Experimental Study of Lithium Extraction in the Solid-Liquid Conversion of Low-Grade Solid Potash Ore
Abstract
:1. Introduction
2. Geological Setting
3. Sample Handling and Experimental Methods
3.1. Sample Handling
3.2. Experimental Methods
3.2.1. Solvent Configuration
3.2.2. Experimental Process
4. Experimental Results
5. Discussion
5.1. Comparison of Sample Properties before and after Dissolution
5.1.1. Chemical Analysis
5.1.2. Comparison of X-ray Diffraction Patterns
5.2. Comparison of the Effects of Different Solvents
5.3. Comparison of Dissolution Properties of Different Ore Samples
5.4. Comparison Comparative Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gruber, P.W.; Medina, P.A.; Keoleian, G.A. Global Lithium Availability: A Constraint for Electric Vehicles? J. Ind. Ecol. 2011, 15, 760–775. [Google Scholar] [CrossRef]
- Xu, X.; Chen, Y.M.; Wan, P.Y.; Gasem, K.; Wang, K.Y. Extraction of lithium with functionalized lithium ion-sieves. Prog. Mater. Sci. 2016, 84, 276–313. [Google Scholar] [CrossRef]
- Su, T.; Guo, M.; Liu, Z.; Li, Q. Comprehensive Riview od Global Lithium Resources. J. Salt Lake Res. 2019, 27, 104–111. [Google Scholar] [CrossRef]
- Florencia, H.; Martinez, A.L.; Valentina, U.S. The importance of lithium for achieving a low-carbon future: Overview of the lithium extraction in the ‘Lithium Triangle’. J. Energy Nat. Resour. Law 2020, 38, 213–236. [Google Scholar] [CrossRef]
- Baltazar, C.T.; Jessica, D.; Sophia, C.; Timothy, P.; Ghislain, B.; Serkan, S.; Ismet, C. Towards a low-carbon society: A review of lithium resource availability, challenges and innovations in mining, extraction and recycling, and future perspectives. Miner. Eng. 2021, 163, 106743. [Google Scholar] [CrossRef]
- Han, C.M.; Fan, Q.S.; Han, G.; Wei, H.C.; Li, Q.K.; Chen, Y.J.; Chen, T.Y.; Yang, H.T. Source-sink Process of Brine-type Litium Deposits in the Salt Lakes in the Qaidam Basin and Its Spatial Mineralization Association with Hydrogeomorphic Evolution of Nalinggele River. J. Salt Lake Res. 2023, 31, 9–18+102. [Google Scholar] [CrossRef]
- Chen, L.L.; Chao, Y.H.; Li, X.W.; Zhou, G.L.; Lu, Q.Q.; Hua, M.Q.; Li, H.P.; Ni, X.G.; Wu, P.W.; Zhu, W.S. Engineering a tandem leaching system for the highly selective recycling of valuable metals from spent Li-ion batteries. Green Chem. 2021, 23, 2177–2184. [Google Scholar] [CrossRef]
- Zhang, Z.N.; Zhang, Z.Z.; Wu, Q.; Pan, Z.S.; Xu, H.Y. Chinese Lithium Mineral Resource Demand Forecast. China Min. Mag. 2020, 29, 9–15. [Google Scholar]
- Han, J.H.; Nie, Z.; Fang, C.H.; Wu, Q.; Cao, Q.; Wang, Y.S.; Bo, L.Z.; Yu, J.J. Analysis of existing circumstance of supply and demand on China’s lithium resources. Inorg. Chem. Ind. 2021, 53, 61–66. [Google Scholar] [CrossRef]
- Xue, Y.Y.; Liu, H.Y.; Sun, W.D. The Geochemical Properties and Enrichment Mechanism of Lithium. Geotecton. Metallog. 2021, 45, 1202–1215. [Google Scholar] [CrossRef]
- Fan, J.J.; Tang, G.J.; Wei, G.J.; Wang, H.; Xu, Y.G.; Wang, Q.; Zhou, J.S.; Zhang, Z.Y.; Huang, T.Y.; Wang, Z.L. Lithium isotope fractionation during fluid exsolution: Implications for Li mineralization of the Bailongshan pegmatites in the West Kunlun, NW Tibet. Lithos 2020, 352, 105236. [Google Scholar] [CrossRef]
- Bibienne, T.; Magnan, F.J.; Rupp, A.; Laroche, N. From Mine to Mind and Mobiles: Society’s Increasing Dependence on Lithium. Elements 2020, 16, 265–270. [Google Scholar] [CrossRef]
- Bowell, J.R.; Lagos, L.; Hoyos, L.D.R.C.; Declercq, J. Classification and Characteristics of Natural Lithium Resources. Elements 2020, 16, 259–264. [Google Scholar] [CrossRef]
- Munk, L.A.; Hynek, S.A.; Bradley, D.C.; Boutt, D.; Labay, K.; Jochens, H. Lithium brines: A global perspective. Rev. Econ. Geol. 2016, 18, 339–365. [Google Scholar] [CrossRef]
- Weng, D.; Duan, H.Y.; Hou, Y.C.; Huo, J.; Chen, L.; Zhang, F.; Wang, J.D. Introduction of manganses based lithium-ion Sieve-A review. Prog. Nat. Sci. Mater. Int. 2020, 30, 139–152. [Google Scholar] [CrossRef]
- Sun, J.; Li, X.W.; Huang, Y.H.; Luo, G.L.; Tao, D.J.; Yu, J.T.; Chen, L.L.; Chao, Y.H.; Zhu, W.S. Preparation od high hydrophilic H2TiO3 ion sieve for lithium recovery from liquid lithium resources. Chem. Eng. J. 2023, 453, 139485. [Google Scholar] [CrossRef]
- Li, H.P.; Zheng, M.P.; Hou, X.H.; Yan, L.J. Control Factors and Water Chemical Characteristics of Potassium-rich Deep Brine in Nanyishan Structure of Western Qaidam Basin. Acta Geosci. Sin. 2015, 36, 41–50. [Google Scholar] [CrossRef]
- Liu, C.L.; Yu, X.C.; Zhao, Y.J.; Wang, J.Y.; Wang, L.C.; Xu, H.M.; Li, J.; Wang, C.L. A tentative discussion on regional metallogenic background and mineralization mechanism of subterranean brines rich in potassium and lithium in South China Block. Miner. Depos. 2016, 35, 1119–1143. [Google Scholar] [CrossRef]
- Liu, C.L.; Yu, X.C.; Yuan, X.Y.; Li, R.Q.; Yao, F.J.; Shen, L.J.; Li, Q.; Zhao, Y.Y. Characteristics, distribution regularity and formation model of brine-type Li deposits in salt lakes in the world. Acta Geol. Sin. 2021, 95, 2009–2029. [Google Scholar] [CrossRef]
- Yu, X.C.; Liu, C.L.; Wang, C.L.; Xu, H.M.; Zhao, Y.J.; Huang, H.; LI, R.Q. Genesis of lithium brine deposits in the Jianghan Basin and progress in resource exploration: A review. Earth Sci. Front. 2022, 29, 107–123. [Google Scholar] [CrossRef]
- Yuan, J.Q.; Hao, C.Y.; Cai, K.Q. The High Mountain-deep Basin Saline Environment—A New Genetic Model of Salt Deposits. Geol. Rev. 1983, 29, 159–165. [Google Scholar] [CrossRef]
- Wang, Y.X.; Xu, S.; Hao, F.; Poulton, S.W.; Zhang, Y.Y.; Guo, T.X.; Lu, Y.B.; Bai, N. Arid climate disturbance and the development of salinized lacustrine oil shale in the Middle Jurassic Dameigou Formation, Qaidam Basin, northwestern China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2021, 577, 110533. [Google Scholar] [CrossRef]
- Wu, Y.P.; Liu, C.L.; Liu, Y.J.; Gong, H.W.; Sarwar, A.R.; Li, G.X.; Zhang, Q.B. Geochemical characteristics and the organic atter enrichment of the Upper Ordovician Tanjianshan Group, Qaidam Basin, China. J. Pet. Sci. Eng. 2022, 208, 109383. [Google Scholar] [CrossRef]
- Tang, W.Q.; Zhang, D.W.; Zhou, Y.X.; Liu, Y.Y.; Wu, K.Y.; Zhang, P.C.; Han, Q.C.; Li, F.J.; Ma, C. Astronomical forcing in the coal-bearing Middle Jurassic Dameigou Formation, Qaidam Basin, northwestern China. Ore Geol. Rev. 2023, 161, 105663. [Google Scholar] [CrossRef]
- Pan, T.; Chen, J.Z.; Ding, C.W.; Ma, Y.L.; Liang, H.; Zhang, T.; Du, X.C. Occurrence Characteristics of Lithium Rare Light Metal Clay-type Deposits in Balunmahai Basin of Qaidam Basin. Gold Sci. Technol. 2023, 31, 359–377. [Google Scholar]
- Yuan, J.Q. Types of salt lakes in the Qaidam Basin. Acta Geol. Sin. 1959, 03, 318–323. [Google Scholar] [CrossRef]
- Chen, K.Z.; Yang, S.X.; Zheng, X.Y. The Salt Lakes on The Qinghai-Xizang Plateau. Acta Geogr. Sin. 1981, 1, 13–21. [Google Scholar]
- Hu, S.Y.; Zhao, Q.S.; Wang, G.C.; Zhang, J.W.; Feng, J. Hydrochemical Dynamic Characteristics and Evolution of Underground Brine in the Mahai Salt Lake of the Qaidam Basin Qinghai-Tibet Plateau. Acta Geol. Sin. 2018, 92, 1981–1990. [Google Scholar] [CrossRef]
- Yao, F.J.; Jiao, P.C.; Zhao, Y.J.; Zhao, X.F.; Zhang, H.; Liu, C.L. Research of remote sensing recognition of concealed brine-controlling structures in dry salt lake area: A case study of Mahai salt lake. Acta Geol. Sin. 2021, 95, 2225–2237. [Google Scholar] [CrossRef]
- Yang, Q. The Salt Mineral Resources and Their Spatial Distribution in Chaidamu Basin, Qinghai. Earth Sci. 1988, 13, 49–58. [Google Scholar]
- Wang, M.L.; Liu, C.L.; Yang, Z.C.; Jiao, P.C.; Fan, W.D. Preliminary study on the characteristics and genesis of extra-large potash deposits in the North Sag of Lop Poro. Geol. Rev. 1997, 43, 249. [Google Scholar] [CrossRef]
- Wan, T.F. The Tectonics of China: Data, Maps and Evolution; Springer Science & Business Media. M.: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Sun, G.Q.; Zhang, S.C.; Wang, Y.T.; Li, Y.L.; Guo, H.; Bo, S.S. Eocene Sedimentary–Diagenetic Environment Analysis of the Pingtai Area of the Qaidam Basin. Appl. Sci. 2022, 12, 6850. [Google Scholar] [CrossRef]
- Lu, J.; Zhou, K.; Yang, M.F.; Shao, L.Y. Jurassic continental coal accumulation linked to changes in palaeoclimate and tectonics in a fault-depression superimposed basin, Qaidam Basin, NW China. Geol. J. 2020, 55, 7998–8016. [Google Scholar] [CrossRef]
- Wei, X.J.; Jiang, J.X.; Wang, M.L. Sedimentary Characteristics of Quaternary and Evolution of Saline Lake of Mahai Potash Deposit. J. Manag. Strategy Qinghai Land Resour. 1992, 1, 40–52. [Google Scholar]
- Hu, S.Y.; Ren, J.; Li, J.Q.; Zhao, Q.S. Permeability and Brine Enrichment Mechanism of Brine Reservoir in the Mahai Salt Lake, Qaidam Basin. Sci. Geogr. Sin. 2022, 42, 2039–2046. [Google Scholar] [CrossRef]
- Ma, J.Y. Outline Evaluation and Exploitation of Resources in Northern Segment of Mahai Potassium Deposit. Eng. Sci. 2005, 7, 296–300. [Google Scholar]
- Li, J.G.; Guan, Y.S.; Dai, J.; Yu, M.X.; Cheng, F.Q. Phase diagram analysis and computation for the process of brine evaporation of dissolution mining of low grade solid potassium deposit in Mahai salt lake. Inorg. Chem. Ind. 2013, 45, 17–20. [Google Scholar]
- Zhao, Q.S.; Kong, Z.H.; Hu, S.Y.; Zhang, J.W. Geophysical Exploration and Application of Underground Brine of Mahai Salt Lake in Qaidam Basin. J. Jilin Univ. (Earth Sci. Ed.) 2023, 53, 1560–1572. [Google Scholar] [CrossRef]
- Wang, Z.X.; Zhao, Y.J.; Zhao, X.F.; Wang, Q.C.; He, J.H.; Hu, Y.F.; Long, P.Y. Influence of sedimentary characteristics on water solution mining of low-grade potassium ore: A case study of Holocene in the northern ore section of Mahai Salt Lake, Qaidam Basin. Acta Petrol. Mineral. 2022, 41, 929–940. [Google Scholar]
- Qu, J.Y.; Chen, G.X.; Liu, R.C.; Zhou, Y.; Luo, J.H. Study and Discussion on Preparation of Hemihydrate Gypsum by SaltSolution Method. Multipurp. Util. Miner. Resour. 2023, 1–2. [Google Scholar] [CrossRef]
- Yang, F.L.; Qiao, G.X.; Yang, P.; Ren, L.; Wang, Q.; Wu, H.B.; Cheng, F.Q. Research progress and application of α-hemihydrate gypsum preparation from desulfurization gypsum. Inorg. Chem. Ind. 2023, 1–14. [Google Scholar] [CrossRef]
- Pan, T.; Chen, J.Z.; He, M.Y.; Ding, C.W.; Ma, Y.L.; Liang, H.; Zhang, T.; Du, X.C. Characterization and Resource Potential of Li in the Clay Minerals of Mahai Salt Lake in the Qaidam Basin, China. Sustainability 2023, 15, 14067. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, F.Q.; Zhang, D.G.; Zhou, L.J.; Zhao, G.H.; Liao, J.L.; Yan, X.M.; Xu, H.H.; Hou, W.W.; Zhang, J.J.; et al. The bottleneck problem and some thoughts on the process of exploration and development pf clay-type lithium deposit. Geol. Rev. 2023, 69, 1298–1312. [Google Scholar] [CrossRef]
The Name of The Sample ID | Halite | Polyhalite | Gypsum | Chlorite | Albite | Quartz | Kaolinite | Illite |
---|---|---|---|---|---|---|---|---|
sample 1 | 77% | 2% | 11% | 2% | 8% | |||
sample 2 | 9% | 8% | 40% | 2% | 14% | 6% | 5% | 16% |
sample 3 | 94% | 6% |
Sample | Water-Soluble | Total Solution | |||||
---|---|---|---|---|---|---|---|
Element (μg/g) | Sample 1 | Sample 2 | Sample 3 | Sample 1 | Sample 2 | Sample 3 | |
Li+ | 1.40 | 3.20 | 0.40 | 6.00 | 26.00 | 2.00 | |
K+ | 1516.60 | 2080.10 | 371.20 | 3353.00 | 11445.00 | 1202.00 |
Reaction Time (h) | 6 | 30 | 54 | 78 | 102 | 126 | 150 | 174 | 246 | 534 | 558 | 630 | 726 | 894 | 1158 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Element (μg/g) | ||||||||||||||||
(Sample 1 + deionized water) Li+ | 0.24 | 0.12 | 0.24 | 0.32 | 0.32 | 0.36 | 0.40 | 0.44 | 0.48 | 0.64 | 0.60 | 0.68 | 0.72 | 0.88 | 1.12 | |
(Sample 1 + deionized water) K+ | 288.52 | 227.76 | 313.80 | 410.52 | 435.60 | 500.24 | 525.72 | 575.20 | 667.96 | 813.68 | 710.84 | 764.28 | 803.28 | 891.76 | 1090.76 | |
(Sample 1 + 10 degrees baumé) Li+ | 0.08 | 0.04 | 0.16 | 0.12 | 0.16 | 0.24 | 0.20 | 0.24 | 0.24 | 0.32 | 0.36 | 0.40 | 0.48 | 0.48 | 0.60 | |
(Sample 1 + 10 degrees baumé) K+ | 107.84 | 119.52 | 178.60 | 186.36 | 214.16 | 248.32 | 251.08 | 277.96 | 296.24 | 362.96 | 364.68 | 385.20 | 413.16 | 421.88 | 461.00 | |
(Sample 1 + 20 degrees baumé) Li+ | 0.04 | 0.08 | 0.20 | 0.12 | 0.20 | 0.24 | 0.28 | 0.28 | 0.28 | 0.44 | 0.48 | 0.52 | 0.56 | 0.64 | 0.76 | |
(Sample 1 + 20 degrees baumé) K+ | 688.36 | 739.52 | 809.16 | 823.60 | 856.92 | 878.76 | 571.52 | 895.52 | 960.04 | 1017.48 | 983.16 | 1004.48 | 1069.96 | 1123.28 | 1217.24 | |
(Sample 2 + deionized water) Li+ | 0.08 | 0.12 | 0.24 | 0.24 | 0.40 | 0.68 | 0.52 | 0.64 | 1.00 | 1.52 | 1.60 | 1.64 | 1.72 | 1.92 | 2.08 | |
(Sample 2 + deionized water) K+ | 135.60 | 216.92 | 405.44 | 445.12 | 650.40 | 900.68 | 844.48 | 957.36 | 1248.20 | 1547.68 | 1515.36 | 1510.04 | 1518.32 | 1682.52 | 1764.84 | |
(Sample 2 + 10 degrees baumé) Li+ | 0.16 | 0.20 | 0.40 | 0.32 | 0.52 | 0.68 | 0.64 | 0.68 | 1.08 | 1.52 | 1.52 | 1.60 | 1.68 | 2.00 | 2.68 | |
(Sample 2 + 10 degrees baumé) K+ | 208.00 | 310.04 | 565.16 | 543.24 | 771.56 | 916.84 | 957.60 | 1039.84 | 1324.76 | 1601.92 | 1537.20 | 1557.28 | 1564.48 | 1856.76 | 2413.04 | |
(Sample 2 + 20 degrees baumé) Li+ | 0.16 | 0.24 | 0.56 | 0.52 | 0.60 | 0.68 | 0.72 | 0.84 | 0.68 | 1.48 | 1.56 | 1.64 | 1.64 | 2.00 | 2.12 | |
(Sample 2 + 20 degrees baumé) K+ | 792.08 | 961.08 | 1294.32 | 1251.56 | 1429.88 | 1534.20 | 1582.00 | 1646.44 | 1173.44 | 2236.44 | 2151.96 | 2166.64 | 2130.48 | 2498.96 | 2593.60 | |
(Sample 3 + deionized water) Li+ | 0 | 0 | 0.04 | 0.08 | 0.08 | 0.12 | 0.12 | 0.12 | 0.12 | 0.16 | 0.24 | 0.24 | 0.24 | 0.28 | 0.28 | |
(Sample 3 + deionized water) K+ | 32.80 | 77.44 | 105.16 | 129.04 | 148.04 | 164.48 | 175.68 | 189.36 | 196.88 | 212.12 | 218.96 | 210.32 | 219.52 | 227.56 | 229.96 | |
(Sample 3 + 10 degrees baumé) Li+ | 0 | 0.04 | 0.08 | 0.12 | 0.16 | 0.20 | 0.20 | 0.16 | 0.20 | 0.24 | 0.28 | 0.24 | 0.28 | 0.36 | 0.36 | |
(Sample 3 + 10 degrees baumé) K+ | 73.60 | 108.36 | 158.52 | 187.16 | 204.52 | 230.20 | 222.68 | 235.80 | 244.16 | 248.32 | 255.96 | 263.00 | 262.88 | 288.44 | 296.32 | |
(Sample 3 + 20 degrees baumé) Li+ | 0.08 | 0.12 | 0.16 | 0.20 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | 0.32 | 0.28 | 0.32 | 0.36 | 0.44 | |
(Sample 2 + 10 degrees baumé) K+ | 721.64 | 756.68 | 803.84 | 835.88 | 854.36 | 881.80 | 873.36 | 894.00 | 915.76 | 878.76 | 765.76 | 859.20 | 856.36 | 859.56 | 1117.00 |
The Name of The Sample ID | Halite | Polyhalite | Gypsum | Hemihydrate Gypsum | Chlorite | Albite | Quartz | Kaolinite | Illite |
---|---|---|---|---|---|---|---|---|---|
Sample 1 + deionized water | 57% | 6% | 5% | 8% | 6% | 8% | 10% | ||
Sample 1 + 10 degrees baumé | 66% | 5% | 12% | 4% | 13% | ||||
Sample 1 + 20 degrees baumé | 61% | 6% | 8% | 4% | 10% | 12% | |||
Sample 2 + deionized water | 4% | 10% | 4% | 23% | 22% | 10% | 27% | ||
Sample 2 + 10 degrees baumé | 4% | 10% | 4% | 35% | 5% | 11% | 30% | ||
Sample 2 + 20 degrees baumé | 11% | 8% | 4% | 24% | 15% | 10% | 29% | ||
Sample 3 + deionized water | 91% | 6% | 3% | ||||||
Sample 3 + 10 degrees baumé | 91% | 7% | 2% | ||||||
Sample 3 + 20 degrees baumé | 94% | 6% |
Element (μg/g) | Water-Soluble | Total Solution | |||
---|---|---|---|---|---|
The Name of The Sample ID | Li+ | K+ | Li+ | K+ | |
Sample 1 + deionized water | 0.70 | 361.20 | 5.00 | 2928.00 | |
Sample 1 + 10 degrees baumé | 0.70 | 247.50 | 5.00 | 2965.00 | |
Sample 1 + 20 degrees baumé | 0.70 | 342.10 | 3.00 | 2529.00 | |
Sample 2 + deionized water | 2.00 | 809.10 | 21.00 | 15,100.00 | |
Sample 2 + 10 degrees baumé | 2.10 | 999.00 | 19.00 | 14,477.00 | |
Sample 2 + 20 degrees baumé | 2.20 | 1237.90 | 14.00 | 12,666.00 | |
Sample 3 + deionized water | 0.10 | 107.10 | *** | 364.00 | |
Sample 3 + 10 degrees baumé | 0.10 | 96.30 | *** | 401.00 | |
Sample 3 + 20 degrees baumé | 0.10 | 167.60 | *** | 453.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Z.; Zhao, Y.; Zhang, Y.; Liu, J.; Hu, Y.; Hu, S.; Wang, Q. Experimental Study of Lithium Extraction in the Solid-Liquid Conversion of Low-Grade Solid Potash Ore. Minerals 2024, 14, 116. https://doi.org/10.3390/min14010116
Cui Z, Zhao Y, Zhang Y, Liu J, Hu Y, Hu S, Wang Q. Experimental Study of Lithium Extraction in the Solid-Liquid Conversion of Low-Grade Solid Potash Ore. Minerals. 2024; 14(1):116. https://doi.org/10.3390/min14010116
Chicago/Turabian StyleCui, Zihao, Yanjun Zhao, Yumeng Zhang, Jingjing Liu, Yufei Hu, Shengzhong Hu, and Qiang Wang. 2024. "Experimental Study of Lithium Extraction in the Solid-Liquid Conversion of Low-Grade Solid Potash Ore" Minerals 14, no. 1: 116. https://doi.org/10.3390/min14010116
APA StyleCui, Z., Zhao, Y., Zhang, Y., Liu, J., Hu, Y., Hu, S., & Wang, Q. (2024). Experimental Study of Lithium Extraction in the Solid-Liquid Conversion of Low-Grade Solid Potash Ore. Minerals, 14(1), 116. https://doi.org/10.3390/min14010116