Reevaluation of the K/Rb-Li Systematics in Muscovite as a Potential Exploration Tool for Identifying Li Mineralization in Granitic Pegmatites
Abstract
:1. Introduction
1.1. Characteristics of Group 1 (LCT) Pegmatites
1.2. Characteristics of Group 2 (NYF) Pegmatites
1.3. Metasomatic Alteration in Pegmatites
2. Analytical Methods
2.1. Laser Ablation Inductively-Coupled Plasma Mass Spectrometry
2.2. Laser-Induced Breakdown Spectroscopy
3. Results and Discussion
3.1. K/Rb and Li Behavior in Pegmatitic Muscovite
Locality | Li (ppm) | Rb (ppm) | Cs (ppm) | F (%) | K/Rb | References |
---|---|---|---|---|---|---|
Ago-Iwoye area, Nigeria (n = 4) | 11–16 | 349–679 | 15–40 | - | 617–61 | [32] |
Cap de Creus field, Spain (n = 9) | 14–27 | 489–598 | 13–19 | 0–0.28 | 178–145 | [33] |
Cherokee-Pickens district, Georgia, USA (n = 21) | 9–121 | 230–760 | - | 0.03–0.2 | 339–106 | [34] |
Cross Lake field, Manitoba, Canada (n = 38) | 14–678 | 158–2528 | 9–741 | - | 508–34 | [35] |
Diamond Mica mine, South Dakota, USA (n = 3) | 445–688 | 1847–2700 | 84–139 | 0.5–1.29 | 45–30 | [36] |
Panceiros peg., Spain (n = 5) | 232–743 | 2133–3308 | 1660–2204 | 0.21–0.52 | 39–26 | [26] |
Rattlesnake mine, South Dakota, USA (n = 3) | 159–226 | 1400–1909 | 47–51 | 0.4–0.45 | 58–42 | [36] |
Red Sucker Lake field, Manitoba, Canada (n = 5) | 47–186 | 454–1870 | 15–80 | - | 188–43 | [37] |
Thomaston-Barnesville district, Georgia, USA (n = 123) | 9–330 | 5–1476 | - | 0.0–0.70 | 350–49 | [38] |
Yellowknife field, NWT, Canada (n = 19) | 47–186 | 519–2090 | 0–108 | - | 153–38 | [39] |
Number of analyses (n = 230) | 9–743 | 5–3308 | 0–2204 | 0–1.29 | 617–26 |
3.2. K/Rb-Li Diagram for Evaluating Li-Mineralization in Granitic Pegmatites
Locality | Li (ppm) | Rb (ppm) | Cs (ppm) | F (%) | K/Rb | References |
---|---|---|---|---|---|---|
Cap de Creus field (BYL pegs.), Spain (n = 48) | 15–285 | 929–6970 | 4–2178 | 0–1.0 | 89–13 | [33] |
Cap de Creus field (BCP pegs.), Spain (n = 51) | 15–307 | 1631–8935 | 9–662 | 0–0.71 | 54–10 | [40] |
Cherokee-Pickens district, Georgia, USA (n = 18) | 5–603 | 420–3107 | - | 0.07–0.73 | 196–27 | [34] |
Cross Lake field, Manitoba, Canada (n = 25) | 5–228 | 1174–4420 | 31–2660 | - | 75–19 | [35] |
Dan Patch peg., South Dakota, USA (n = 6) | 311–494 | 1988–2910 | 70–127 | 0.68–0.95 | 41–29 | [36] |
Eastern Alps, Italy (n = 7) | 86–231 | 457–9693 | - | 0.10–0.21 | 141–8 | [28] |
El Peñon peg., Argentina (n = 3) | 232–418 | 3018–6584 | - | - | 28–13 | [41] |
Henryton peg., Maryland, USA (n = 13) | 77–383 | 323–618 | 13–37 | - | 275–142 | [27] |
Kalu’an field, China (n = 5) | 491–1728 | 1312–2878 | 76–111 | - | 53–26 | [42] |
Peerless peg., South Dakota, USA (n = 5) | 346–805 | 1763–2226 | 53–179 | 0.87–1.18 | 45–36 | [36] |
Yellowknife field (BYL pegs.), NWT, Canada (n = 11) | 47–975 | 1280–7660 | 16–261 | - | 63–11 | [39] |
Yellowknife field (BCP pegs.), NWT, Canada (n = 27) | 93–1068 | 693–9600 | 12–1140 | - | 112–7 | [39] |
Yitt-B peg., Manitoba, Canada (n = 3) | 121–149 | 4206–6035 | 160–443 | - | 19–13 | [43] |
Number of analyses (n = 222) | 5–1728 | 323–9693 | 4–2660 | 0–1.18 | 275–7 |
Locality | Li (ppm) | Rb (ppm) | Cs (ppm) | F (%) | K/Rb | References |
---|---|---|---|---|---|---|
Aclare peg., Leinster, Ireland (n = 81) | 415–8325 | 1744–6788 | 194–2963 | 0.33–0.80 | 84–10 | [44] |
Angwan Doka field, Nigeria (n = 8) | 1020–12,500 | 1245–9400 | 190–712 | 0.03–4.5 | 50–7 | [45] |
Bailongshan field, China (n = 98) | 448–4643 | 3342–10,717 | 41–1473 | - | 26–8 | [46] |
Cross Lake field, Manitoba, Canada (n = 29) | 37–488 | 1374–32,820 | 190–2334 | - | 62–2 | [35] |
Dumper Dew peg., Maine, USA (n = 41) | 584–7078 | 2853–7910 | 207–1094 | 1.89–2.67 | 82–10 | [47] |
Harding peg., New Mexico, USA (n = 7) | 1115–18,162 | 5029–12,436 | 189–4150 | - | 14–7 | [48] |
Jiada field, China (n = 11) | 1160–3848 | 3666–7466 | 181–463 | 0–0.30 | 23–11 | [49] |
Kalu’an field, China (n = 1) | 1042 | 4616 | 92 | - | 21 | [42] |
Moylisha peg., Leinster, Ireland (n = 31) | 564–17,158 | 311–6291 | 255–990 | 0.46–5.41 | 280–14 | [30] |
Moose II peg, Yellowknife, NWT, Canada (n = 32) | 35–1022 | 2808–8370 | 44–484 | - | 32–11 | [50] |
Peg Claims, Maine, USA (n = 6) | 557–1765 | 1920–3018 | - | - | 36–24 | [51] |
Pusila, Tibet (n = 2) | 1486–1533 | 13,442–14,082 | 566–660 | 0.03–0.05 | 6 | [52] |
Red Sucker Lake field, Manitoba, Canada (n = 4) | 7618–9383 | 19,300–20,300 | 1660–1950 | - | 4 | [37] |
Talati #1 peg., China (n = 20) | 627–2599 | 5930–17,096 | 223–4143 | - | 16–5 | [53] |
Volta Grande, Minas Gerais, Brazil (n = 11) | 1208–17,187 | 689–48,372 | 754–6414 | 0.73–0.84 | 3–1 | [29] |
Xiaohusite #91 peg., China (n = 10) | 652–2170 | 4503–8289 | 176–1746 | - | 20–11 | [53] |
Number of analyses (n = 392) | 35–18,162 | 311–48,372 | 41–6414 | 0–5.41 | 280–1 |
Locality | Li (ppm) | Rb (ppm) | Cs (ppm) | F (%) | K/Rb | References |
---|---|---|---|---|---|---|
Bikita peg., Ziimbabwe (n = 44) | 8243–18,582 | 19,011–33,541 | 324–1046 | - | 5–2 | Shaw (pers. comm. 2022) |
Buck Claim, Manitoba, Canada (n = 14) | 1951–14,771 | 7224–19,934 | 283–4056 | - | 10–4 | [54] |
Lower Tanco peg., Manitoba, Canada (n = 25) | 929–15,607 | 17,950–30,430 | 1440–7800 | - | 4–2 | [55] |
Presqueira peg., Spain (n = 5) | 139–418 | 3602–4881 | 1963–4829 | 0.14–0.33 | 23–17 | [26] |
Santa Elena peg., Argentina (n = 4) | 1347–16,954 | 2286–23,043 | - | - | 39–4 | [41] |
Tanco peg., Manitoba, Canada (n = 12) | 511–17,561 | 12,253–38,039 | 1038–7640 | 0.12–5.25 | 7–2 | [22] |
Varutrask peg., Sweden (n = 9) | 3205–18,116 | 3200–13,716 | 0–7074 | 0.51–4.60 | 27–6 | [56] |
Number of analyses (n = 113) | 139–18,582 | 2286–38,039 | 0–7800 | 39–2 |
Locality | Li (ppm) | Rb (ppm) | Cs (ppm) | F (%) | K/Rb | References |
---|---|---|---|---|---|---|
Bob Ingersoll peg., South Dakota, USA (n = 13) | 929–18,116 | 3475–10,516 | 189–1415 | 0.85–1.74 | 26–8 | [7] |
Brown Derby peg., Colorado, USA (n = 5) | 3072–14,279 | 16,601–26,599 | 849–9715 | 0.30–6.40 | 6–4 | [57] |
Dobrá Voda peg., Czech Republic (n = 1) | 1905 | 6127 | 189 | 1.06 | 14 | [58] |
Namivo peg., Mozambique (n = 11) | 743–17,834 | 3932–15,454 | 0–1509 | 0.50–2.46 | 21–5 | [59] |
Reung Kiet mine, Phangnga, Thailand (n = 1) | 13,935 | 9100 | 2000 | 3.8 | 8 | [60] |
Pidlite peg., New Mexico, USA (n = 1) | 4068 | 8772 | 1886 | 0.46 | 11 | [61] |
Red Cross Lake field, Manitoba, Canada (n = 5) | 2407–16,520 | 30,466–49,897 | 3584–12,828 | 0.37–2.50 | 3–2 | [62] |
Rožná peg., Czech Republic (n = 5) | 790–1904 | 1554–6492 | 94–566 | 0.64–1.74 | 55–13 | [58] |
Number of analyses (n = 42) | 743–17,834 | 236–49,897 | 0–12,828 | 0.37–6.4 | 1.55–2 |
Locality | Li (ppm) | Rb (ppm) | Cs (ppm) | F (%) | K/Rb | References |
---|---|---|---|---|---|---|
Falun field, Sweden (n = 7) | 64–1371 | 1258–4756 | 7–714 | - | 65–17 | [63] |
Huron Claim peg., Manitoba, Canada (n = 6) | 360–440 | 10,300–11,400 | 250–320 | 0.06–0.12 | 7–6 | [64] |
Itabira field, Brazil (n = 40) | 19–2069 | 280–13,330 | 0–270 | 0.13–2.2 | 305–19 | [65] |
Mangodara district, Burkina Faso (n = 43) | 65–578 | 135–2208 | - | - | 691–41 | [66] |
Shatford Lake group, Manitoba, Canada (n = 73) | 403–15,690 | 1006–10,607 | 377–6886 | 0.3–5.1 | 92–8 | Buck (unpub. data) |
Spro peg., Norway (n = 11) | 161–2856 | 914–2195 | 0–660 | 0.2–1.4 | 90–41 | [67] |
Tordal and Evje-Iveland fields, Norway (n = 12) | 50–12,791 | 339–20,448 | 5–12,753 | 0.89–6.51 | 284–4 | [68] |
Number of analyses (n = 192) | 19–15,690 | 315–20,448 | 0–12,753 | 0.06–6.51 | 691–4 |
3.3. Application of K/Rb-Li Diagram as an Exploration Tool
4. Conclusions
- Muscovite with Li-concentrations in excess of 500 ppm in conjunction with K/Rb ratios < 40 are strong indicators of potential Li mineralization for Group 1 (LCT) pegmatite. However, these parameters are only relevant to pegmatites that can be classified as such with reasonable confidence by the investigator and the application of these same parameters to Group 2 (NYF) pegmatites may lead to erroneous interpretations regarding rare-element mineralization;
- The positive relationship of elevated Li concentration in muscovite and Li mineralization in pegmatite is best exhibited in pegmatites of Group 1 (LCT) affiliation. However, for Group 2 (NYF) pegmatites, the gradual increase in Li content of muscovite over the sequence: common quartz-feldspar to beryl ± columbite ± REE-minerals to amazonite- or topaz-bearing pegmatites, does not equate to a concomitant increase in the crystallization of Li minerals with advancing pegmatite fractionation;
- Muscovite displaying high K/Rb ratios with high Li values may not always imply crystallization of a poorly fractionated pegmatite with unfavorable rare-element mineralization. Geochemically primitive pegmatite zones and assemblages that develop during the early stages of Li-rich pegmatite crystallization can host muscovite with high fractionation indexes.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trueman, D.L.; Černý, P. Exploration for Rare-Element Pegmatites. In Granitic Pegmatites in Science and Industry, Short Course Handbook; Černý, P., Ed.; Mineralogical Association of Canada: Winnipeg, MB, Canada, 1982; Volume 8, pp. 463–493. [Google Scholar]
- Selway, J.B.; Breaks, F.W.; Tindle, A.G. A review of rare-element (Li-Cs-Ta) pegmatite exploration techniques for the Superior Province, Canada, and large worldwide tantalum deposits. Explor. Min. Geol. 2005, 14, 1–30. [Google Scholar] [CrossRef]
- Beurlen, H.; Thomas, R.; da Silva, M.R.R.; Müller, A.; Rhede, D.; Soares, D.R. Perspectives for Li- and Ta-mineralization in the Borborema Pegmatite Province, NE-Brazil: A review. J. South Am. Earth Sci. 2014, 56, 110–127. [Google Scholar] [CrossRef]
- Maneta, V.; Baker, D.R. The potential of lithium in alkali feldspars, quartz, and muscovite as a geochemical indicator in the exploration for lithium-rich granitic pegmatites: A case study from the spodumene-rich Moblan pegmatite, Quebec, Canada. J. Geochem. Explor. 2019, 205, 106336. [Google Scholar] [CrossRef]
- Wise, M.A.; Müller, A.; Simmons, W.B. A proposed new mineralogical classification system for granitic pegmatites. Can. Mineral. 2022, 60, 229–248. [Google Scholar] [CrossRef]
- Černý, P.; Ercit, T.S. The classification of granitic pegmatites revisited. Can. Mineral. 2005, 43, 2005–2026. [Google Scholar] [CrossRef]
- Jolliff, B.; Papike, J.; Shearer, C. Fractionation trends in mica and tourmaline as indicators of pegmatite internal evolution: Bob Ingersoll pegmatite, Black Hills, South Dakota. Geochim. Cosmochim. Acta 1987, 51, 519–534. [Google Scholar] [CrossRef]
- Černý, P.; Meintzer, R.E.; Anderson, A.J. Extreme fractionation in rare-element granitic pegmatites: Selected examples of data and mechanisms. Can. Mineral. 1985, 23, 381–421. [Google Scholar]
- Černý, P.; Burt, D. Paragenesis, Crystallochemical Characteristics, and Geochemical Evolution in Micas in Granite Pegmatites. In Micas, Reviews in Mineralogy; Bailey, S.W., Ed.; Mineralogical Society of America: Chantilly, VA, USA, 1984; Volume 13, pp. 257–297. [Google Scholar]
- Gordiyenko, V.V. Mineralogy, Geochemistry and Genesis of the Spodumene Pegmatites; Nedra, Leningrad: Saint Petersburg, Russia, 1975; 237p. [Google Scholar]
- Gordiyenko, V.V. Concentrations of Li, Rb, and Cs in potash feldspar and muscovite as criteria for assessing the rare-metal mineralization in granite pegmatites. Int. Geol. Rev. 1971, 13, 134–142. [Google Scholar] [CrossRef]
- Smeds, S.-A. Trace elements in potassium-feldspar and muscovite as a guide in the prospecting for lithium- and tin-bearing pegmatites in Sweden. J. Geochem. Explor. 1992, 42, 351–369. [Google Scholar] [CrossRef]
- Novák, M.; Povondra, P. Elbaite pegmatites in the Moldanubicum: A new subtype of the rare-element class. Mineral. Petrol. 1995, 55, 159–176. [Google Scholar] [CrossRef]
- Černý, P. Rare-element granitic pegmatites. Part I: Anatomy and internal evolution of pegmatite deposits. Geosci. Can. 1991, 18, 49–67. [Google Scholar]
- Pearce, N.J.; Perkins, W.T.; Westgate, J.A.; Gorton, M.P.; Jackson, S.E.; Neal, C.R.; Chenery, S.P. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand. Newsl. 1997, 21, 115–144. [Google Scholar] [CrossRef]
- Jochum, K.P.; Stoll, B.; Herwig, K.; Willbold, M.; Hofmann, A.W.; Amini, M.; Aarburg, S.; Abouchami, W.; Hellebrand, E.; Mocek, B.; et al. MPI-DING reference glasses for in situ microanalysis: New reference values for element concentrations and isotope ratios. Geochem. Geophys. Geosyst. 2006, 7. [Google Scholar] [CrossRef]
- Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 2011, 26, 2508–2518. [Google Scholar] [CrossRef]
- Wise, M.A.; Harmon, R.S.; Curry, A.; Jennings, M.; Grimac, Z.; Khashchevskaya, D. Handheld LIBS for Li exploration: An example from the Carolina Tin-Spodumene Belt, USA. Minerals 2022, 12, 77. [Google Scholar] [CrossRef]
- Harmon, R.S.; Wise, M.A.; Curry, A.C.; Mistele, J.S.; Mason, M.S.; Grimac, Z. Rapid analysis of muscovites on a lithium pegmatite prospect by handheld LIBS. Minerals 2023, 13, 697. [Google Scholar] [CrossRef]
- Hawthorne, F.C.; Černý, P. The Mica Group. In Granitic Pegmatites in Science and Industry; Mineralogical Association of Canada Short Course Handbook; Mineralogical Association of Canada: Toronto, ON, Canada, 1982; Volume 8, pp. 63–98. [Google Scholar]
- Roda, E.; Keller, P.; Pesquera, A.; Fontan, F. Micas of the muscovite–lepidolite series from Karibib pegmatites, Namibia. Mineral. Mag. 2007, 71, 41–62. [Google Scholar] [CrossRef]
- Van Lichtervelde, M.; Grégoire, M.; Linnen, R.L.; Béziat, D.; Salvi, S. Trace element geochemistry by laser ablation ICP-MS of micas associated with Ta mineralization in the Tanco pegmatite, Manitoba, Canada. Contrib. Mineral. Petrol. 2008, 155, 791–806. [Google Scholar] [CrossRef]
- Cao, C.; Shen, P.; Bai, Y.; Luo, Y.; Feng, H.; Li, C.; Pan, H. Chemical evolution of micas and Nb-Ta oxides from the Koktokay pegmatites, Altay, NW China: Insights into rare-metal mineralization and genetic relationships. Ore Geol. Rev. 2022, 146, 104933. [Google Scholar] [CrossRef]
- Vieira, R.; Roda-Robles, E.; Pesquera, A.; Lima, A. Chemical variation and significance of micas from the Fregeneda-Almendra pegmatitic field (Central-Iberian Zone, Spain and Portugal). Am. Mineral. 2011, 96, 637–645. [Google Scholar] [CrossRef]
- Li, P.; Li, J.; Chen, Z.; Liu, X.; Huang, Z.; Zhou, F. Compositional evolution of the muscovite of Renli pegmatite-type rare-metal deposit, northeast Hunan, China: Implications for its petrogenesis and mineralization potential. Ore Geol. Rev. 2021, 138, 104380. [Google Scholar] [CrossRef]
- Roza Llera, A.; Fuertes-Fuente, M.; Cepedal, A.; Martin-Izard, A. Barren and Li–Sn–Ta Mineralized pegmatites from NW Spain (Central Galicia): A comparative study of their mineralogy, geochemistry, and wallrock metasomatism. Minerals 2019, 9, 739. [Google Scholar] [CrossRef]
- Kearns, C.A. The Mineralogy and Mineral Chemistry of the Henryton Pegmatite, Patapsco State Park, Carroll County, Maryland. Ph.D. Thesis, George Mason University, Fairfax, VA, USA, 2018. [Google Scholar]
- Konzett, J.; Schneider, T.; Nedyalkova, L.; Hauzenberger, C.; Melcher, F.; Gerdes, A.; Whitehouse, M. Anatectic granitic pegmatites from the Eastern Alps: A case of variable rare-metal enrichment during high-grade regional metamorphism—I: Mineral assemblages, geochemical characteristics, and emplacement ages. Can. Mineral. 2018, 56, 555–602. [Google Scholar] [CrossRef]
- Lagache, M.; Quéméneur, J. The Volta Grande pegmatites, Minas Gerais, Brazil: An example of rare-element granitic pegmatites exceptionally enriched in lithium and rubidium. Can. Mineral. 1997, 35, 153–165. [Google Scholar]
- Barros, R.; Kaeter, D.; Menuge, J.F.; Škoda, R. Controls on chemical evolution and rare element enrichment in crystallising albite-spodumene pegmatite and wallrocks: Constraints from mineral chemistry. Lithos 2020, 352, 105289. [Google Scholar] [CrossRef]
- Černý, P. Characteristics of Pegmatite Deposits of Tantalum. In Lanthanides, Tantalum and Niobium: Mineralogy, Geochemistry, Characteristics of Primary Ore Deposits, Prospecting, Processing and Applications Proceedings of a workshop in Berlin, November 1986; Springer: Berlin/Heidelberg, Germany, 1989; pp. 195–239. [Google Scholar]
- Akintola, A.I.; Ikhane, P.R.; Okunlola, O.A.; Akintola, G.O.; Oyebolu, O.O. Compositional features of Precambrian pegmatites of Ago-Iwoye area South Western, Nigeria. J. Ecol. Nat. Environ. 2012, 4, 71–87. [Google Scholar] [CrossRef]
- Serrano, J. Origine des pegmatites du Cap de Creus: Approche intégrée de terrain, pétrologie et géochimie. Ph.D. Thesis, Université Paul Sabatier—Toulouse III, Toulouse, France, 2019. [Google Scholar]
- Gunow, A.J.; Bonn, G.N. The geochemistry and origin of pegmatites Cherokee-Pickens district. Ga. Ga. Geol. Surv. Bull. 1989, 103, 93. [Google Scholar]
- Anderson, A. The Chemistry, Mineralogy and Petrology of the Cross Lake Pegmatite Field, Central Manitoba. Master’s Thesis, University of Manitoba, Winnipeg, MB, Canada, 1984. [Google Scholar]
- Jolliff, B.B.; Papike, J.J.; Shearer, C.K. Petrogenetic relationships between pegmatite and granite based on geochemistry of muscovite in pegmatite wall zones, Black Hills, South Dakota, USA. Geochim. Cosmochim. 1992, 56, 1915–1939. [Google Scholar] [CrossRef]
- Chackowsky, L.E. Mineralogy, Geochemistry and Petrology of Pegmatitic Granites and Pegmatites at Red Sucker Lake, Northeastern Manitoba. Master’s Thesis, University of Manitoba, Winnipeg, MB, Canada, 1987. [Google Scholar]
- Cocker, M.D. Geochemistry and Economic Potential of Pegmatites in the Thomaston-Barnesville District, Georgia. In Geologic Report 7; Georgia Department of Natural Resources, Environmental Protection Division, Georgia Geologic Survey: Marietta, GA, USA, 1992; 81p. [Google Scholar]
- Meintzer, R.E. The Mineralogy and Geochemistry of the Granitoid Rocks and Related Pegmatites of the Yellowknife Pegmatite Field, Northwest Territories. Ph.D. Thesis, University of Manitoba, Winnipeg, MB, Canada, 1987. [Google Scholar]
- Bhandari, S.; Qin, K.; Zhou, Q.; Evans, N.J. Geological, mineralogical and geochemical study of the aquamarine-bearing Yamrang pegmatite, Eastern Nepal with implications for exploration targeting. Minerals 2022, 12, 564. [Google Scholar] [CrossRef]
- Galliski, M.A.; Saavedra, J.; Márquez-Zavalía, M.F. Mineralogia y geoquimica de las micas en las pegmatitas Santa Elena y El Penon, Provincia Pegmatitica Pampeana, Argentina. Rev. Geol. Chile 1999, 26, 125–137. [Google Scholar] [CrossRef]
- Cen, J.B.; Feng, Y.G.; Liang, T.; Gao, J.G.; He, L.; Zhou, Y. Implications of muscovite composition on the genesis of Li-rich and Be-rich pegmatites: A case study of the Kalu’an rare-metal pegmatite ore-field. Acta Petrol. Sin. 2022, 38, 411–427. [Google Scholar]
- Anderson, S.D.; Černý, P.; Halden, N.M.; Chapman, R.; Uher, P. The Yitt-B pegmatite swarm at Bernic Lake, southeastern Manitoba: A geochemical and paragenetic anomaly. Can. Mineral. 1998, 36, 283–301. [Google Scholar]
- Kaeter, D.; Barros, R.; Menuge, J.F.; Chew, D.M. The magmatic–hydrothermal transition in rare-element pegmatites from southeast Ireland: LA-ICP-MS chemical mapping of muscovite and columbite–tantalite. Geochim. Et Cosmochim. Acta 2018, 240, 98–130. [Google Scholar] [CrossRef]
- Akoh, J.U.; Ogunleye, P.O. Mineralogical and geochemical evolution of muscovite in the pegmatite group of the Angwan Doka area, Kokoona district: A clue to petrogenesis and tourmaline mineralization potential. J. Geochem. Explor. 2014, 146, 89–104. [Google Scholar] [CrossRef]
- Xing, C.M.; Wang, C.Y.; Wang, H. Magmatic-hydrothermal processes recorded by muscovite and columbite-group minerals from the Bailongshan rare-element pegmatites in the West Kunlun-Karakorum orogenic belt, NW China. Lithos 2020, 364, 105507. [Google Scholar] [CrossRef]
- South, J.K. Mineralogy and Geochemistry of the Dumper Dew Pegmatite, Oxford County, Maine. Master’s Thesis, University of New Orleans, New Orleans, LA, USA, 2009. [Google Scholar]
- Jahns, R.H.; Ewing, R.C. The Harding Mine, Taos County, New Mexico. In New Mexico Geological Society Guidebook, 27th Field Conference; New Mexico Geological Society: Socorro, NM, USA, 1976; pp. 263–276. [Google Scholar]
- Li, X.; Dai, H.; Wang, D.; Liu, S.; Wang, G.; Wang, C.; Huang, F.; Zhu, H. Geochronological and geochemical constraints on magmatic evolution and mineralization of the northeast Ke’eryin pluton and the newly discovered Jiada pegmatite-type lithium deposit, Western China. Ore Geol. Rev. 2022, 105164. [Google Scholar] [CrossRef]
- Anderson, M.O.; Lentz, D.R.; McFarlane, C.R.; Falck, H. A geological, geochemical and textural study of an LCT pegmatite: Implications for the magmatic versus metasomatic origin of Nb-Ta mineralization in the Moose II pegmatite, Northwest Territories, Canada. J. Geosci. 2013, 58, 299–320. [Google Scholar] [CrossRef]
- Sundelius, H.W. The Peg claims spodumene pegmatites, Maine. Econ. Geol. 1963, 58, 84–106. [Google Scholar] [CrossRef]
- Liu, C.; Wang, R.C.; Wu, F.Y.; Xie, L.; Liu, X.C.; Li, X.K.; Yang, L.; Li, X.J. Spodumene pegmatites from the Pusila pluton in the higher Himalaya, South Tibet: Lithium mineralization in a highly fractionated leucogranite batholith. Lithos 2020, 358, 105421. [Google Scholar] [CrossRef]
- Chen, J.Z.; Zhang, H.; Tang, Y.; Lv, Z.H.; An, Y.; Wang, M.T.; Liu, K.; Xu, Y.S. Lithium mineralization during evolution of a magmatic–hydrothermal system: Mineralogical evidence from Li-mineralized pegmatites in Altai, NW China. Ore Geol. Rev. 2022, 105058. [Google Scholar] [CrossRef]
- Lenton, P.G. Mineralogy and Petrology of the Buck Claim Lithium Pegmatite, Bernic Lake, Southeastern, Manitoba. Master’s Thesis, University of Manitoba, Winnipeg, MB, Canada, 1979. [Google Scholar]
- Ferreira, K.J. The Mineralogy and Geochemistry of the Lower Tanco Pegmatite, Bernic Lake, Manitoba, Canada. Master’s Thesis, University of Manitoba, Winnipeg, MB, Canada, 1984. [Google Scholar]
- Quensel, P. The paragenesis of the Varuträsk pegmatite including a review of its mineral assemblage. Ark. Min. Geol. 1957, 2, 9–126. [Google Scholar]
- Elder, R.A. Geochemistry and Mineralogy of the Brown Derby No. 1 Pegmatite, Gunnison County, Colorado. Master’s Thesis, University of New Orleans, New Orleans, LA, USA, 1998. [Google Scholar]
- Černý, P.; Chapman, R.; Staně, J.; Nová, M.; Baadsgaard, H.; Rieder, M.; Kavalová, M.; Ottolini, L. Geochemical and structural evolution of micas in the Rožná and Dobrá Voda pegmatites, Czech Republic. Mineral. Petrol. 1995, 55, 177–201. [Google Scholar] [CrossRef]
- Neiva, A.M. Micas, feldspars and columbite–tantalite minerals from the zoned granitic lepidolite-subtype pegmatite at Namivo, Alto Ligonha, Mozambique. Eur. J. Mineral. 2013, 25, 967–985. [Google Scholar] [CrossRef]
- Garson, M.S.; Bradshaw, N.; Rattawong, S. Lepidolite Pegmatites in the Phangnga Area of Peninsular Thailand. In 2nd Technical Conference on Tin 1; Fox, W., Ed.; International Tin Council and Department of Mineral Resources: Bangkok, Thailand, 1969; pp. 328–339. [Google Scholar]
- Heinrich, E.W.; Levinson, A.A. Studies in the mica group; mineralogy of the rose muscovites. Am. Mineral. J. Earth Planet. Mater. 1953, 38, 25–49. [Google Scholar]
- Černý, P.; Teertstra, D.K.; Chapman, R.; Selway, J.B.; Hawthorne, F.C.; Ferreira, K.; Chackowsky, L.E.; Wang, X.J.; Meintzer, R.E. Extreme fractionation and deformation of the leucogranite–pegmatite suite at Red Cross Lake, Manitoba, Canada. IV. Mineralogy. Can. Mineral. 2012, 50, 1839–1875. [Google Scholar] [CrossRef]
- Smeds, S.A. Zoning and fractionation trends of a peraluminous NYF granitic pegmatite field at Falun, south-central Sweden. Gff 1994, 116, 175–184. [Google Scholar] [CrossRef]
- Paul, B.J. Mineralogy and Petrochemistry of the Huron Claim Pegmatite, Southeastern Manitoba. Master’s Thesis, University of Manitoba, Winnipeg, MB, Canada, 2013. [Google Scholar]
- Marciano, V.R.P.D.R. O Distrito Pegmatítico de Santa Maria de Itabira, MG: Mineralogia, Geoquímica e Zoneografia. Ph.D. Thesis, Universidade de São Paulo, São Paulo, Brazil, 1995. [Google Scholar]
- Bonzi, W.M.E.; Van Lichtervelde, M.; Vanderhaeghe, O.; André-Mayer, A.S.; Salvi, S.; Wenmenga, U. Insights from mineral trace chemistry on the origin of NYF and mixed LCT+ NYF pegmatites and their mineralization at Mangodara, SW Burkina Faso. Miner. Depos. 2023, 58, 75–104. [Google Scholar] [CrossRef]
- Faria, P. The Mineralogy and Chemistry of the Spro Pegmatite Mine, Nesodden, and Their Genetic Implications. Master’s Thesis, University of Oslo, Oslo, Norway, 2019. [Google Scholar]
- Rosing-Schow, N.; Müller, A.; Friis, H. A comparison of the mica geochemistry of the pegmatite fields in southern Norway. Can. Mineral. 2018, 56, 463–488. [Google Scholar] [CrossRef]
- Manuylova, M.M.; Petrov, L.L.; Rybakova, M.M.; Sokolov, Y.M.; Shmakin, B.M. Distribution of alkali-metals and beryllium in pegmatite minerals from the north Baykalian pegmatite belt. Geochem. Int. 1966, 3, 309–321. [Google Scholar]
- Schuster, R.; Knoll, T.; Mali, H.; Huet, B.; Griesmeier, G.E.U. Field trip guide: A profile from migmatites to spodumene pegmatites (Styria, Austria). Berichte Geol. Bundesanst. 2019, 134, 1–4. [Google Scholar]
- Knoll, T.; Huet, B.; Schuster, R.; Mali, H.; Ntaflos, T.; Hauzenberger, C. Lithium pegmatite of anatectic origin—A case study from the Austroalpine Unit Pegmatite Province (Eastern European Alps): Geological data and geochemical model. Ore Geol. Rev. 2023, 154, 105298. [Google Scholar] [CrossRef]
- Harmon, R.S.; Lawley, C.J.; Watts, J.; Harraden, C.L.; Somers, A.M.; Hark, R.R. Laser-induced breakdown spectroscopy—An emerging analytical tool for mineral exploration. Minerals 2019, 9, 718. [Google Scholar] [CrossRef]
- Lawley, C.J.; Somers, A.M.; Kjarsgaard, B.A. Rapid geochemical imaging of rocks and minerals with handheld laser induced breakdown spectroscopy (LIBS). J. Geochem. Explor. 2021, 222, 106694. [Google Scholar] [CrossRef]
- Fabre, C.; Ourti, N.E.; Ballouard, C.; Mercadier, J.; Cauzid, J. Handheld LIBS analysis for in situ quantification of Li and detection of the trace elements (Be, Rb and Cs). J. Geochem. Explor. 2022, 236, 106979. [Google Scholar] [CrossRef]
- Wise, M.A.; Francis, C.A. Distribution, classification and geological setting of granitic pegmatites in Maine. Northeast. Geol. 1992, 14, 82–93. [Google Scholar]
- Wise, M.A.; Brown, C.D. Mineral chemistry, petrology and geochemistry of the Sebago granite-pegmatite system, southern Maine, USA. J. Geosci. 2010, 55, 3–26. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wise, M.A.; Curry, A.C.; Harmon, R.S. Reevaluation of the K/Rb-Li Systematics in Muscovite as a Potential Exploration Tool for Identifying Li Mineralization in Granitic Pegmatites. Minerals 2024, 14, 117. https://doi.org/10.3390/min14010117
Wise MA, Curry AC, Harmon RS. Reevaluation of the K/Rb-Li Systematics in Muscovite as a Potential Exploration Tool for Identifying Li Mineralization in Granitic Pegmatites. Minerals. 2024; 14(1):117. https://doi.org/10.3390/min14010117
Chicago/Turabian StyleWise, Michael A., Adam C. Curry, and Russell S. Harmon. 2024. "Reevaluation of the K/Rb-Li Systematics in Muscovite as a Potential Exploration Tool for Identifying Li Mineralization in Granitic Pegmatites" Minerals 14, no. 1: 117. https://doi.org/10.3390/min14010117
APA StyleWise, M. A., Curry, A. C., & Harmon, R. S. (2024). Reevaluation of the K/Rb-Li Systematics in Muscovite as a Potential Exploration Tool for Identifying Li Mineralization in Granitic Pegmatites. Minerals, 14(1), 117. https://doi.org/10.3390/min14010117