Characteristics of Seismogenic Dust Particles from a Mountain and Their Significance for Paleoseismic Records in a Tufa Section: A Case Study of Jiuzhaigou, China
Abstract
:1. Introduction
2. Geological Setting
3. Sedimentary Characteristics
4. Materials and Methods
5. Results
5.1. Mineral Phase Results
5.2. Grain Size Distribution
5.3. Particle Morphology
5.4. Composition of Rare Earth Elements
5.5. Chronology Analysis
6. Discussion
6.1. Sedimentary Model of Seismogenic Dust Particles in Tufa of Jiuzhaigou
6.2. Paleoseismic Characterization of Morphology and Geochemistry of Mountain Particles
6.2.1. Indication of Mineral Composition
6.2.2. Indication of Mineral Grain Size and Morphological Characteristics
6.2.3. Indication of Rare Earth Elements and Rb, Sr, and Ba Composition in Source of Components
7. Conclusions
- The mountain particles in Jiuzhaigou have specific mineralogical and petrographic characteristics. According to the results of the X-ray diffraction, laser particle size analysis, and scanning electron microscopy, the mineral composition of the mountain particles in Jiuzhaigou was basically calcite, the particle size was large, single particles were mostly angular or subangular, and the fracture morphology observed under a single-particle microscope was uneven, indicating the dust-lifting characteristics of seismic hazards.
- The source of the interlayer sediments of the dam body was an earthquake. The tufa sedimentary dynamics analysis shows that seismic particles were transported and deposited near the ground by aeolian formation and accumulated in the tufa dam body by rainfall. The comparative analysis of particle size, morphology, and mineral composition proves the potentiality of seismic particle accumulation in the dam body. The dams in the Rizegou Valley and Shuzhenggou Valley gully systems are characterized by the accretion of particles from the adjacent mountains, as evidenced by the detrital interlayers in the Sparkling Lake dam. All types of particulate matter sources in Jiuzhaigou came from earthquake collapse.
- Geochemical analysis data indicate that the provenance of various particles in the same area is stable, indicating the homology of the sedimentation of terrestrial carbonate rocks in the karst system. Combined with mineralogy, grain size morphology, and chronology, the interlayer particles in the tufa sedimentary section have the potential to be applied as paleoearthquake archives, and the AMS 14C age of the black peat layer at the base of the Sparkling Lake dam identifies a seismic extreme event that occurred around 1220 ± 30 BP. Therefore, the earthquake mountain disaster particles in tufa bedding can be linked with paleoearthquakes, and the special interlayers in the tufa section can be used for the reconstruction of paleoearthquakes.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ford, T.D.; Pedley, H.M. A review of tufa and travertine deposits of the world. Earth Sci. Rev. 1996, 41, 117–175. [Google Scholar] [CrossRef]
- Pedley, H.M. Classification and environmental models of cool freshwater tufas. Sediment. Geol. 1990, 68, 143–154. [Google Scholar] [CrossRef]
- Wang, F.; Zhao, X.; Dong, F.; Capezzuoli, E.; Malov, A.; Du, J. Classification of Alpine-type travertine in Jiuzhaigou valley on the eastern margin of the Qinghai-Tibet Plateau. Carsologica Sin. 2021, 40, 112–124. [Google Scholar]
- Pentecost, A. Travertine; Springer Science & Business Media: Berlin, France, 2005; pp. 1–445. [Google Scholar]
- Enrico, C.; Anna, G.; Martyn, P. Decoding tufa and travertine (fresh water carbonates) in the sedimentary record: The state of the art. Sedimentology 2014, 61, 1–21. [Google Scholar]
- Karaisaoğlu, S.; Orhan, H. Sedimentology and geochemistry of the Kavakköy Travertine (Konya, central Turkey). Carbonate Evaporite 2018, 33, 783–800. [Google Scholar] [CrossRef]
- Koşun, E. Facies characteristics and depositional environments of Quaternary tufa deposits, Antalya, SW Turkey. Carbonate Evaporite 2012, 27, 269–289. [Google Scholar] [CrossRef]
- Andrea, S.; Paola, M.; Michele, S.; Paola, T.; Erlisiana, A.; Andrea, B.; Stefania, F. The uplift of the Adriatic flank of the Apennines since the Middle Pleistocene: New insights from the Tronto River basin and the Acquasanta Terme Travertine (central Italy). Geomorphology 2020, 352, 106990. [Google Scholar]
- Priestley, S.C.; Karlstrom, K.E.; Love, A.J.; Crossey, L.J.; Polyak, V.J.; Keppel, M.N.; Habermehl, M.A. Uranium series dating of Great Artesian Basin travertine deposits: Implications for palaeohydrogeology and palaeoclimate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 490, 163–177. [Google Scholar] [CrossRef]
- Meyer, C.M.; Aldenderfer, S.M.; Wang, Z.; Hoffmann, L.D.; Dahl, A.J.; Haas, R.W.; Schlutz, F. Permanent human occupation of the central Tibetan Plateau in the early Holocene. Science 2017, 355, 64–67. [Google Scholar] [CrossRef]
- Liu, Z.; Li, H.; You, C.; Wan, N.; Sun, H. Thickness and stable isotopic characteristics of modern seasonal climate-controlled sub-annual travertine laminas in a travertine-depositing stream at Baishuitai, SW China: Implications for paleoclimate reconstruction. Environ. Geol. 2006, 2, 257–265. [Google Scholar] [CrossRef]
- Filippis, L.D.; Faccenna, C.; Billi, A. Plateau versus fissure ridge travertines from Quaternary geothermal springs of Italy and Turkey: Interactions and feedbacks between fluid discharge, paleoclimate, and tectonics. Earth Sci. Rev. 2013, 123, 35–52. [Google Scholar] [CrossRef]
- Gradzinski, M.; Wroblewski, W.; Dulinski, M. Earthquake-affected development of a travertine ridge. Sedimentology 2014, 61, 238–263. [Google Scholar] [CrossRef]
- Wang, Z.; Yin, J. Climatic controls on travertine deposition in southern Tibet during the late Quaternary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2022, 589, 110852. [Google Scholar] [CrossRef]
- Altunel, E.; Karabacak, V. Determination of horizontal extension from fissure-ridge travertines: A case study from the Denizli Basin, southwestern Turkey. Geodin. Acta 2005, 18, 333–342. [Google Scholar] [CrossRef] [Green Version]
- Hancock, P.L.; Chalmers, R.M.L. Travitonics: Using travertines in active fault studies. J. Struct. Geol. 1999, 21, 903–916. [Google Scholar] [CrossRef]
- Williams, R.T.; Warren, D.S.; Peter, S.M. Reading a 400,000-year record of earthquake frequency for an intraplate fault. Proc. Natl. Acad. Sci. USA 2017, 114, 4893–4898. [Google Scholar] [CrossRef]
- Karabacak, V.; Uysal, I.T.; Mutlu, H. Are U-Th Dates Correlated With Historical Records of Earthquakes? Constraints From Coseismic Carbonate Veins Within the North Anatolian Fault Zone. Tectonics 2019, 7, 2431–2448. [Google Scholar] [CrossRef]
- Andrea, B.; Enrico, C.; Volkan, K.; Cihat, A.M.; Luo, L. Fissure Ridges: A Reappraisal of Faulting and Travertine Deposition (Travitonics). Geosciences 2021, 11, 278. [Google Scholar]
- Matera, P.F.; Gennaro, V.; Martina, A.; Andrea, B.; Enrico, C.; Domenico, L. Geothermal fluid variation recorded by banded Ca-carbonate veins in a fault-related, fissure ridge-type travertine depositional system (Iano, southern Tuscany, Italy). Geofluids 2021, 2021, 8817487. [Google Scholar] [CrossRef]
- Kumar, R.K.; Achutha, P.K. U-Th age evidence from carbonate veins for episodic crustal deformation of Central Anatolian Volcanic Province. Quat. Sci. Rev. 2017, 177, 158–172. [Google Scholar]
- Andrea, B.; Enrico, C.; Riccardo, A.; Marilì, B.; Mario, V. Studying travertines for neotectonics investigations: Middle—Late Pleistocene syn-tectonic travertine deposition at Serre di Rapolano (Northern Apennines, Italy). Int. J. Earth Sci. 2010, 99, 1383–1398. [Google Scholar]
- Brogi, A.; Liotta, D.; Capezzuoli, E.; Al, E. Bagno Vignoni-Val d’Orcia area, Italy. Geothermics 2020, 85, 1–22. [Google Scholar]
- Karabacak, V.; Ring, U.; Uysal, I.T. Earth Sciences. The off-fault deformation on the North Anatolian Fault Zone and assessment of slip rate from carbonate veins. Chem. Chem. 2020, 795, 228633. [Google Scholar]
- Andrea, B.; Enrico, C.; Massimo, M.; Emmanuel, O.G.; Matera, P.F.; Alessandro, M. Earthquake-triggered soft-sediment deformation structures (seismites) in travertine deposits. Tectonophysics 2018, 745, 349–365. [Google Scholar]
- Andrea, B.; Enrico, C.; Sándor, K.; Baykara, M.O.; Shen, C. Key travertine tectofacies for neotectonics and palaeoseismicity reconstruction: Effects of hydrothermal overpressured fluid injection. J. Geol. Soc. 2017, 174, 679–699. [Google Scholar]
- Guo, Y.; Ge, Y.; Cui, P.; Chen, X.; Mao, P.; Liu, T.; Zhou, L. Early and mid-Holocene hydroclimate change recorded in tufa deposits in the Jiuzhaigou gully, eastern Tibetan Plateau. Catena 2021, 196, 278–303. [Google Scholar] [CrossRef]
- Lv, C.; Zhao, X.; Jiang, Y.; Zhu, H.; Zhang, H.; Wang, F.; Al, E. Insights into Alpine-Karst-Type Tufa Deposits in Geological Environmental Records: A Case Study of the Calcareous Tufa Profile of the Jiuzhaigou Natural Reserve on the Eastern Margin of the Tibetan Plateau. Minerals 2023, 13, 120. [Google Scholar] [CrossRef]
- Jiang, H.; Zhong, N.; Li, Y.; Ma, X.; Xu, H.; Shi, W.; Zhang, S.; Nie, G. A continuous 13.3-ka record of seismogenic dust events in lacustrine sediments in the eastern Tibetan Plateau. Sci. Rep. 2017, 7, 15686. [Google Scholar] [CrossRef] [Green Version]
- Liang, L.; Jiang, H. Geochemical composition of the last deglacial lacustrine sediments in East Tibet and implications for provenance, weathering, and earthquake events. Quat. Int. 2015, 430, 41–51. [Google Scholar] [CrossRef]
- Jiang, H.; Mao, X. Provenance and earthquake signature of the last deglacial Xinmocun lacustrine sediments at Diexi, East Tibet. Geomorphology 2014, 204, 518–531. [Google Scholar] [CrossRef]
- Henck, A.; Taylor, J.; Lu, H.; Li, Y.; Yang, Q.; Grub, B.; Breslow, S. Anthropogenic hillslope terraces and swidden agriculture in Jiuzhaigou National Park, northern Sichuan, China. Quat. Res. 2009, 73, 201–207. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, X.; Wang, F.; Wu, C.; Li, S. Radioactivity of Nuorilang waterfall travertine dam in Jiuzhaigou valley, Sichuan Province and its implication for the sedimentary environment. Carsologica Sin. 2021, 40, 157–165. [Google Scholar] [CrossRef]
- Dong, F.; Dai, Q.; Rao, H.; Wang, F.; Zhao, X.; Enrico, C.; Augusto, A. Comparative study on microbial deposition of travertine in Huanglong scenic area and Yellowstone National Park. Carsologica Sin. 2021, 40, 264–272. [Google Scholar] [CrossRef]
- Gan, J. A System Study on the Geological Environment and Water Cycle at the Jiuzhaigou Valley. Master’s Thesis, Southwest Jiaotong University, Chengdu, China, 2007. [Google Scholar]
- Team, S. 1:50,000 Ecological Geology Map and Report of Jiuzhaigou; Geological Publishing House: Beijing, China, 2000; pp. 1–140. [Google Scholar]
- Qiao, X.; Xiao, Y.; Du, J.; Tang, Y.; Xiao, W.; Zhang, X.; Zhang, M. Tufa Landscapes in the Key Scenic Areas of the Jiuzhaigou Natural World Heritage Site: A ritical Review and Future Research Needs. Earth Environ. 2022, 50, 202–218. [Google Scholar]
- Peng, D.; Xie, Y.X. Multiple stratigraphic classification and correlation of the Devonian- Triassic in the Jiuzhaigou area, Sichuan, and its sedimentary environment. Geol. China 2006, 33, 1013e–1022e. [Google Scholar]
- Xinlei, Z.; Ya, T.; Du, J.; Stefano, L.; Yao, X.; Qingxia, Y.; Hailiang, S.; Xue, Q. Enhanced soil erosion threatens fluvial tufa landscapes after an Ms. 7.0 earthquake in the Jiuzhaigou World Heritage Site, southwestern China. Sci. Total Environ. 2022, 848, 157632. [Google Scholar]
- Zhao, B.; Xu, W.Y. Background and reflections on Dingxi earthquake of July 22, 2013. Nat. Hazards 2014, 70, 1661–1667. [Google Scholar] [CrossRef]
- Zhang, K. Is the Songpan-Ganzi terrane (central China) really underlain by oceanic crust? J. -Geol. Soc. India 2001, 57, 223–230. [Google Scholar]
- Zhang, P.; Wen, X.; Shen, Z.; Chen, J. Oblique, high-angle, listric-reverse faulting and associated development of strain: The Wenchuan earthquake of May 12, 2008, Sichuan, China. Annu. Rev. Earth Pl. Sc. 2010, 38, 353–382. [Google Scholar] [CrossRef] [Green Version]
- Hao, L.; Xiuling, W.; Hang, H.; Linjian, S.; Deqiang, Y.; Hao, W. The earthquake in Jiuzhaigou County of Northern Sichuan, China on August 8, 2017. Nat. Hazards 2018, 90, 1021–1030. [Google Scholar]
- Wei, X.; Chen, G.; Kun, R.; Xu, C.; Yu, W.; Qi, L. Discussion on seismogenic structure of Jiuzhaigou earthquake and its implication for current strain state in the southeastern Qinghai-Tibet Plateau. Chin. J. Geophys. 2017, 10, 4018–4026. [Google Scholar]
- Dai, L.; Fan, X.; Jansen, J.D. Landslides and fluvial response to landsliding induced by the 1933 Diexi earthquake, Minjiang River, eastern Tibetan Plateau. Landslides 2021, 18, 3011–3025. [Google Scholar] [CrossRef]
- Feng, J.; Chen, L.; Han, M.; Gao, S.; Li, Y.; Lu, L.; Chen, S. Multi-fault rupture behavior of the 1786 M 73/4 Kangding earthquake on the eastern margin of the Tibetan Plateau. Front. Earth Sci. 2023, 11, 1140326. [Google Scholar] [CrossRef]
- Li, H.; Deng, Z.; Chen, L. Simulation study on the influencing factors of surface rupture zone distribution of strike-slip fault:take Luhuo MS7.6 earthquake in 1973 for example. Chin. J. Geophys. 2019, 8, 2871–2884. [Google Scholar]
- Yue, H.; Zhang, Z.; Chen, Y. Interaction between adjacent left-lateral strike-slip faults and thrust faults: The 1976 Songpan earthquake sequence. Chin. Sci. Bull. 2008, 53, 2520–2526. [Google Scholar] [CrossRef] [Green Version]
- Niu, A.; Zhang, L.; Yan, W.; Jia, X.; Li, X. On the Characteristics of Ground Deformation Anomalies in the Middle and Northern Part of the South-North Seismic Belt prior to the Wenchaun Earthquake. Earthquake 2009, 1, 100–107. [Google Scholar]
- Wang, L.; Chen, S.; Zhuang, J.; Zhang, B.; Shi, W.; Yang, J.; Xu, W. Gravity field changes reveal deep mass transfer before and after the 2013 Lushan earthquake. Commun. Earth Environ. 2023, 4, 194. [Google Scholar] [CrossRef]
- Lu, J.; Xiang, S.; Jiang, S.; Liu, C.; Zeng, F. Analysis of Soil Granularity at Dazhuka Country, Rikeze. J. Arid. Land Resour. Environ. 2008, 22, 80–85. [Google Scholar] [CrossRef]
- Wang, J. Response of Stream Geomorphic Indices and Lacustrine Sediments to the Activity of Daqingshan Piedmont Fault. Master’s Thesis, National Institute of Natural Hazards, MEMC, Beijing, China, 2021. [Google Scholar]
- Mao, X. Preliminary Study on Lacustrine Sediments at Diexi in the Upper Reach of the Minjiang River during the last deglaciation. Master’s Thesis, China University of Geosciences, Beijing, China, 2011. [Google Scholar]
- Václav, S.; Pachnerová, B.K.; Zachariáš, J.; Světlík, L.; Borecká, L. Gothic-Arch Calcite from Speleothems of the Bohemian Karst (Czech Republic): Its Occurrence, Microscopic Ultrastructure and Possible Mechanism of Growth. Minerals 2021, 11, 866. [Google Scholar]
- LI, B.; Sun, G.; Zhong, H.; LI, S.; Wang, Y.; Zhao, L.; LI, X. Rare Earth Element Characteristics of Surface Sediments in the Fujian Coastal Area and their Implications for Provenance. Mar. Geol. Front. 2017, 33, 47–56. [Google Scholar] [CrossRef]
- Guo, M.; Xu, L. Geochemical Features of Rare Earth Elements in Sediments of the Chaohu Lake and its Environmental Implications. Mar. Geol. Quat. Geol. 2016, 36, 137–144. [Google Scholar] [CrossRef]
- Wu, S.; Yang, H.; Fan, H.; Xia, Y.; Meng, Q.; He, S.; Gong, X. Assessment of the Effect of Organic Matter on Rare Earth Elements and Yttrium Using the Zhijin Early Cambrian Phosphorite as an Example. Minerals 2022, 12, 876. [Google Scholar] [CrossRef]
- Committee, S.P.L.C. Annals of Sichuan Province; Sichuan People’s Publishing House: Chengdu, China, 1998; pp. 1–379. [Google Scholar]
- Jibson, R.W. A Public Health Issue Related To Collateral Seismic Hazards: The Valley Fever Outbreak Triggered By The 1994 Northridge, California Earthquake. Surv. Geophys. 2002, 23, 511–528. [Google Scholar] [CrossRef]
- Tang, C.; Zhu, J.; Li, W.; Liang, J. Rainfall-triggered debris flows following the Wenchuan earthquake. Bull Eng. Geol. Environ. 2009, 68, 187–194. [Google Scholar] [CrossRef]
- Wang, F.; Dong, F.; Zhao, X.; Sun, S.; Dai, Q.; Li, Q. The large dendritic fissures of travertine dam exposed by Jiuzhaigou earthquake, Sichuan, southwestern China. Int. J. Earth Sci. 2018, 107, 2785–2786. [Google Scholar] [CrossRef]
- Stefano, L.; Tang, Y.; Matteo, R.; Qiao, X.; Schreiber, B.C.; Deng, G. Seasonal Pattern In the High-Elevation Fluvial Travertine From the Jiuzhaigou National Nature Reserve, Sichuan, Southwestern China. J. Sediment. Res. 2017, 87, 253–271. [Google Scholar]
- Wen, X.; Wu, Y.; Huang, C.; Luo, M.; Chen, K. Grain size & elements composition characteristics and their lmplications for provenance of the late pleistocene loess in the upper reaches of the minjiang river china. Mt. Res. 2019, 37, 488–498. [Google Scholar] [CrossRef]
- Jiang, H.; Zhong, N.; Li, Y.; Xu, H.; Ma, X.; Meng, Y.; Mao, X. Magnetostratigraphy and grain size record of the Xijiadian fluviolacustrine sediments in East China and its implied stepwise enhancement of the westerly circulation during the Eocene period. J. Geophys. Res. Solid Earth 2014, 119, 7442–7457. [Google Scholar] [CrossRef]
- Pye, K.; Tsoar, H. The mechanics and geological implications of dust transport and deposition in deserts with particular reference to loess formation and dune sand diagenesis in the northern Negev, Israel. Geol. Soc. Lond. Spec. Publ. 1987, 35, 139–156. [Google Scholar] [CrossRef]
- Lu, H.; An, Z. Comparison of Grain-size Distribution of Red Clay and Loess-paleosol Deposits in Chinese Loess Plateau. Acta Sedimentol. Sin. 1999, 17, 226–232. [Google Scholar]
- Yu, X.; Zhou, W.; Liu, X. Grain size characteristics of the holocene peat sedmient in eastern Tibetan plateau and its paleo—clmiatic significance. Acta Sedimentol. Sin. 2006, 24, 64–869. [Google Scholar]
- Zhang, K.; Li, Q.; Yan, L.; Lu, L.; Zhang, Y.; Hui, J.; Tang, X. Geochemistry of limestones deposited in various plate tectonic settings. Earth Sci. Rev. Int. Geol. J. Bridg. Gap Between Res. Artic. Textb. 2017, 167, 27–46. [Google Scholar] [CrossRef] [Green Version]
Number | Date | Location | Ms | References |
---|---|---|---|---|
1 | 25 August 1933 | Diexi | 7.5 | [45] |
2 | 14 April 1955 | Kangdin | 7.5 | [46] |
3 | 6 February 1973 | Luhuo | 7.6 | [47] |
4 | 16 August 1976 | Songpan | 7.2 | [48] |
5 | 12 May 2008 | Wenchuan | 8.0 | [49] |
6 | 20 April 2013 | Lushan | 7.0 | [50] |
7 | 8 August 2017 | Jiuzhaigou | 7.0 | [44] |
Sample Number | Calcite (%) | Quartz (%) | Muscovite (%) | Kaolinite (%) | Albite (%) | Dolomite (%) | Chlorite (%) |
---|---|---|---|---|---|---|---|
BT-1 | 79.8 | 6.2 | 12.7 | 1.2 | - | - | - |
BT-2 | 80.3 | 6.3 | 10.6 | 2.9 | - | - | - |
BT-3 | 77.3 | 6.9 | 12.2 | 3.6 | - | - | - |
BT-4 | 78.0 | 7.4 | 9.6 | 4.9 | - | - | - |
HX | 95.1 | 3.1 | - | 1.9 | - | - | - |
HL | 98.8 | 1.2 | - | - | - | - | - |
ZD | 49.7 | 18.8 | 13.5 | 4.3 | 5.8 | 7.9 | - |
HT | 1.0 | 44.2 | 32.5 | 4.4 | 14.7 | 0.6 | 2.5 |
Sample | HY-1 | HY-2 | HY-3 | HL-1 | HL-2 | HX-1 | HX-2 | BT-1 | BT-2 | BT-3 | BT-4 | ZD-1 | ZD-2 | ZD-3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
La | 3.38 | 1.44 | 2.06 | 3.42 | 1.47 | 3.7 | 3.74 | 9.05 | 9.94 | 10.4 | 11.5 | 15.9 | 15.8 | 16.2 |
Ce | 5.38 | 1.34 | 4.02 | 5.09 | 2.68 | 7.09 | 7.23 | 17.3 | 19.1 | 19.9 | 22 | 31.3 | 30.9 | 32 |
Pr | 0.72 | 0.25 | 0.47 | 0.51 | 0.31 | 0.81 | 0.82 | 1.99 | 2.19 | 2.28 | 2.51 | 3.59 | 3.54 | 3.66 |
Nd | 2.72 | 1 | 1.75 | 1.67 | 1.15 | 2.95 | 3.01 | 7.15 | 7.89 | 8.21 | 9.06 | 13.3 | 13.3 | 13.7 |
Sm | 0.528 | 0.188 | 0.331 | 0.24 | 0.214 | 0.535 | 0.557 | 1.26 | 1.37 | 1.42 | 1.57 | 2.54 | 2.53 | 2.63 |
Eu | 0.107 | 0.047 | 0.059 | 0.047 | 0.044 | 0.105 | 0.108 | 0.235 | 0.259 | 0.267 | 0.297 | 0.501 | 0.484 | 0.504 |
Gd | 0.529 | 0.25 | 0.293 | 0.202 | 0.196 | 0.458 | 0.467 | 0.98 | 1.05 | 1.09 | 1.2 | 2.3 | 2.22 | 2.32 |
Tb | 0.08 | 0.04 | 0.05 | 0.03 | 0.03 | 0.07 | 0.07 | 0.15 | 0.16 | 0.17 | 0.18 | 0.37 | 0.352 | 0.372 |
Dy | 0.477 | 0.256 | 0.268 | 0.191 | 0.178 | 0.414 | 0.407 | 0.879 | 0.947 | 0.973 | 1.07 | 2.13 | 2.05 | 2.17 |
Ho | 0.1 | 0.061 | 0.055 | 0.041 | 0.038 | 0.083 | 0.082 | 0.182 | 0.195 | 0.198 | 0.217 | 0.442 | 0.419 | 0.447 |
Er | 0.29 | 0.18 | 0.16 | 0.12 | 0.11 | 0.24 | 0.24 | 0.54 | 0.57 | 0.59 | 0.64 | 1.26 | 1.18 | 1.27 |
Tm | 0.042 | 0.027 | 0.023 | 0.018 | 0.018 | 0.038 | 0.037 | 0.085 | 0.09 | 0.093 | 0.101 | 0.197 | 0.186 | 0.195 |
Yb | 0.26 | 0.16 | 0.14 | 0.12 | 0.11 | 0.23 | 0.23 | 0.55 | 0.58 | 0.6 | 0.65 | 1.24 | 1.19 | 1.24 |
Lu | 0.04 | 0.02 | 0.02 | 0.02 | 0.02 | 0.04 | 0.04 | 0.08 | 0.09 | 0.09 | 0.1 | 0.19 | 0.18 | 0.185 |
Y | 3.86 | 3.27 | 1.81 | 1.58 | 1.49 | 2.47 | 2.46 | 5.49 | 5.79 | 5.98 | 6.52 | 13.4 | 12.8 | 13.6 |
ΣREE | 14.65 | 5.26 | 9.69 | 11.71 | 6.57 | 16.76 | 17.037 | 40.426 | 44.43 | 46.279 | 51.096 | 75.258 | 74.331 | 76.893 |
LREE | 12.84 | 4.26 | 8.69 | 10.97 | 5.87 | 15.19 | 15.47 | 36.99 | 40.75 | 42.48 | 46.94 | 67.13 | 66.55 | 68.69 |
HREE | 1.81 | 0.99 | 1 | 0.74 | 0.7 | 1.57 | 1.57 | 3.44 | 3.68 | 3.8 | 4.16 | 8.13 | 7.78 | 8.20 |
LREE/HREE | 7.08 | 4.29 | 8.67 | 14.87 | 8.37 | 9.66 | 9.86 | 10.75 | 11.06 | 11.17 | 11.29 | 8.26 | 8.56 | 8.38 |
LaN/YbN | 9.4 | 6.58 | 10.55 | 21.33 | 9.59 | 11.39 | 11.66 | 11.91 | 12.25 | 12.39 | 12.63 | 9.2 | 9.5 | 9.4 |
Eu/Eu* | 0.62 | 0.66 | 0.58 | 0.66 | 0.65 | 0.65 | 0.65 | 0.65 | 0.66 | 0.66 | 0.66 | 0.63 | 0.62 | 0.62 |
Ce/Ce* | 0.84 | 0.55 | 1 | 0.95 | 0.97 | 1.01 | 1.01 | 1 | 1 | 1 | 1 | 1.02 | 1.01 | 1.01 |
Rb | 8.39 | 1.17 | 1.01 | 4.34 | 4.34 | 11.9 | 12.0 | 28.1 | 32.1 | 31.3 | 34.2 | 56.9 | 54.6 | 55.2 |
Sr | 231 | 818 | 1290 | 559 | 560 | 647 | 650 | 413 | 436 | 426 | 422 | 328 | 325.2 | 317.4 |
Ba | 22 | 7.85 | 8.8 | 31.3 | 32.5 | 62.1 | 62.5 | 75.3 | 84 | 80.5 | 86.8 | 212 | 202 | 205.6 |
Sample Number | δ13C (IRMS, ‰) | Corrected Age (cal BP) | Average Corrected Age (2δ BP) |
---|---|---|---|
hh1 | −25.3 | (412–315 cal BP) (54.1%) (492–420 cal BP) (14.6%) | 1170 ± 30 |
hh2 | −26.7 | (1182–1050 cal BP) (87.5%) (1030–999 cal BP) (7.2%) (1220–1214 cal BP) (0.7%) | 1180 ± 30 |
hh3 | −24.2 | (1188–1063 cal BP) (74.5%) (1258–1202 cal BP) (20.9%) | 1220 ± 30 |
hh4 | −25.7 | (412–315 cal BP) (54.1%) (492–420 cal BP) (41.3%) | 350 ± 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jing, S.; Wang, F.; Capezzuoli, E.; Huang, G.; Li, J.; Jiang, H.; Zhou, Z.; Zhao, X.; Dong, F.; Brogi, A. Characteristics of Seismogenic Dust Particles from a Mountain and Their Significance for Paleoseismic Records in a Tufa Section: A Case Study of Jiuzhaigou, China. Minerals 2023, 13, 981. https://doi.org/10.3390/min13070981
Jing S, Wang F, Capezzuoli E, Huang G, Li J, Jiang H, Zhou Z, Zhao X, Dong F, Brogi A. Characteristics of Seismogenic Dust Particles from a Mountain and Their Significance for Paleoseismic Records in a Tufa Section: A Case Study of Jiuzhaigou, China. Minerals. 2023; 13(7):981. https://doi.org/10.3390/min13070981
Chicago/Turabian StyleJing, Shengwen, Fudong Wang, Enrico Capezzuoli, Guoqing Huang, Junhao Li, Hanchao Jiang, Zijian Zhou, Xueqin Zhao, Faqin Dong, and Andrea Brogi. 2023. "Characteristics of Seismogenic Dust Particles from a Mountain and Their Significance for Paleoseismic Records in a Tufa Section: A Case Study of Jiuzhaigou, China" Minerals 13, no. 7: 981. https://doi.org/10.3390/min13070981
APA StyleJing, S., Wang, F., Capezzuoli, E., Huang, G., Li, J., Jiang, H., Zhou, Z., Zhao, X., Dong, F., & Brogi, A. (2023). Characteristics of Seismogenic Dust Particles from a Mountain and Their Significance for Paleoseismic Records in a Tufa Section: A Case Study of Jiuzhaigou, China. Minerals, 13(7), 981. https://doi.org/10.3390/min13070981