. Inf. 2011, 30, 74–82. [Google Scholar]
- Huang, W.; Liu, S.; Wang, G.; Zhang, C.; Sun, W.; Ma, W. Geological Conditions and Gas Reservoir Features in Lower Paleozoic in Sichuan Basin. Nat. Gas Geosci. 2011, 22, 465–476. [Google Scholar]
- He, D.; Li, D.; Zhang, G.; Zhao, L.; Fan, C.; Lu, R.; Wen, Z. Formation and evolution of multi-cycle superposed Sichuan Basin, China. Chin. J. Geol. 2011, 46, 589–606. [Google Scholar]
- Jia, P.; Huang, F.X.; Lin, S.G.; Song, T.; Gao, Y.; Lv, W.N.; Wang, S.Y.; Liu, C.; Fan, J.J.; Ouyang, J.L. Sedimentary Facies and Model Characteristics of Middle Upper Cambrian Xixiangchi Group in Sichuan Basin and Its Adjacent Areas. Geoscience 2021, 35, 807–818, (In Chinese with English Abstract). [Google Scholar]
- Wen, H.; Liang, J.; Zhou, G.; Qiu, Y.; Liu, S.; Li, K.; He, Y.; Chen, H. Sequence-based lithofacies paleogeography and favorable natural gas exploration areas of Cambrian Xixiangchi Formation in Sichuan Basin and its periphery. Lithol. Reserv. 2022, 34, 1–16. [Google Scholar]
- Zhang, M.; Xie, Z.; Li, X.; Gu, J.; Yang, W.; Liu, M. Characteristics of Lithofacies Paleogeography of Cambrian in Sichuan Basin. Acta Sedimentol. Sin. 2010, 28, 128–139. [Google Scholar]
- Li, J.; He, D. Palaeogeography and tectonic-depositional environment evolution of the Cambrian in Sichuan Basin and adjacent areas. J. Palaeogeogr. 2014, 16, 441–460. [Google Scholar]
- Gu, M.; Li, W.; Zou, Q.; Zhou, G.; Zhang, J.; Lv, X.; Yan, W.; Li, K.; Luo, J. Lithofacies palaeogeography and reservoir characteristics of the Cambrian Xixiangchi Formation in Sichuan Basin. Mar. Orig. Pet. Geol. 2020, 25, 162–170. [Google Scholar]
- Chen, A.; Hou, M.; Lin, L.; Xin, F.; Xu, S.; Zhong, Y.; Yang, S.; Xiong, C.; Zhang, X.; Wen, L.; et al. Cambrian lithofacies paleogeographic characteristics of the Upper Yangtze Block: Implications for the marine basin evolution and hydrocarbon accumulation of small-scale tectonic blocks in China. Sediment. Geol. Tethyan Geol. 2020, 40, 38–47. [Google Scholar]
- Feng, Z.; Peng, Y.; Jin, Z.; Jiang, P.; Bao, Z.; Luo, Z.; Ju, T.; Tian, H.; Wang, H. Lithofacies paleogeography of the Cambrian in South China. J. Palaeogeogr. 2001, 3, 1–14. [Google Scholar]
- Mei, M.; Liu, Z.; Meng, X.; Chen, Y. From sequence-stratigraphic division to the establishment of sequence-stratigraphic framework, the Middle to Upper Cambrian in the Upper-Yangtze region. Acta Sedimentol. Sin. 2006, 24, 617–626. [Google Scholar]
- Li, W.; Yu, H.; Deng, H. Stratigraphic division and correlation and sedimentary characteristics of the Cambrian in central-southern Sichuan Basin. Pet. Explor. Dev. 2012, 39, 681–690. [Google Scholar] [CrossRef]
- Bau, M.; Dulski, P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Res. 1996, 79, 37–55. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, Q.; Zhao, J.; Zheng, L.; Guan, H.; Feng, Y.; Greig, A. Rare earth.elements and yttrium in a stalagmite from Central China and potential paleoclimatic implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2008, 270, 128–138. [Google Scholar] [CrossRef]
- Huang, S. Carbonate Diagenesis; Geological Publishing House: Beijing, China, 2010; pp. 10–15. [Google Scholar]
- Burke, W.H.; Denison, R.E.; Hetherington, E.A.; Koepnick, R.B.; Nelson, H.F.; Otto, J.B. Variation of seawater Sr87-Sr86 throughout Phanerozoic time. Geology 1982, 10, 516–519. [Google Scholar] [CrossRef]
- Palmer, M.R.; Edmond, J.M. The strontium isotope budget of the modern ocean. Earth Planet. Sci. Lett. 1989, 92, 11–26. [Google Scholar] [CrossRef]
- Qing, H.; Mountjoy, E.W. Rare earth element geochemistry of dolomites in the Middle Devonian Presqu’ile barrier, Western Canada Sedimentary Basin: Implications for fluid-rock ratios during dolomitization. Sedimentology 1994, 41, 787. [Google Scholar] [CrossRef]
- Liu, J.; Lin, J.; Feng, W.; Zhao, Z.; Huang, X. The REE geochemical characteristics of Middle-Upper cambrian dolomite in southeast Sichuan Basin and its significance—A case study of Changshutian profile in Bijie, Guizhou. J. Mineral. Petrol. 2014, 34, 87–94. [Google Scholar]
- Anderson, T.F.; Arthur, M.A. Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems. In Short Course Notes; SEPM: Broken Arrow, OK, USA, 1983; Volume 10, pp. 1–151. [Google Scholar] [CrossRef]
- Veizer, J.; Ala, D.; Azmy, K.; Bruckschen, P.; Buhl, D.; Bruhn, F.; Carden, G.A.F.; Diener, A.; Ebneth, S.; Godderis, Y. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem. Geol. 1999, 161, 59–88. [Google Scholar] [CrossRef] [Green Version]
- Olanipekun, B.J.; Amy, K.; Brand, U. Dolomites of the boat harbour Formation in the northern peninsula, western Newfoundland, Canada: Implications for dolomitization history and porosity control. AAPG Bull. 2014, 98, 765–791. [Google Scholar] [CrossRef]
- Shembilu, N.; Azmy, K.; Blamey, N. Origin of middle-upper cambrian dolomites in eastern Laurentia: A case study from Belle Isle strait, western Newfoundland. Mar. Petrol. 2021, 125, 104858. [Google Scholar] [CrossRef]
- Loyd, S.J.; Corsetti, F.A. The origin of the millimeter-scale lamination in the Neoproterozoic lower Beck Spring dolomite: Implications for widespread, fine-scale, layer-parallel diagenesis in Precambrian carbonates. J. Sediment. Res. 2010, 80, 678–687. [Google Scholar] [CrossRef] [Green Version]
- Braithwaite, C.J.R.; Rizzi, G.; Darke, G. The geometry and petrogenesis of dolomite hydrocarbon reservoirs: Introduction. Geol. Soc. Lond. Spec. Publ. 2004, 235, 1–6. [Google Scholar] [CrossRef]
- Macdougall, J.D.; Martin, E. Seawater strontium isotopes at the K-T boundary. Chem. Geol. 1988, 70, 119. [Google Scholar] [CrossRef]
- Shinn, E.A.; Lloyd, R.M.; Ginsburg, R.N. Anatomy of a modern carbonate tidal- flat, Andros Island, Bahamas. J. Sediment. Petrol. 1969, 39, 1202–1228. [Google Scholar]
- Xiang, P.F.; Ji, H.C.; Shi, Y.Q.; Huang, Y.; Sun, Y.S.; Xu, X.R.; Zou, S.Q. Petrographic, rare earth elements and isotope constraints on the dolomite origin of Ordovician Majiagou Formation (Jizhong Depression, North China). Mar. Pet. Geol. 2020, 117, 104374. [Google Scholar] [CrossRef]
- Nothdurft, L.D.; Webb, G.E.; Kamber, B.S. Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, Western Australia: Confirmation of a seawater REE proxy in ancient limestones. Geochim. Et Cosmochim. Acta 2004, 68, 263–283. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Wei, W.; Li, S.Z.; Yang, T.; Zhang, R.X.; Somerville, I.; Santosh, M.; Wei, H.T.; Wu, J.Q.; Yang, J.; et al. Rare earth element geochemistry of carbonates as a proxy for deep-time environmental reconstruction. Paleogeogr. Paleoclimatol. Paleoecol. 2021, 574, 110443. [Google Scholar] [CrossRef]
- Elderfield, H.; Greaves, M.J. The rare earth elements in seawater. Nature 1982, 296, 214–219. [Google Scholar] [CrossRef]
- Alibo, D.S.; Nozaki, Y. Rare earth elements in seawater: Particle association, shalenormalization, and Ce oxidation. Geochem. Cosmochim. Acta 1999, 63, 363–372. [Google Scholar] [CrossRef]
- Sverjensky, D.A. Europium redox equilibria in aqueous solution. Earth Planet. Sci. Lett. 1984, 67, 70–78. [Google Scholar] [CrossRef]
- Klinkhammer, G.P.; Elderfield, H.; Edmond, J.M.; Mitra, A. Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges. Geochim. Et Cosmochim. Acta 1994, 58, 5105–5113. [Google Scholar] [CrossRef]
- Feng, K.; Xu, S.; Chen, A.; Ogg, J.; Hou, M.; Lin, L.; Chen, H. Middle Permian dolomites of the SW Sichuan Basin and the role of the Emeishan Large Igneous Province in their origin. Mar. Pet. Geol. 2021, 128, 104981. [Google Scholar] [CrossRef]
- Lee, S.G.; Lee, D.H.; Kim, Y.; Chae, B.G.; Kim, W.Y.; Woo, N.C. Rare earth elements as indicators of groundwater environment changes in a fractured rock system: Evidence from fracture-filling calcite. Appl. Geochem. 2003, 18, 135–143. [Google Scholar] [CrossRef]
- Frimmel, H.E. Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator. Chem. Geol. 2009, 258, 338–353. [Google Scholar] [CrossRef]
- Wang, G.W.; Hao, F.; Li, P.P.; Zou, H.Y. Use of rare earth element geochemistry to constrain the source of dolomitizing fluid for dolomitization of the Lower Triassic Feixianguan Formation, Jiannan area, China. J. Petrol. Sci. Eng. 2016, 138, 282–291. [Google Scholar] [CrossRef]
- Webb, G.E.; Kamber, B.S. Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy. Geochimica et Cosmochimica Acta J. Geochem. Soc. Meteorit. Soc. 2000, 64, 1557–1565. [Google Scholar] [CrossRef]
- Chen, D.; Chen, G. Practical Rare Earth Element Geochemistry; Metallurgical Industry Press: Beijing, China, 1990; pp. 59–172. [Google Scholar]
- Zheng, J.; Shen, A.; Liu, Y.; Chen, Y. Multi-parametercomprehensive identification of the genesis of lower Paleozoicdolomite in Tarim Basin, China. Acta Petrolei Sin. 2012, 33, 145–153. [Google Scholar]
- Friedman, G.M.; Sun, S.Q. A reappraisal of dolomite abundance and occurrence in the Phanerozoic; discussion and reply. J. Sediment. Res. 1995, 65, 244–246. [Google Scholar] [CrossRef]
- Fabricius, I.L.; Borre, M.K. Stylolites, porosity, depositional texture, and silicates in chalk facies sediments. Ontong Java Plateau—Gorm and Tyra fields, North Sea. Sedimentology 2007, 54, 183–205. [Google Scholar] [CrossRef] [Green Version]
- Warren, J.K. Sulfate Dominated Sea-marginal and Platform Evaporative Settings. Evaporites Pet. Miner. Resour. 1991, 50, 69–187. [Google Scholar]
- Warren, J.K.; St. Kendall, C.G. Comparison of sequences formed in Marine sabkha (subaerial) and salina (Subaqueous) settings-modern and ancient. Am. Assoc. Pet. Geol. Bull. 1985, 69, 1013–1023. [Google Scholar] [CrossRef]
- Adams, J.E.; Rhodes, M.L. Dolomitization by seepage refluxion. AAPG Bull. 1960, 44, 1912–1920. [Google Scholar] [CrossRef]
Lithology | 87Sr/86Sr | δ13C‰ | δ18O‰ | ΣREE + Y | Y | δEu | δCe | |
---|---|---|---|---|---|---|---|---|
(VPDB) | (VPDB) | (PPM) | (PPM) | (PPM) | (PPM) | |||
Limestone | n | 5 | 13 | 13 | 16 | 16 | 16 | 16 |
Mean | 0.709633 | −1.24 | −8.99 | 80.97 | 11.80 | 0.91 | 0.85 | |
Min | 0.709145 | −4.70 | −9.78 | 8.99 | 1.25 | 0.77 | 0.73 | |
Mix | 0.710621 | 2.18 | −8.04 | 278.5 | 39.02 | 1.38 | 0.91 | |
Type 1 dolomite | n | 18 | 31 | 31 | 34 | 34 | 34 | 34 |
Mean | 0.709838 | −0.53 | −7.43 | 20.81 | 2.72 | 0.80 | 0.83 | |
Min | 0.709084 | −2.01 | −11.56 | 5.47 | 0.81 | 0.69 | 0.75 | |
Mix | 0.715343 | 2.24 | −5.79 | 94.16 | 10.55 | 1.02 | 0.89 | |
Type 2 dolomite | n | 4 | 13 | 13 | 13 | 13 | 13 | 13 |
Mean | 0.709310 | −0.50 | −7.77 | 11.79 | 1.40 | 0.80 | 0.86 | |
Min | 0.709217 | −1.62 | −10.18 | 4.94 | 0.52 | 0.68 | 0.76 | |
Mix | 0.709427 | 0.81 | −6.08 | 23.36 | 2.36 | 1 | 0.96 | |
Type 3 dolomite | n | 11 | 15 | 15 | 15 | 15 | 15 | 15 |
Mean | 0.709363 | −0.63 | −7.27 | 9.75 | 1.28 | 0.88 | 0.85 | |
Min | 0.709171 | −1.62 | −9.12 | 4.75 | 0.7 | 0.71 | 0.75 | |
Mix | 0.710069 | 1.53 | −6.08 | 15.36 | 2.1 | 11.62 | 0.93 |
Lithology | Th (°C) | Tm-ice (°C) | Salinity (wt%) | |||
---|---|---|---|---|---|---|
Range | Mean | Range | Mean | Range | Mean | |
Type 2 dolomite | 68~130.2 | 102.61 | −20~−6 | −11.19 | 8.97~14.88 | 12.59 |
Type 3 dolomite | 50~90.8 | 71.45 | −12.2~−6 | −8.95 | 8.97~14.13 | 11.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, H.; Xu, S.; Chen, A.; Wen, L.; Zhang, B.; Zhang, X.; Li, F.; Liu, M.; Yong, W. The Origin of the Upper Cambrian Basin-Scale Massive Dolostones of the Xixiangchi Formation, Sichuan Basin, China. Minerals 2023, 13, 932. https://doi.org/10.3390/min13070932
Hu H, Xu S, Chen A, Wen L, Zhang B, Zhang X, Li F, Liu M, Yong W. The Origin of the Upper Cambrian Basin-Scale Massive Dolostones of the Xixiangchi Formation, Sichuan Basin, China. Minerals. 2023; 13(7):932. https://doi.org/10.3390/min13070932
Chicago/Turabian StyleHu, Huan, Shenglin Xu, Anqing Chen, Long Wen, Benjian Zhang, Xihua Zhang, Fuxiang Li, Mengqi Liu, and Wei Yong. 2023. "The Origin of the Upper Cambrian Basin-Scale Massive Dolostones of the Xixiangchi Formation, Sichuan Basin, China" Minerals 13, no. 7: 932. https://doi.org/10.3390/min13070932
APA StyleHu, H., Xu, S., Chen, A., Wen, L., Zhang, B., Zhang, X., Li, F., Liu, M., & Yong, W. (2023). The Origin of the Upper Cambrian Basin-Scale Massive Dolostones of the Xixiangchi Formation, Sichuan Basin, China. Minerals, 13(7), 932. https://doi.org/10.3390/min13070932